next up previous
Next: About this document ...

1. Master Equation
START WITH PHYSICAL PICTURE:
q= microscopic state of dynamic system

\begin{figure}
\epsfxsize=260pt
\epsffile{evol.eps}
\end{figure}
Changes by stochastic transitions

\fbox{$W(q_{new}\vert q_{old})=$\space {\bf transition rate}}
Rates W(qnew|qold) for $q_{old}\Rightarrow q_{new}$ specify model.
World of Fermi's golden rule. In general microscopic fluctuations on timescales
short compared to times of interest. Describe system by P(q,t)
probability of state q at time t.
MASTER EQUATION
\fbox{\parbox{11cm}{
\begin{displaymath}\frac{\partial P(q,t)}{\partial t}=\int dq'[W(q\vert q')P(q',t)-W(q'\vert q)P(q,t)]\end{displaymath}
}}
SOME SPECIAL CASES
If state is integer n master equation discrete.

\begin{displaymath}\frac{\partial P(n,t)}{\partial t}=\sum_{n'}[W(n\vert n')P(n',t)-W(n'\vert n)P(n,t)]\end{displaymath}

One step processes
Birth and death processes can be modeled as taking place one at a time.

\begin{displaymath}W(n\vert n')=d(n')\delta_{n,n'-1}+b(n')\delta_{n,n'+1}\end{displaymath}

d=death rate.
b=birth rate.
Natural boundary
For birth and death processes: d(0)=0.
STEADY STATE

\begin{displaymath}\frac{\partial P_s(n,t)}{\partial t}=0\end{displaymath}

For all n.
For one step processes must have


\fbox{\parbox{7cm}{\begin{displaymath}d(n)P_s(n)=b(n-1)P_s(n-1)=0\end{displaymath}}}


Express P(n) in terms of P(0).

\begin{displaymath}P_s(n)=\frac{b(n-1)b(n-2)\cdots b(0)}{d(n)d(n-1)\cdots c(1)}P_s(0)\end{displaymath}

Determine P(0) from normalization.

\begin{displaymath}\sum_n P_s(n)=1\end{displaymath}

Boxed equation akin to detailed balance. THERMODYNAMIC EQUILIBRIUM:
If steady state also equilibrium (Click here for tutorial on the Boltzmann equilibrium concept),
require:

\fbox{\parbox{11cm}{
\begin{displaymath}\frac{P_s(n')}{P_s(n)}=\frac{w_n'}{w_n}e^{-[U(n)-U(n')]/kT}=e^{-[F(n)-F(n')]/kT}\end{displaymath}
}}

U(n)= internal energy state with n particles.
wn degeneracy factor (number of states with n individuals).
F=U-TS= free energy.
$S=k\ln w=$ entropy.
No restriction to one step processes! We will later discuss detailed balance for microscopic processes. Example:
INTRINSIC SEMICONDUCTOR
n=# of electrons=# of holes.
$\Omega=$system size parameter = volume.
$b=\beta\Omega=$electron (hole) generation rate.
$\beta=$constant independent of volume.
$ d(n)=\gamma n^2/\Omega=$ recombination rate.
$\gamma=$ another constant independent of $\Omega$.
n=0=natural boundary, i.e. d(0)=0.
Macroscopic rate equation

\fbox{\parbox{7cm}{
\begin{displaymath}\frac{dn}{dt}=b-d(n)=\Omega\beta-\frac{\gamma n^2}{\Omega}\end{displaymath}}}

Expect mean number of carriers in steady state

\begin{displaymath}n_0=\Omega\sqrt{\beta/\gamma}\end{displaymath}

Master equation for steady state

d(n)Ps(n)-bPs(n-1)=0

Substitute $b=\Omega\beta;\;\;d(n)=\gamma n^2/\Omega .$ Express P(1), P(2) etc. in terms of Ps(0).

\fbox{\parbox{6cm}{
\begin{displaymath}P_s(n)=\frac{\Omega^{2n}}{(n!)^2}(\frac{\beta}{\gamma})^nP_s(0)\end{displaymath}}}

Solve for Ps(0) using the normalization condition

\begin{displaymath}\sum_n P_s(n)=1\end{displaymath}

Use Stirling's formula

\begin{displaymath}\ln(n!) = {{1}\over{2}}\ln (2\pi
)+(n+{{1}\over{2}})\ln n -n +o(n)\end{displaymath}

find that Ps(n) approximately Gaussian.
Mean and variance

\begin{displaymath}\langle n\rangle=n_0=\Omega\sqrt{\beta/\gamma};\;\;\langle (n-n_0)^2\rangle=\frac{n_0}{2}\end{displaymath}

At equilibrium

\fbox{\parbox{6cm}{\begin{displaymath}\frac{\beta}{\gamma}=\frac{1}{\lambda_h^3\lambda_e^3}
e^{-\epsilon/kT}\end{displaymath}}}

$\epsilon=$ band gap, $\lambda=$ thermal wavelength

\begin{displaymath}\frac{1}{\lambda_{h,e}^3}=\int\frac{d^3p}{h^3}
\exp(-\frac{p^2}{2m_{h,e}^*kT})\end{displaymath}

h= Planck const., k Boltzmann const.
m*= effective mass, T temperature.
Boltzmann/Gibbs formula

\begin{displaymath}P_s(n)=\frac{\Omega^{2n}}{Z(n!)^2\lambda_h^{3n}\lambda_e^{3n}}e^{-n\epsilon/kT}\end{displaymath}

Z= normalizing factor (partition function).
$\frac{\Omega^{2n}}{\lambda_h^{3n}\lambda_e^{3n}}=$ phase space factor.
(n!)2= Gibbs factor for identical particles.
$e^{-n\epsilon/kT}=$ Boltzmann factor.
SUMMARY


Click here for 2. System size expansion Click here for Return to title page

 
next up previous
Next: About this document ...
Birger Bergersen
1998-09-18