next up previous
Next: About this document ...

4. Brownian particles
LAST TIME
Started to discuss Fokker-Planck equations on the form

\fbox{\parbox{9cm}{
\begin{displaymath}\frac{\partial P(x,t)}{\partial t}=-\fra...
...A(x)P(x,t)-\frac{1}{2}\frac{\partial}{\partial x}B(x)P(x,t)\end{displaymath}
}}

J=Probabiliy current
A(x)P(x,t)=drift term or transport term
$\frac{1}{2}\frac{\partial}{\partial x}B(x)P(x,t)=$ diffusion term Linear $\Rightarrow A(x)=A_0+xA_1,\; B(x)=const.$
Ornstein-Uhlenbeck process $\Rightarrow A_1<0$
$A(x), \; B(x)$ obtained from jump moments


Today: Examples

MESOSCOPIC PARTICLE IN STATIONARY FLUID
$\delta t=$ "infinitesimal" time
$\delta t>>\tau _c=$ mean time for collisions
$\delta t>>\tau_v=$ velocity relaxation time
(see later)
$\delta t<< t=$ time of interest
f=external force on particle
$\mu =$ mobility $\langle v\rangle /f $
v= velocity jump moments:

\begin{displaymath}a_1=\frac{\langle \delta x\rangle}{\delta t}=f \mu \end{displaymath}


\begin{displaymath}a_2=\frac{\langle (\delta x)^2 \rangle }{\delta t}\end{displaymath}

FOKKER-PLANCK EQUATION

\fbox{\parbox{11cm}{
\begin{displaymath}\frac{\partial P(x,t)}{\partial t}=-\fr...
...x,t)]+\frac{1}{2}\frac{\partial^2}{\partial x^2}[a_2
P(x,t)]\end{displaymath}}}

BROWNIAN MOTION $f=0,\;a_1=0$

\begin{displaymath}\frac{\partial P(x,t)}{\partial t}=\frac{\langle (\delta x)^2 \rangle }{\delta t}\frac{\partial^2P}{\partial x^2}\end{displaymath}

This is just the diffusion equation, hence require

\begin{displaymath}D=\frac{\langle (\delta x)^2 \rangle }{2\delta t}\end{displaymath}

Fokker-Planck equation does not admit a stationary (steady) state but can find

\fbox{\parbox{7cm}{
\begin{displaymath}P(x,t\vert,0)=\frac{\exp\left[-\frac{x^2}{4Dt}\right]}{\sqrt{4\pi Dt}}\end{displaymath}
}}

Gaussian processes like the boxed expression are also called Wiener processes

PARTICLE IN FIELD OF GRAVITY
We now have $a_1=Mg \mu$. Presence of field changes a2 little
Why is this assumption reasonable?
The resulting Fokker-Planck equation is

\begin{displaymath}\frac{\partial P(x,t)}{\partial t}=Mg\mu \frac{\partial P}{\partial x} +D\frac{\partial^2P}{\partial x^2}\end{displaymath}

No stationary solution for $-\infty<x<+\infty$.
We can solve time dependent equation:
Go to moving frame

\begin{displaymath}y =x+Mg\mu t\end{displaymath}


\begin{displaymath}P(x,t)=\Pi(x+Mg\mu t,t)\end{displaymath}


\begin{displaymath}\frac{\partial P}{\partial t}=\frac{\partial\Pi}{\partial t}+Mg\mu\frac{\partial\Pi}{\partial x}\end{displaymath}

Left with diffusion equation for $\Pi$!

\fbox{\parbox{9cm}{
\begin{displaymath}P(x,t\vert,0)=\frac{\exp-\frac{(x+Mg\mu t)^2}{4Dt}}{\sqrt{4\pi Dt}}\end{displaymath}
}}

REFLECTING BOUNDARY
Steady state exists if $0<x<\infty$!
Vessel with diffusing particle has a bottom.
Require that probability current vanishes in steady state

\begin{displaymath}J=0=Mg\mu P_s(x)+D\frac{d P_s}{d x}\end{displaymath}

with solution

\begin{displaymath}P_s(x)=const. \exp-[\frac{Mg\mu x}{D}]\end{displaymath}

At equilibrium must have

\begin{displaymath}P_e(x)=\frac{Mg}{kT} \exp-[\frac{Mgx}{kT}]\end{displaymath}

Get Einstein relation

\fbox{$D=\mu kT$ }

For time dependent problem apply zero current condition only at x=0!

RAYLEIGH PARTICLE
Consider fine time scale:
$\delta t>>$ time between collisions
$\delta t<<$ time for relaxation of velocity
velocity v independent variable
Macroscopic law $M\dot{v}=F-\frac{1}{\mu}v$
E.g. for spherical Stokes particle

\begin{displaymath}\mu=\frac{1}{6\pi\eta r}\end{displaymath}

r=radius, $\eta=$ viscosity
Jump moments

\begin{displaymath}a_1=\frac{\delta v}{\delta t}=-\frac{1}{M\mu}v\end{displaymath}

Assume

\begin{displaymath}a_2=\frac{\langle (\delta v)^2\rangle}{\delta t}\approx const\end{displaymath}

No external force!

