next up previous
Next: About this document ...

5. Several variables, SIR-model
LAST TIME
Today will discuss solution to linear multivariate problem.

GENERAL CASE:

\begin{displaymath}\frac{\partial P(x_1\cdots x_r,t)}{\partial t}=-\sum_i^rc_i(t...
...m_{ij}^r
B_{ij}(t)\frac{\partial^2P}{\partial x_i\partial x_j}\end{displaymath}

Eliminate ci(t) term by transformation

yi=xi-ui(t)


\begin{displaymath}\Pi(y_i,t)=P(x_i-u_i(t),t)\end{displaymath}

Let ui be solution to

\begin{displaymath}\frac{du_i}{dt}=\sum_j^rA_{ij}u_j(t)+c_i(t)\end{displaymath}

If Aij independent of t solution can be found by elementary methods.
In general case may need to use approximate method!
ui(t) solution to macroscopic equation!

Find

\begin{displaymath}\frac{\partial\Pi(y_1\cdots y_r,t)}{\partial t}=
-\sum_{i,j}...
...i,j}^r
B_{ij}(t)\frac{\partial^2\Pi}{\partial y_i\partial y_j}\end{displaymath}

Mean

\begin{displaymath}\langle y_i\rangle =\int_{-\infty}^{\infty}y_idy_1\cdots dy_r
\Pi(y_1\cdots y_r,t)\end{displaymath}

satisfies

\begin{displaymath}\frac{d \langle y_i\rangle}{dt}=\sum_{i,j}^rA_{ij}\langle y_j\rangle\end{displaymath}

On matrix form

\begin{displaymath}\frac{d {\bf\langle y\rangle}}{dt}={\bf A \langle y\rangle }\end{displaymath}

If at

\begin{displaymath}t=0, {\bf y}={\bf y}_0\end{displaymath}

the solution can be expressed in terms of evolution matrix Y

\begin{displaymath}\langle y(t)\rangle={\bf Y}(t){\bf y}_0\end{displaymath}

where

\begin{displaymath}\frac{d{\bf Y}}{d t}={\bf A}(t){\bf Y}(t);\;\;{\bf Y}(0)={\bf 1}\end{displaymath}



Second moments

\begin{displaymath}\frac{d\langle y_iy_j\rangle}{dt}=\sum_k^rA_{ik}\langle y_ky_j\rangle
+\sum_k^rA_{jk}\langle y_iy_k\rangle+B_{ij}\end{displaymath}

Covariance matrix

\begin{displaymath}C_{ij}=\langle y_iy_j\rangle-\langle y_i\rangle\langle y_j\rangle\end{displaymath}

satisfies same equation as second moment.
On matrix form

\begin{displaymath}\frac{d{\bf C}}{dt}={\bf AC+CA^T+B}\end{displaymath}

With boundary condition

\begin{displaymath}{\bf C}(0)=0\end{displaymath}

solution is

\begin{displaymath}{\bf C}(t)={\bf Y}(t)\int_0^td\tau{\bf Y}(\tau){\bf B}(\tau)
{\bf Y^T}(\tau)^{-1}{\bf Y^T}(t)\end{displaymath}

Can use this result to solve Focker-Planck equation

\fbox{\parbox{10cm}{
\begin{displaymath}\Pi(y,t\vert y_0,0)=\frac{\exp -\frac{1...
...1}(y-\langle y\rangle)}}{\sqrt{(2\pi)^r \vert{\bf C}\vert}}\end{displaymath}
}}

obtained by method of inspired guess.

Example from epidemiology
STOCHASTIC SIR MODEL $\Omega=$ system size parameter.

Master equation

\begin{displaymath}\frac{\partial P(S,I,t)}{\partial t}=
\sum_{S,I}[W(S,I\vert S',I')P(S',I',t)-W(S',I'\vert S,I)P(S,I,t)]\end{displaymath}

Where

\begin{displaymath}W(S'I'\vert S,I)=\left\{\begin{array}{lclcl}
\Omega(1-\rho)\...
...
\gamma S&&S'=S-1&&I'=I\\
0&&otherwise\\
\end{array}\right.\end{displaymath}



Raising and lowering operators

\begin{displaymath}E_Sf(S,I)=f(S+1,I);\;\; E_S^{-1}f(S,I)=f(S-1,I)\end{displaymath}


\begin{displaymath}E_If(S,I)=f(S,I+1);\;\;E_I^{-1}f(S,I)=f(S,I-1)\end{displaymath}



Express master equation in terms of raising and lowering operators

\begin{displaymath}\frac{\partial P(S,I,t)}{\partial t}=\Omega(1-\rho)\gamma( E_...
...\+\frac{\beta}{\Omega}( E_S E_I^{-1}-1)SIP
+\gamma( E_S-1)SP
\end{displaymath}



OMEGA-EXPANSION

\begin{displaymath}S=\Omega\phi(t)+\sqrt{\Omega}s;\;\;I=\Omega\psi(t)+
\sqrt{\Omega}i\end{displaymath}

Expect that $\phi$ and $\psi$ satisfy deterministic rate equations and that s and i fluctuate and satisfy a Fokker Planck equation.


