PHYSICS 510

Stochastic processes in physics

Spring 2003

Birger Bergersen

Menu

Introductory material:

1.      Stochastic processes. Review of some elementary results and definitions.

2.      Master equation. Birth and death processes. Steady states. Carriers of intrinsic semiconductor.

3.      Branching processes, generating function. Did Eve ever meet Adam?

Systems approaching equilibrium

4.      Van Kampen’s system size expansion for systems approaching a steady state. Mean field and Fokker Planck equation.

5.      Detailed balance. Einstein relations. Monte Carlo methods.  The settling/unsettling of dust.

6.      Examples: Ludwig’s spruce budworm model. Spreading of an epidemic.

7.      The Langevin approach. Ito vs. Stratanovich.

8.      Systems with extrinsic noise.

9.      Limitations of system size expansion.  Sex-life of male lizards.

Metastable and driven systems:

10.  Absorbing states. Diffusion near a cliff.

11.  Kimura-Weiss model of neutral genetic drift.

12.  Kramer’s escape rate.

13.   Molecular motors

Models of growth and growing networks:

14.  Pareto-Zipf law. Income distribution and earthquake magnitudes

15.  Growth of cities.

16.  Random networks and small worlds.

17.  Scale free networks.

18.  Spreading of infections on networks.

Time series:

19.  Stable processes. Levy flights. The Noah effect.

20.  Return distribution for random walks.

21.  The Joseph effect and the Assuan dam.

22.  Colored noise. Fractal Brownian motion.

23.  Power spectra, fft, rescaled range method.

Moving interfaces:

24. Ballistic growth and diffusion limited aggregation.

25.  Self-similar and self-affine systems. Scaling.

26.  Edwards Wilkinson model.

27.  Kardar-Parisi-Zhang model in 1 dimension.

28.  KPZ in 2-d. Conservative vs. non-conservative noise.

More spatial problems:

29.  Percolation.

30. Self-avoiding random walk. Polymer models.

 

References:

 

R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, arXiv:cond-mat/0106096, Rev. Mod. Phys. 74 47 (2002).

            (16,17)

A.-L. Barabási and H.E. Stanley, (1995), Fractal concepts in surface growth,

Cambridge University Press.

          (24,25,26,27,28)

A.-L. Barabási, (2002),  Linked: the new science of networks, Perseus Publishing 2002.

            (17,18)

D. C. Dennett, (1995), Darwin's dangerous idea, Simon & Schuster.

            (3)

T.L. Duty, (1998), Branching processes. Lecture notes.

            (3)

J. Feder, (1988), Fractals, Plenum.

            (21,22,23,29)

M. Ifti and B. Bergersen, (2002), Survival and Extinction in Cyclic and Neutral Three-species Systems, arXiv:nlin.AO/0208023

            (9)

M. Kimura and G. H. Weiss, (1964), The stepping stone model of population

struccture and the decrease of genetic correlation with distance, Genetics, 49, 561-76.

            (11)

P.L. Krapivsky and S.Redner, Life and death in an expanding cage and at the edge of a receding cliff, Am. J. Phys. 64, 546 (1996)

(10)

G. Lakatos, (1998),A thermodynamic model of insect populations, Physics 449 thesis UBC .

            (6)

R.H. Luchsinger, (1998), Molecular motors. Lecture notes

            (13)

D.Ludwig, D.D. Jones and C.S. Holling, (1978), Qualitative analysis of insect outbreak

systems: the spruce budworm and forest, J. Animal Ecology  47 315-332 (1978)

            (6)

D.Ludwig, D.G. Aronson and H.F. Weinberger, (1979), Spatial patterning of the

spruce budworm, J.Math Biology  8 217-58.

            (6)

B. B. Mandelbrot, (1997), Fractals and scaling in finance; discontinuity, concentration, risk, Springer.

            (19,21)

S. C. Manrubia and D. H. Zanette, At the boundary between biological and cultural evolution: The origin of surname distributions, arXiv:cond-mat/0201559 30 Jan 2002

            (3)

M. Marsili and Y-C. Zhang  (1998), Interacting individuals leading to Zipf's law, cond-mat/9801289, Phys. Rev. Lett March 98

            (15)

E.W. Montroll and B.J. West, (1976), On an enriched collection of stochastic

processes, Chapter 2 in E.W. Montroll and J.L. Lebowitz eds. , Fluctuation Phenomena, North Holland.

            (1,19,20)

J.D. Murray, (1993), Mathematical Biology, Springer Biomathematics texts {\bf 19}

2nd ed.

            (6)

R. Pastor-Satorras and A. Vespignani, (2001), Epidemic spreading in scale-free networks, Phys. Rev. Letters,86, 3200-3.

            (19)

M. Plischke and B. Bergersen, (1994), Equilibrium Statistical Physics,  2nd Ed World Scientific.

            (5,29,30)

Sidney Redner, (2001), A guide to first-passage processes, Cambridge University Press.

            (10,12)

H. Risken, (1989), The Fokker-Planck equation, 2nd ed. Springer.

            (4,12)

Stauffer, D.  and Aharony, A. (1992). Introduction to Percolation Theory. 2nd ed. Taylor and Francis.

            (29)

N.G. van Kampen, (1981a), Stochastic processes in physics and chemistry, North Holland (1981).

(1,2,3,4,5,7,9).

N.G. van Kampen, (1981b)  Ito versus Stratanovich, J. of Statistical Physics 24, 175-187 (1981).

          (7)

N.G. van Kampen, The expansion of the master equation, Adv. Chem. Phys. 34, 245-309 (1976).

            (2,3,4,5,7)

G. H. Weiss and M. Kimura, (1965), A mathematical analysis of the stepping stone model of genetic correlation, J. Appl. Prob. 2 129-149 (1965).

            (11)

 

Return to course homepage.