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ABSTRACT By perturbing a Go# model toward
a realistic protein Hamiltonian by adding non-
native interactions, we find that the folding rate is
in general enhanced as ruggedness is initially in-
creased, as long as the protein is sufficiently large
and flexible. Eventually, the rate drops rapidly to-
ward zero when ruggedness significantly slows con-
formational transitions. Energy landscape argu-
ments for thermodynamics and kinetics are coupled
with a treatment of non-native collapse to elucidate
this effect. Proteins 2001;45:337–345.
© 2001 Wiley-Liss, Inc.
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INTRODUCTION

Theorists seek to capture the essence of protein folding
with simple models of a self-interacting polymer
chain.2,8,9,14,15,29,31,39,47,49 There are two distinct limits
pertaining to the nature of the interactions in this minimal-
ist approach. One is that of purely random interactions
and is considered too frustrated to describe real proteins.
Another is the Go# model,46 for which the polymer is self-
attractive only for those interactions present in the native
configuration. This is considered too unfrustrated to describe
real proteins and also impossible to achieve in practice.
Because these two models bracket the behavior of real
proteins, we consider perturbing from the Go# model toward
real protein interactions by adding some non-native noise.

Go# models have been implemented to describe the
folding mechanism of real proteins with considerable
success,1,5,6,12,18,26,35,38,41,42 indicating that many real pro-
teins have interactions that are minimally frustrated
enough so that a Go# model can be an accurate description.

Some of the effects of adding non-native interactions on
the folding mechanism for the Honeycutt-Thirumalai b-bar-
rel model19 were investigated in Refs. 28 and 40, and
specific non-native interactions in the transition state
were examined for a lattice model in Ref. 23. Local helical
propensity was enhanced for a-spectrin SH3, a b-sheet
protein, in Ref. 37.

In this article we investigate the general effects on
folding rate when non-native interactions are superim-
posed on a Go# potential.

At first glance, one would expect that adding frustration
begins to slow the rate at the transition temperature or, at
best, has initially no effect. What follows is a derivation of the
somewhat counterintuitive result that in general the folding

rate initially increases as ruggedness is increased from zero.
Eventually of course, the rate decreases drastically, so a plot
of the folding rate versus non-native interaction strength
should look like Figure 1. Then the question of where real
protein interactions reside on this plot may be addressed. For
some fast-folding proteins, it is possible that non-native noise
in the system may actually assist folding.

THERMODYNAMICS

Consider first the thermodynamics of a protein obtained
from a statistical analysis of a correlated landscape.33,34,36

The energy, entropy, and free energy as functions of the
fraction of native contacts Q, are given by†

E~Q! 5 QEN 2
D2~Q!

T ~1 2 Q! (1a)

S~Q! 5 Sc~Q! 2
D2~Q!

2T2 ~1 2 Q! (1b)

F~Q! 5 QEN 2 TSc~Q! 2
D2~Q!

2T ~1 2 Q!. (1c)

These quantities are shown in Figure 2, and the parame-
ters used in them are given in Table I. Sc(Q) in Eq. (1b) is
the configurational entropy in the system versus Q, EN is
the extra internal energy in the native state (the stability
gap), and D2(Q)(1 2 Q) is the non-native variance, which
is a measure of the overall ruggedness of the energy
landscape [see Eq. (3)]. The variance D2(Q)(1 2 Q) 3 0 as
Q 3 1. In obtaining the functional form of the non-native
ruggedness, it is assumed here that all the native contacts
have roughly the same strength.**

The energy in the native state is the number of native
contacts M times the mean native attraction energy e (e ,
0). If N is the number of interacting residues in the
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polymer chain and z is the mean number of contact
interactions per residue,

EN 5 Me 5 zNe. (2)