P(S,I,t) probability that S susceptibles and I infecteds are present at time t.
$\Pi(s,i,t)$ probability distribution for s,i.

\begin{displaymath}\Pi(s,i,t)=\Omega P(\Omega\phi(t)+\sqrt{\Omega} s,
\Omega\psi(t)+\sqrt{\Omega}i,t)\end{displaymath}

Factor $\Omega$ arising from normalization condition

\begin{displaymath}1=\sum_{S,I}P(S,I,t)=\int\int ds di \Pi(s,i,t)\end{displaymath}


\begin{displaymath}=\frac{1}{\Omega}
\sum_{s,i}\Pi(s,i,t)\end{displaymath}

We have

\begin{displaymath}\frac{\partial P}{\partial t}=\frac{1}{\Omega}\frac{\partial\...
...{\sqrt{\Omega}}\frac{d\psi}{dt}\frac{\partial\Pi}{\partial i}
\end{displaymath}



Next, expand
ES-1 = $\displaystyle \frac{\partial}{\sqrt{\Omega}\partial s}+
\frac{\partial^2}{2\Omega\partial s^2}\cdots$  
ES-1-1 = $\displaystyle -\frac{\partial}{\sqrt{\Omega}\partial s}+\frac{\partial^2}{2\Omega\partial s^2}\cdots$  
EI-1 = $\displaystyle \frac{\partial}{\sqrt{\Omega}\partial s}+
\frac{\partial^2}{2\Omega\partial s^2}\cdots$  
EI-1-1 = $\displaystyle -\frac{\partial}{\sqrt{\Omega}\partial s}+\frac{\partial^2}{2\Omega\partial s^2}\cdots$  
ESEI-1-1 = $\displaystyle \frac{1}{\sqrt{\Omega}}\left(\frac{\partial}{\partial s}-\frac{\p...
...frac{\partial^2}{\partial s^2}-2\frac{\partial^2}{\partial s\partial i}
\right)$  



Substitution and solving for $\frac{\partial\Pi}
{\partial t}$ yields an expression of the form

\begin{displaymath}\frac{\partial\Pi}{\partial t}=\sqrt{\Omega}\{\}+[]+O[\frac{1}{\sqrt{\Omega}}]\end{displaymath}



Term

\begin{displaymath}\propto\sqrt{\Omega}\end{displaymath}

must vanish:

\begin{displaymath}\{\}=\frac{\partial\Pi}{\partial s}\left(\frac{d\phi}{dt}-(1-...
...(\frac{d\psi}{dt}-\rho\gamma-\beta\psi\phi
+\lambda\psi\right)\end{displaymath}

Get rate equations

\begin{displaymath}\frac{d\phi}{dt}=(1-\rho)\gamma -\beta\psi\phi
-\gamma\phi\end{displaymath}


\begin{displaymath}\frac{d\psi}{dt}=\rho\gamma+\beta\psi\phi
-\lambda\psi\end{displaymath}

The Fokker Planck equation is then

\begin{displaymath}\frac{\partial\Pi}{\partial t}=+\frac{\partial}{\partial i}(\...
...ac{\partial} {\partial s}(\gamma s +\beta\psi s+\beta\phi i)\Pi\end{displaymath}


\begin{displaymath}+\frac{1}{2} ([1-\rho]\gamma +\beta\psi\phi+\gamma\phi)
\frac{\partial^2 \Pi}{\partial s^2}\end{displaymath}


\begin{displaymath}+\frac{1}{2}(\rho\gamma+\lambda\psi+\beta\phi\psi)
\frac{\pa...
...al i^2}-\beta\phi\psi\frac{\partial^2\Pi}{\partial s\partial i}\end{displaymath}




where solution to rate equation is substituted for $\phi$ and $\psi$.

MACROSCOPIC STEADY STATE
Put time derivatives to zero
The steady state solutions satisfy

\begin{displaymath}0=(1-\rho)\gamma -\beta\psi\phi
-\gamma\phi\end{displaymath}


\begin{displaymath}0=\rho\gamma+\beta\psi\phi
-\lambda\psi\end{displaymath}

The positive solution is stable

\begin{displaymath}\phi_0=\frac{1}{2c}(1+c-\sqrt{(1-c)^2+4c\rho})\end{displaymath}


\begin{displaymath}\psi_0=\frac{\gamma}{2c\lambda}(c-1+\sqrt{(1-c)^2+4c\rho})\end{displaymath}

where $c=\beta/\lambda$. If $\rho=0$ the expressions simplify to


\begin{displaymath}\phi_0=\left\{\begin{array}{lcl} 1&for&c<1\\
\frac{1}{c}&&c>1\\
\end{array}\right.\end{displaymath}


\begin{displaymath}\psi_0=\left\{\begin{array}{lcl} 0&for&c<1\\
\frac{\gamma}{\lambda}(1-\frac{1}{c})&&c>1\\
\end{array}\right.\end{displaymath}



We plot below $\phi$ and $\lambda\psi/\gamma$ for $\rho=.001, c=\beta/\lambda$.


\begin{figure}
\epsfxsize=300pt
\epsffile{fig1.eps}
\end{figure}


When c<1 (intermittent regime) only a very small number of individuals succumb to the disease and an epidemic caused by immigration of an infectious individual will quickly die out. The population will remain disease free until the next infectious individual arrives. For c>1 the disease takes hold and there will be a finite fraction of infectious individuals in the population at all times (endemic regime).

VALIDITY OF EXPANSION

must require $\Omega\psi_0>>1,\; \Omega\phi_0>>1$.
First condition hardest to satisfy.
Interprete $\psi,\;\phi$ as ensemble average of many realizations. When macroscopic equations stable get Gaussian fluctuations

\begin{displaymath}\propto\sqrt{\Omega}\end{displaymath}

Damped oscillation in decay of fluctuation due to drift in phase. Can show no finite-size corrections to order $\sqrt{\Omega}$.


APPROACH OF MACROSCOPIC VARIABLE TO STEADY STATE
Initially half of population infected $\rho<<1$
\begin{figure}
\epsfxsize=300pt
\epsffile{finite.eps}
\end{figure}


SUMMARY

Click here for Return to title page
Click here for 6. Absorbing boundaries


 
next up previous
Next: About this document ...
Birger Bergersen
1998-10-03