next up previous
Next: About this document ...

2. System size expansion


LAST TIME:
Introduced the master equation
for discrete system:

\begin{displaymath}\frac{\partial P(n,t)}{\partial t}=\sum_{n'}[W(n\vert n')P(n',t)-W(n'\vert n)P(n,t)]\end{displaymath}

For birth and death processes

\begin{displaymath}W(n\vert n')=d(n')\delta_{n,n'-1}+b(n')\delta_{n,n'+1}\end{displaymath}

d=death rate.
b=birth rate.
Macroscopic rate equation

\begin{displaymath}\frac{dn}{dt}=b(n )-d(n )\end{displaymath}

Today: Want to study validity of rate equation and fluctuations of n for large system.

EXPANSION OF THE MASTER EQUATION
Expect for large systems:
Mean $\langle n\rangle \propto \Omega = $ system size parameter.
Fluctuations $= n-\langle n\rangle\propto \sqrt{\Omega}$.
Describe this situation as

\begin{displaymath}n=\Omega\phi(t)+\sqrt{\Omega} x\end{displaymath}

$\phi(t)=$ non-fluctuating variable.
$\phi(t)$ will satisfy ordinary differential equation (normally just rate equation).

x fluctuating continuous variable with probability distribution $\Pi(x,t)$.

TRANSFORMATION OF VARIABLES

\begin{displaymath}n=\Omega\phi(t)+\sqrt{\Omega} x\end{displaymath}

When n fluctuates by an amount $\Delta n$, x will fluctuate by $\Delta x=\Delta n/\sqrt{\Omega}$.

\begin{displaymath}P(n,t)\Delta n=\Pi(x,t)\Delta x\end{displaymath}


\begin{displaymath}\Pi(x,t)=\sqrt{\Omega}P(\Omega\phi(t)+\sqrt{\Omega} x,t)\end{displaymath}


\begin{displaymath}\frac{\partial\Pi}{\partial x}=\Omega\frac{\partial P}{\partial n}\end{displaymath}


\begin{displaymath}\frac{\partial P}{\partial t}=\frac{1}{\sqrt{\Omega}}\frac{\p...
...i}{\partial t}-
\frac{d\phi}{dt}\frac{\partial\Pi}{\partial x}\end{displaymath}

RAISING AND LOWERING OPERATORS

Ef(n)=f(n+1)


E-1f(n)=f(n-1)

Master equation

\begin{displaymath}\frac{\partial P(n,t)}{\partial t}=\{(E-1)d(n)+(E^{-1}-1)b(n)\}P(n,t)\end{displaymath}


\begin{displaymath}E-1=\frac{1}{\sqrt{\Omega}}\frac{\partial}{\partial x}+\frac{1}{2\Omega}
\frac{\partial^2}{\partial x^2}+\cdots\end{displaymath}


\begin{displaymath}E^{-1}-1=-\frac{1}{\sqrt{\Omega}}\frac{\partial}{\partial x}+\frac{1}{2\Omega}
\frac{\partial^2}{\partial x^2}+\cdots\end{displaymath}

Need to substitute into master equation and convert to equation for $\Pi$, sorting terms according to order in $\Omega$. UGH! Example: MALTHUS-VERHULST PROBLEM
Birth and death problem in which a logistic term to takes into account competition. $\Omega$ is the system size parameter.
Birthrate: $b(n)=\beta n$
Death rate: $d(n)=\alpha n +\frac{1}{\Omega}n(n-1)$ The Macroscopic rate equation is


\fbox{\parbox{6cm}{
\begin{displaymath}\frac{dn}{dt}=(\beta-\alpha)n-\frac{1}{\Omega}n^2\end{displaymath}}}

The steady state solutions are
n=0 , and $n=\Omega/(\beta-\alpha)=n_0$
For $\alpha>\beta$, n=0 solution is stable,
n=n0 is unphysical. (Population dies out.) For $\beta>\alpha,\;\;n=n_0$ stable, n=0 unstable.
Population approaches carrying capacity. Master equation is:

\fbox{\parbox{13cm}{
\begin{displaymath}\frac{\partial P(n,t)}{\partial t}=\{(E...
...\alpha n +\frac{1}{\Omega}n(n-1)]+
(E^{-1}-1)\beta n\}P(n,t)\end{displaymath}}}

Do our change of variable:

\begin{displaymath}\Pi(x,t)=\sqrt{\Omega}P(\Omega\phi(t)+\sqrt{\Omega} x,t)\end{displaymath}