The overall non-native ruggedness D2(Q)(1 2 Q) is given
by

D2~Q! 5 Mb2h~Q!, (3)

where h(Q) is the non-native packing density (0 , h(Q) ,
1), b2 is the intrinsic variance per non-native interaction,
and M is the total possible number of (non-native) interac-
tions, that is, the native state is assumed to be fully
collapsed with the maximal number of contacts, and this is
the maximal number of total contacts of any state. The
density h(Q) tends to increase upon folding (see The
Collapse Transition), hence the ruggedness scale uD(Q)u
increases as well. The strength b of non-native interac-
tions is taken to be weak:

b
e

! 1, (4)

therefore, the ratio of folding transition temperature TF to
thermodynamic glass temperature TG is large

TF

TG
@ 1, (5)

that is, the proteins we consider are strongly (but not
infinitely) unfrustrated—we are perturbing away from the
Go# model.

The configurational entropy Sc(Q) has the property that
entropy loss on folding is more rapid initially than in later
stages. In mean-field theories, this arises from the entropy
loss to close larger loops initially, and in capillarity
theories this arises from the additional surface entropy

cost to form a given native nucleus. We approximate this
nonlinear effect here by assuming an entropy of the form

Sc~Q! 5 So~1 2 Q! 2 Tent~Q!, (6)

where So ; Nso is the total conformational entropy in the
unfolded (Q 5 0) state (so is the log number of conforma-
tional states per residue), and Tent(Q) is a tent function:

Tent~Q! 5 H 2fQ Q , 1/2
2f~1 2 Q! Q . 1/2 . (7)

We have let the barrier be at Q Þ 5 1/2 for simplicity of
argument.

At the transition temperature TF, the free energy of the
folded and unfolded states are equal:

F~0! > F~1!

2TFSo 2
D2~0!

2TF
> EN. (8)

The folding temperature is a decreasing function of b.
From Eqs. (3), (4), and (8):

TF~b! < TF~0!S1 2
soh~0!

2z
b2

e2D, (9)

where TF(0) 5 2 ze/so. At fixed temperature, folding
becomes more uphill as non-native interactions are added,
and this tends to slow down the rate. However, the
quantity we are investigating here is the rate at folding
equilibrium, that is, where the native and unfolded states
have equal stability. The transition temperature that
induces this scenario is a function of b; however, TF varies
by less than a few percent over the whole range of Figure 1.

Using Eq. (8) in Eq. (1c) gives

Fig. 1. Rate versus non-native interaction strength is split up into two regimens: one where it assists folding,
and the other where it hinders. A: Schematic depicting the two regimens. B: Result of the theoretical model
introduced in the text, for a system with parameters given in Table I. The rate plotted here is the folding rate at
TF, which is itself a function of b [see Eq. (9)], that is, stability is fixed here, temperature is not. However TF

changes by & 5% over the range of this plot. Initially, the rate rises as ;Nb2/e2, then strongly decreases for
larger b as non-native interactions slow conformational transitions. The inset of (B) shows a semilog plot of the
same rate; it can be seen that there is a regime where the rate is roughly constant as ruggedness is increased
from zero and then a turnover where the rate drastically decreases.
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F~Q! 2 F~0!

T U
TF

5Tent~Q! 2
Mb2~1 2 Q!

2TF
2 @h~Q! 2 h~0!#.

(10)

When b 5 0 the free energy at TF is the tent function (see
Fig. 2), and so f in Eq. (7) is thus DF Þ (b 5 0)/TF. Then
from Eq. (10) the free energy barrier at TF is given by

DF Þ ~TF!

TF
<

DF Þ ~b 5 0!

TF
2

Mb2

4TF
2 Dh Þ , (11)

where Dh Þ 5 h(Q Þ 5 1/2) 2 h(0) is the change in
non-native density between the barrier peak and unfolded
state (DhÞ , 1). So long as DhÞ . 0, the barrier height
decreases as non-native variance (b2) increases, as shown
in Figure 2. We now show that this is generically the case
by considering the physics of collapse for our problem in
question.