Get Fokker Planck-equation

\begin{displaymath}\frac{\partial P(v,t)}{\partial t}=\frac{1}{M\mu}\frac{\partial vP}{\partial v}+\frac{a_2}{2}\frac{\partial^2 P}{\partial v^2}\end{displaymath}

Stationary state (J(v)=0!)

\begin{displaymath}\frac{1}{M\mu} vP+\frac{a_2}{2}\frac{\partial P}{\partial v}\end{displaymath}

with solution

\begin{displaymath}P_s(v)\propto \exp-\left[\frac{v^2}{a_2M\mu}\right]\end{displaymath}

Maxwell-Boltzmann distribution:


\fbox{\parbox{9cm}{
\begin{displaymath}P_e(v)=\sqrt{\frac{M}{2\pi kT}}exp-\left[\frac{Mv^2}{kT}\right]\end{displaymath}
}}

Comparing expressions we find

\begin{displaymath}\frac{a_2}{2}=\frac{kT}{M^2\mu}=\frac{(kT)^2}{M^2D}\end{displaymath}



RAYLEIGH EQUATION

\begin{displaymath}\frac{\partial P(v,t)}{\partial t}=\frac{1}{M\mu}\left[ \frac...
...partial v}+\frac{kT}{M}\frac{\partial^2 P}{\partial v^2}\right]\end{displaymath}

Equation is linear and describes an Ornstein-Uhlenbeck process. Solution:

\begin{displaymath}P(v,t\vert v_o,0)=\frac{\exp-\left[\frac{
M(v-v_0e^{- t/\ta...
...tau_v})}\right]}
{\sqrt{\frac{2\pi kT}{M}(1-e^{-2 t/\tau_v})}}\end{displaymath}

$\tau_v=M\mu=$ velocity relaxation time
We have if $v=v_0\;for\;t=0$

\begin{displaymath}\langle v(t)\rangle=v_0e^{-t/\tau_v};\; \langle v(t)^2\rangle -\langle v\rangle^2=
\frac{kT}{M}(1-e^{-t/\tau_v})\end{displaymath}

Can also calculate equilibrium velocity-velocity correlation

\begin{displaymath}\langle v(t)v(0)\rangle=\int vdv\int v_0dv_0P(v,t\vert v_0,0)P_e(v_0)\end{displaymath}

We find

\fbox{\parbox{5cm}{
\begin{displaymath}\langle v(t)v(0)\rangle_e=\frac{kT}{m}e^{-t/\tau_v}\end{displaymath}
}}

GENERALIZE TO ARBITRARY FORCE

\fbox
{\parbox{10cm}{
\begin{displaymath}\frac{\partial P(x,t)}{\partial t}= ...
...tial} {\partial x}f(x) P +D\frac{\partial^2P}{\partial x^2}\end{displaymath}
}}

Overdamped motion in force field.
Macroscopic equation of motion Aristotelian:

\begin{displaymath}v=\dot {x}=\mu f\end{displaymath}

not Newtonian.

\begin{displaymath}M\frac{dv}{dt}=f-\frac{v}{\mu}\end{displaymath}

Aristotle ok if $f\approx const$ if $\delta t\approx\tau_v$

\begin{displaymath}\frac{d f}{dx}v\tau_v<<f\end{displaymath}

Substituting $\mu f=v,\;\tau_v=M\mu$ we find for the boxed expression to be valid

\begin{displaymath}\frac{df}{dx}<<\frac{1}{M\mu^2}\end{displaymath}



If condition

\begin{displaymath}\frac{df}{dx}<<\frac{1}{M\mu^2}\end{displaymath}

not satisfied both v and x independent variables!
Jump moments

\begin{displaymath}\frac{\langle \delta x\rangle}{\delta t}=v;\;\;\frac{\langle \delta v\rangle}{\delta t}=
\frac{f}{M}-\frac{v}{\mu}\end{displaymath}


\begin{displaymath}\frac{\langle (\delta x)^2\rangle}{\delta t}=v^2\delta t\appr...
... v\rangle}{\delta t}=v[\frac{\mu f -v} {M\mu}]\delta t\approx 0\end{displaymath}


\begin{displaymath}\frac{\langle (\delta v)^2\rangle}{\delta t}=\frac{kT}{M^2\mu}\end{displaymath}

Fokker-Planck equation:
KRAMERS EQUATION


\fbox{\parbox{12cm}{
\begin{displaymath}\frac{\partial P(x,v,t)}{\partial t}=-v...
...ial v}+\frac{kT}{M}\frac{\partial^2 P}{\partial v^2}\right]\end{displaymath}
}}

SUMMARY

Click here for 5. Several variables, SIR-model
Click here for Return to title page

 
next up previous
Next: About this document ...
Birger Bergersen
1998-10-03