next up previous
Next: About this document ...

9. Langevin approach

LAST TIME: Today try a different approach.

Master equation approach considered time evolution of probability distribution.
Fokker-Planck equation was derived from master equation typically from system size
expansion
.

LANGEVIN EQUATION stochastic d.e.
Simplest case: BROWNIAN MOTION.


\fbox{\parbox{5cm}{
\begin{displaymath}\frac{dv}{dt}=-\gamma v +L(t)\end{displaymath}
}}

v= velocity of Brownian particle.
$\gamma=$ friction term.$\;\;$ L(t)= noise term.
Collisions with other molecules gives rise to
average force (friction) +random force
Require:

\begin{displaymath}\langle L(t)\rangle=0\end{displaymath}

if $t-t'>>\tau$ time between molcular collisions require

\begin{displaymath}\langle L(t')L(t)\rangle=0\end{displaymath}



M= mass of Brownian particle.
$p=M\nu=$ random part of impulse transmitted at collision.
$\langle \nu^2\rangle=$ variance of $\nu$.
$1/\tau$ collision rate
Let

\begin{displaymath}\int_0^\Delta Ldt=x\end{displaymath}

x stochastic variable.
By central limit theorem of statistics, x characterized by Gaussian
probability distribution

\begin{displaymath}P(x)=\frac{1}{\sqrt{2\pi \xi\Delta}}\exp(-\frac{x^2}{2\xi\Delta})\end{displaymath}

where

\begin{displaymath}\xi=\frac{\langle \nu^2\rangle}{\tau}\end{displaymath}

Physically, Langevin equation corresponds to limit

\begin{displaymath}\Delta>>\tau\Rightarrow 0\end{displaymath}

Mathematically L(t) realization of Wiener process


Langevin equation suitable for computer simulations!
Discretize time

\begin{displaymath}t_n=n\Delta\end{displaymath}


\begin{displaymath}v_n-v_{n-1}=\Delta\gamma v_n+g_n\sqrt{\xi\Delta}\end{displaymath}

where gn picked from Gaussian distribution with variance 1 and

\begin{displaymath}\langle g_ng_{n'}\rangle=0\; if\; n\neq n'\end{displaymath}

Random number generators typically generate uniformly distributed numbers in range
0<r<1.
Simple method to generate Gaussian distribution is to make use of results from Brownian motion!

\begin{displaymath}g_n\approx\sqrt{\frac{12}{m}}\sum_{i=1}^m(r_i-\frac{1}{2})\end{displaymath}

Clearly $\langle g_n\rangle =0$ and we find

\begin{displaymath}\langle g_n^2\rangle=12/m\sum_{i,j=1}^m\langle(r_i-\frac{1}{2})
(r_j-\frac{1}{2})\end{displaymath}


\begin{displaymath}=\frac{12}{m}\sum_{i=1}^{m}\langle(r_i-\frac{1}{2})^2\rangle=
12\int_{-1/2}^{1/2}x^2dx=1\end{displaymath}



We next generalize to take the limit $\Delta=0$ and write the Langevin equation on the form

\begin{displaymath}\frac{dv}{dt}=-\gamma v+L(t)\end{displaymath}

where

\begin{displaymath}\langle L(t)\rangle=0\end{displaymath}

and

\begin{displaymath}\langle L(t)L(t')\rangle =\Gamma\delta(t-t')\end{displaymath}

with $\delta(x)$ the Dirac $\delta$-function.
Noise with these properties called white.
For Gaussian process higher moments given by e.g.

\begin{displaymath}\langle L(t_1)L(t_2)L(t_3)L(t_4)\rangle\end{displaymath}


\begin{displaymath}=
\Gamma^2[\delta(t_1-t_2)\delta(t_3-t_4)+\delta(t_1-t_3)\delta(t_2-t_4)\end{displaymath}


\begin{displaymath}+\delta(t_1-t_4)\delta(t_2-t_3)]\end{displaymath}

Can formally solve Langevin equation with initial condition v=v0 for t=0

\begin{displaymath}v(t)=e^{-\gamma t}(v_0+\int_0^te^{\gamma t'}L(t')dt')\end{displaymath}