The Collapse Transition

In this section we investigate the coupling of non-native
density with the amount of native structure present in a

protein and show that native topological constraints can
induce a collapse transition on the non-native parts of the
protein. Then the trend in Eq. (11) of adding non-native
ruggedness would be to lower the folding barrier.

Collapse occurs below a temperature Tu, defined as the
temperature where the free energy of the coil and col-
lapsed molten globule phases (both at Q > 0) are equal:

Fcoil~Tu! 5 Fmg~Tu!. (12)

Again using Eq. (1c), but now noting that the conforma-
tional entropies are different in the coil and globule
phases, and that h > 1 in the globule and h > 0 in the coil
phase, we have

2TuScoil 5 2TuSmg 2
Mb2

2Tu
2 Ma. (13)

Note we have now allowed for a mean homopolymer
attraction a in general, for reasons that will become clear
below. Using the reduction in entropy for collapsed versus
coil chain statistics4,27

Scoil 2 Smg 5 N log n 2 N log~n/e! 5 N (14)

gives for the collapse temperature

Tu 5
za
2 S1 1 Î1 1

2b2

za2D. (15)

Note from Eq. (15) that when b 5 0, Tu 5 za, that is, the
collapse temperature is the mean homopolymer attraction
times the number of contacts per residue. When a 5 0,
Tu 5 b=z/2, that is, non-native heterogeneity can drive
collapse, with the collapse temperature now scaling with
the root number of contacts per residue times the width of
interactions.

Now we note that in our model (Go# perturbed by weak
non-native heterogeneity, with a 5 0), collapse and
folding will tend to occur together, with folding driving the
collapse through native structural constraints. So the total
density increases from zero to one as Q increases from 0 to
1. Moreover, the non-native density h(Q) should increase
as well, because non-native polymer is more strongly
constrained by larger native cores (see Fig. 3). The sim-
plest approximation to capture this increase in density
upon folding is to replace the mean homopolymer field a by
the native energy scale e times the fraction of native bonds
made Q:

a~Q! 5 eQ. (16)

This is the effective homopolymer field for the ensemble of
states with fraction Q of native structure. Using Eq. (16) in
Eq. (15) and noting that the glass temperature

TG 5 Îzb2

2smg
(17)

gives

Tu 5 TFSsoQ
2 1 ÎSsoQ

2 D2

1 smgSTG

TF
D2D, (18)

Fig. 2. Energy, entropy, and free energy versus Q in the model, given
by Eq. 1. Parameters used in the model are given in Table I. For the Go#
model D2 5 0 (solid line). Then the energy E(Q) 5 QEN is a linear function
of Q, and the entropy S(Q) is given by Eqs. (6) and (7) with f 5 5, and so
is a bilinear function of Q. However, the bilinearity is weak: f/So ' 0.02
and is nearly indiscernible here; the free-energy barrier arises from the
incomplete cancellation of large terms. Because of the bilinear approxima-
tion for the configurational entropy and pairwise additive energy function,
the Go# free energy has a tent functional form at the folding transition
temperature TF. When ruggedness is introduced, when D2 . 0 (dashed
line). We took b2 > 0.04 e2 [see Eq. (3); this is where the folding rate in Fig.
1 is maximal). The non-native density function h(Q) used here is a fit to the
off-lattice data in Figure 4(C). When D2 . 0, the energy is lowered by dE 5
2Mb2h(1 2 Q)/T from Eq. (1a). From Eq. (1b), the entropy is lowered by
TdS 5 2dE/2, so the free energy is everywhere lowered by dF 5 dE 2
TdS 5 2dE(Q)/2. The folding free-energy barrier at TF is lowered by
non-native ruggedness, because for the non-native density h(Q) is
greater in the transition state than the unfolded state.
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where so and smg are the entropy per residue in the coil and
globule state, respectively. Note that in Eq. (18), Tu . TF,
that is, the non-native parts of the protein are in a
collapsed state at folding equilibrium, as long as the term
in parentheses is greater than one, and TF is below the
collapse temperature. This gives a critical value Qu where
collapse occurs during folding, that is, when Q * Qu, h <
1 and when Q & Qu, h < 0. This is sketched in Figure 4(A)
below. Solving for Qu gives