Substitute the expansions for E, E-1. Find (after some algebra)

\begin{displaymath}\frac{\partial\Pi(x,t)}{\partial t}=\Omega^{1/2}\frac{\partial\Pi}{\partial x}[\;]
+\{\;\}\Pi+O(\Omega^{-1/2})\end{displaymath}

where

\begin{displaymath}[\;]=\frac{d\phi}{dt}+(\alpha-\beta)\phi+\phi^2\end{displaymath}


\begin{displaymath}\{\;\}\Pi=(\alpha-\beta+2\phi)\frac{\partial}{\partial x}x\Pi...
...}{2}(\alpha+\beta+\phi)\phi
\frac{\partial^2\Pi}{\partial x^2}\end{displaymath}

For the expansion in powers of $\Omega$ to work must have $[\;]=0$. $[\;]=0$ gives

\begin{displaymath}\frac{d\phi}{dt}=(\beta-\alpha)\phi-\phi^2\end{displaymath}

Equivalent to macroscopic rate equation!
(Remember $\phi\approx n/\Omega$.)
Solution

\fbox{\parbox{8cm}{
\begin{displaymath}
\phi(t)=\frac{\phi(0)e^{(\beta-\alpha)t}}{1+\frac{\phi(0)}{\beta-\alpha}[e^{(\beta-\alpha)t}-1]}\end{displaymath}}}

Solution depends only on net birth rate $\beta-\alpha$.
For

\begin{displaymath}\beta>\alpha,\;\;\phi\Rightarrow (\beta-\alpha)=\phi_s\;\; t\Rightarrow \infty\end{displaymath}


\begin{displaymath}\beta<\alpha, \;\;\phi\Rightarrow 0, \;\; t\Rightarrow \infty\end{displaymath}


\begin{displaymath}\beta=\alpha\;\;\phi\Rightarrow\frac{\phi(0)}{1+\phi(0)t}\end{displaymath}

Will have to discuss the cases separately!



\begin{figure}
\epsfysize=330pt
\epsffile{macro.eps}
\end{figure}


In general:
Require that terms of order $\sqrt{\Omega}$ vanish. Get for terms independent of $\Omega$
in system size expansion


FOKKER PLANCK EQUATION For Malthus-Verhulst problem:

\fbox{\parbox{14cm}{
\begin{displaymath}\frac{\partial\Pi(x,t)}{\partial t}=[\a...
...\alpha+\beta+\phi(t)]\phi\frac{\partial^2}{\partial x^2}\Pi\end{displaymath}
}}

Substitute $\phi$ from solution to macroscopic equation.
Can find results for mean and variance without solving Fokker Planck equation: Have

\begin{displaymath}\int_{-\infty}^{+\infty}\Pi(x,t)dx=1\end{displaymath}


\begin{displaymath}\langle x\rangle=\int_{-\infty}^{+\infty}x\Pi(x,t)dx\end{displaymath}


\begin{displaymath}\langle x^2\rangle=\int_{-\infty}^{+\infty}x^2\Pi(x,t)dx\end{displaymath}


\begin{displaymath}\langle x^2\rangle-\langle x\rangle^2=\sigma^2\end{displaymath}

Integrate by parts

\fbox{\parbox{11cm}{
\begin{displaymath}\frac{d}{dt}\langle x\rangle=(\beta-\al...
...a-\alpha-2\phi)\langle x^2\rangle+
\phi(\alpha+\beta+\phi)\end{displaymath}
}}

Interested in steady state fluctuations! If $\alpha>\beta$ there is no steady state. Population dies out! $\Omega$ irrelevant! THE CASE $\beta>\alpha$
The population will now approach the macroscopic steady state $\phi_s=\beta-\alpha$

\begin{displaymath}\frac{d}{dt}\langle x\rangle=-(\beta-\alpha)\langle x\rangle\end{displaymath}


\begin{displaymath}\frac{d}{dt}\langle x^2\rangle=-2(\beta-\alpha)\langle x^2\rangle+
2\beta(\beta-\alpha)\end{displaymath}

Assuming a (t=0) fluctuation of size x0 i.e.

\begin{displaymath}\langle x(0)\rangle=x_0;\;\langle x(0)^2\rangle -\langle x(0)\rangle^2=0\end{displaymath}

the solution is

\begin{displaymath}\langle x(t)\rangle=x_0e^{-(\beta-\alpha)t}\end{displaymath}


\begin{displaymath}\langle x(t)^2\rangle -\langle x(t)\rangle^2=\beta(1-e^{-2(\beta-\alpha)t})\end{displaymath}


\begin{figure}
\epsfysize=300pt
\epsffile{fluct.eps}
\end{figure}
SUMMARY Click here for 3. Fokker-Planck equation Click here for Return to title page

 
next up previous
Next: About this document ...
Birger Bergersen
1998-10-14