Find

\begin{displaymath}\langle v(t)\rangle =v_0e^{-\gamma t}\end{displaymath}


\begin{displaymath}\langle v(t)^2\rangle=v_0^2e^{-2\gamma t}\end{displaymath}


\begin{displaymath}+
e^{-2\gamma t}\int_0^t\int_0^tdt'dt''e^{\gamma(t'+t'')}
\langle L(t')L(t'')\rangle\end{displaymath}


\begin{displaymath}=v_0^2e^{-2\gamma t}+\frac{\Gamma}{2\gamma}(1-e^-2\gamma t)\end{displaymath}

Restrict t to small value $\delta t$.
The speed will then change by small amount $\delta v$
Get jump moments

\begin{displaymath}a_1=\frac{\langle\delta v\rangle}{\delta t}\Rightarrow-\gamma v\end{displaymath}


\begin{displaymath}a_2=\frac{\langle(\delta v)^2\rangle}{\delta t}=\Gamma\end{displaymath}

Higher order jump moments of higher order in $\delta t$.
Find that Langevin equation equivalent to Fokker-Planck (Rayleigh) equation

\begin{displaymath}\frac{\partial P(v,t)}{\partial t}=\gamma\frac{\partial vP}{\partial v}+\frac{\Gamma}{2}
\frac{\partial^2P}{\partial v^2}\end{displaymath}



Easy to generalize to case of nonlinear "force" with additive noise e.g.

\begin{displaymath}\frac{d v}{d t}=A(v)+L(t)\end{displaymath}

assume as before

\begin{displaymath}\langle L\rangle=0;\;\langle L(t)L(t')\rangle=\Gamma\delta(t-t')\end{displaymath}

Can calculate jump moments and find Langevin equation equivalent to Fokker-Planck equation

\begin{displaymath}\frac{\partial P(v,t)}{\partial t}=-\frac{\partial A(v)P}{\partial v}
+\frac{\Gamma}{2}\frac{\partial^2P}{\partial v^2}\end{displaymath}



What about nonlinear noise?

\begin{displaymath}\frac{d v}{dt}=A(v)+C(v)L(t)\end{displaymath}

Trouble is expression is ambiguous!
L is a process with discrete jumps.

Should C(v) be evaluated using value of v before or after jump?
Or, should an average value be chosen?
Choice matters! (We saw last time that heterogeneous diffusion gives rise to effective drift term.)

\begin{displaymath}\langle C(v(t))L(t)\rangle\neq 0\end{displaymath}



If noise internal:
E.g. birth and death processes
"Natural" to say that rate of processes should be calculated before process happens.
Ito interpretation:

\begin{displaymath}v(t+\delta t)=v(t)+A(v)\delta t+C(v(t))\int_t^{t+\delta t}
L(t')dt'\end{displaymath}

Can show by calculating jump moments that result is Fokker-Planck equation on form

\fbox{\parbox{19cm}{
\begin{displaymath}\frac{\partial P(y,t)}{\partial t}=-\fr...
...v}
+\frac{\Gamma}{2}\frac{\partial^2C(v)^2P}{\partial v^2}\end{displaymath}
}}

If noise external
Open system.
Must consider that no noise is truly white!
There is always a nonzero relaxation time.
"Natural" to evaluate C(v) for average value of v during process.
Stratanovich interpretation

\begin{displaymath}v(t+\delta t)=v(t)+A(v)\delta t+\end{displaymath}


\begin{displaymath}C(\frac{v(t+\delta t)
+v(t)}{2})\int_t^{t+\delta t}
L(t')dt'\end{displaymath}

Get Fokker-Planck equation on form

\fbox{\parbox{10cm}{
\begin{displaymath}\frac{\partial P(y,t)}{\partial t}=-\fr...
...{\partial}{\partial v}C(v)\frac{\partial C(v)P}{\partial v}\end{displaymath}
}}

SUMMARY

Click here for Return to title page
Click here for 10 Molecular motors

 
next up previous
Next: About this document ...
Birger Bergersen
1998-10-14