Qu 5
1
so

2
smg

so
STG

TF
D2

5
1
so

2
sob2

2ze2 >
1
so

, (19)

and Eq. (18) can be rewritten as

Tu~Q! > QsoTF 5 Qze. (20)

The approximations in Eqs. (19) and (20) are valid by
construction of the problem, that is, because Eq. (4) holds.
For example, if b/e is about 1/20, then the second term in
Eq. (19) is of order 1/400 and can be neglected. Equation
(19) says that the more chain entropy the polymer has (the
more flexible it is), the sooner it collapses when folding at
the transition temperature.

Calorimetric measurements of the conformational en-
tropy change per residue in unfolding to the coil state for
say Barnase give so > 55 J/K z mol residue > 6.8 kB per
residue.25 This entropy also counts side chain conforma-
tional entropy, which is estimated to be about 13 J/K z mol
residue > 1.6 kB per residue,10 giving a net chain
conformational entropy of about 5.2 kB per residue in the
coil state; therefore, Qu > 0.2. For typical off-lattice
simulations,5,28 so > 3.4 kB; therefore, Qu > 0.3. So
collapse typically occurs before the barrier is reached [see
Fig. 4(C)]. For lattice simulations Qu > 0.6, which is
around Q Þ . In any event, h(Q Þ ) will tend to be greater
than h(0) as long as the system is large enough and bulk
thermodynamics can be used (see Fig. 4), (however, see
also caveats in Appendix A). The values of non-native
packing density obtained from simulations are smaller
than 1, probably because of finite size and stiffness effects.
Applying bulk thermodynamics to the residual segments
of non-native polymer may not be an accurate approxima-
tion in some cases.

More complete treatments of the coupling of density
with native similarity can be made within the energy
landscape framework.33 It is fairly straightforward to
write an approximate free energy as a function of both h
and Q and then minimize with respect to h to obtain the
density as a function of Q. We have taken the simplest
approach here to illustrate the coupling of collapse with
the thermodynamics. Some cautionary notes are made in

Appendix A regarding a possible reversal of the trend on
barrier height in small, stiff proteins, or proteins with a
significant amount of homopolymeric self-attraction.

Finite-size and stiffness effects are playing a role in
Figures 4(B) and 4(C): the density never reaches unity.
The degree of coarse graining present in the lattice model
is such that non-native polymer may not be treated as
Gaussian loops, and h(Q) in Fig. 4(B) does not show an
increase with Q. However, in the larger and more flexible
off-lattice models, the increase in non-native density with
folding is clearly present, and DhÞ . 0. Because the
increase is less than 1, we keep DhÞ as a parameter in the
equations below for folding rates.

The point of the above arguments is to show that large,
flexible polymers show at least partial collapse before the
transition state, and by Eq. (11) this leads to a reduction in
free energy barrier as non-native interaction strength is
increased from zero.

Kinetics

What about the folding rate? The question is now
whether the slowing of the prefactor is a larger effect than
the decrease in barrier height, as we add non-native
ruggedness. Because the ruggedness is weak, the kinetics
are single exponential (there is a single dominant folding
barrier), and a Kramers law holds for the rate:

k > t 2 1~b!e 2 DF Þ ~b!/T (21)

where the prefactor is proportional to the reciprocal of the
reconfiguration timescale.3,34,44,48

If we were to follow the argument for the dependence of
the prefactor on ruggedness for an uncorrelated land-
scape,3 or for a correlated landscape at low temperature
with activated dynamics,48 we would find that the ratio of
rates is given by

k~b!

k~b 5 0!
U

TF

5 expSMb2

4TF
2 Dh Þ 2

Mb2

TF
2 &D. (22)

The first term in the exponential comes from Eq. (11), the
second from the theory for reconfiguration time t(b). The
parameter & is a positive function of T/TG on the uncorre-
lated landscape, and on the correlated landscape is a
function of both T/TG and structural entropic factors
having to do with the density of states of given similarity to
a trap. So by inspection of Eq. (22), in this low temperature
regime, the rate may go up or may go down with non-
native interaction strength, depending on the relative
strength of the two terms in the exponent.

TABLE I. Parameters in the Model

Model

Polymer
length

(N)

Contacts
per

residue
(Eq. 2)

(z)

Conformational
entropy per

residue (Eq. 6)
(so)

Entropy
nonlinearity
(Eq. 7) (f)

Native contact
energy (Eq. 2)

(e)

RMS non-native
contact energy

(Eq. 3) (b)

Folding
transition

temperature
(Eq. 8) (TF)

Go#, Go# 1 non-native 64 1.25 3.4 5.0 21.0 0, b 0.37
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However, an important result arising from energetic
correlations in the landscape is the existence of a critical
temperature TA where the dynamics becomes unacti-
vated.48 Above this temperature, the dynamics is similar
to reconfigurations in a normal liquid rather than the
hopping dynamics of trap escape in a supercooled liquid or
glassy system,17,21,45,48 that is, above TA, the prefactor
t 2 1(b) remains nearly constant with ruggedness, because
at these temperatures, the Rouse modes depend much
more weakly on the ruggedness introduced. The existence
of such a temperature scale can be seen from the following
simple argument.48 We can think of escape from a local
trap as a mini-unfolding event: escape is driven by entropy
and is opposed by the putative trap’s low energy, say Ei.
Then, as in unfolding, the escape barrier arises from a
mismatch between entropy gains and energy losses as the

system reconfigures out of the trap, so we can rewrite Eq.
(1c) for the free energy relative to the state i as

F~q! 5 qEi 2 TSc~q! 2
D2

2T ~1 2 q!, (23)

where EN in Eq. (1c) is replaced by Ei, Q in Eq. (1c) is
replaced by q, defined as the fraction of contacts shared
with the trap state i, and density changes during untrap-
ping are not particularly important since TA , Tu (ener-
getic trapping occurs only when the polymer is collapsed.4)
The transition to unactivated dynamics occurs when the
states typically occupied at that temperature have zero
escape barrier. Setting Ei in Eq. (23) to the thermal energy
of states at temperature T,*

Ei < E# ~T! 5 2
D2

T , (24)

we note that TA occurs when the free energy profile is
downhill away from the trap at q 5 1, that is, when
]F . /]Q 5 0 in our model, where the subscript . indicates
the high q region of the piecewise free energy function, eq.
(23) [Eq. (6) for the configurational entropy has a piecewise
structure]. Using Eqs. (7), (23), and (24), this gives

TA 5 TGS1 2
2f

So
D2 1/2

(25)

for the transition temperature to activated dynamics.
From Eq. (25) we see that TA . TG by an amount that
depends on the deviation from linear entropy loss over the
total unconstrained entropy, that is, by the entropic contri-
bution to the barrier. There is no energetic contribution
because we have used q as the order parameter and
assumed pairwise interactions.†

For model proteins of size N , 100, TA < (1.2 2
1.8)TG. A plot of the escape time on a correlated landscape
is given in Figure 5. Because of the large entropy and
relatively small barrier in our model TA < 1.02 TG here.
But in any event, for the regimen we are interested in,
TG/TF ! 1 [c.f. Eq. (5)], it is also true that

TA

TF
! 1, (26)

and so the characteristic temperatures where folding
occurs ( , TF) are way above the transition temperature
for activated diffusion by construction of the problem; see
Figure 5.

Expanding Eq. (21) around b 5 0 then amounts to
setting & 5 0 in Eq. (22). That is, we can neglect the

*C.f. Eq. (1a) at Q 5 0. For strata of states with Q . 0, the larger
ruggedness scale D(Q) increases TA and TG for that stratum of states.

†One must be consistent in interpreting Eq. (25). In mean-field
theory, f is extensive and TA . TG in the thermodynamic limit. But in
the capillarity theory, the entropic deviation f comes from surface
entropy and should scale as N2/3 (or even with a smaller power if the
interface is roughened). One might argue that since So , N, TA
approaches TG as N 3 `, but matching the theories in this fashion is
incorrect because Eq. (23) is not valid in the capillarity limit. In the
capillarity theory, a dynamical transition can only be seen by investi-
gating where the intensive surface tension vanishes.

Fig. 3. As folding progresses, the non-native polymer halo surround-
ing the native core (central yellow globule) has more topological con-
straints placed upon it. Therefore, the non-native packing density, given
by the total number of non-native contacts divided by the characteristic
volume of non-native polymer (red spheres), tends to increase with
folding. This increase in density is responsible for the stronger effect of
non-native interactions on the free energy as Q increases.
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slowdown in prefactor as ruggedness increases, to the first
approximation, due to the existence of a dynamic glass
temperature (see Fig. 5).

Inserting Eq. (9) into Eq. (22) and expanding for small b
gives the forward rate at the folding transition tempera-
ture for weak non-native interactions:

k
kGO

U
TF

> 1 1 MDh Þ
so

2

4z2 Sb2

e2D, (27)

where Dh Þ 5 h(Q Þ ) 2 h(0) and we have used Q Þ >
1/2. Equation (27) is the central result of this article, that
is that the forward folding rate shows an initial increase as
random non-native interactions are added to the Hamilto-
nian. The effect on rate due to the change of TF with
ruggedness b is a higher order effect (2(b/e)4) than the
dependence of the barrier in Eq. (27).

The increase in rate occurs until around bA 2 db(N),
where bA is where TF(b) > TA(b) (about 0.3 here), and
db(N) is the finite-size fluctuation of bA due to temperature
fluctuations which round the transition.22 That is,

db < dTA 5
T
Cv
U

TA

5
T2

ÎMb2U
TA

<
bA

ÎN
, (28)

where Eq. (1b) was used for the entropy at Q 5 0. This
gives a value for db < 0.02 2 0.04.

Realistic values of b2/e2 for a typical protein can be
obtained from the ratio of folding to glass temperature,
given by

TF/TG 5 l 1 Îl2 2 1, (29)

where l 5 =z/2so(e/b).16 Commonly accepted values of
TF/TG for proteins are about 1.6 2 2.0.30 Using the values
in Table I for so and z gives (b2/e2) < (0.1–0.15), which is
above the rate enhancement regimen (see Fig. 1). If the
effects of non-native rate enhancement are observable,
they will be seen possibly in only the faster folding
proteins. On the other hand, it was recently argued on
calorimetric grounds that TF/TG may exceed 6 for some
two-state proteins,20 and for such proteins rate enhance-
ment would be observable, in principle by combining
calorimetric and rate measurements. Such an observation

Fig. 4. Free-energy profiles F(Q) and non-native polymer density h(Q) in the model for (a) the simple
bulk-mean-field model, (b) a 27-mer lattice model, and (c) an off-lattice model for the 57-residue fragment
corresponding to the a-spectrin SH3 domain (PDB code 1BK2). Simulation data are taken from Go# models. (a)
Collapse occurs at Qu before the barrier peak at QÞ. The transition is significantly rounded for typical sized
proteins, as in (b) and (c), and so the important quantity to investigate is the density change DhÞ between the
unfolded and transition state. The quantity DhÞ is thus retained explicitly in the equations for barrier heights and
rates in the main text. In (b), the non-native density is overall fairly small and is comparable in the unfolded and
transition state, h(QU) ' h(QÞ) ' 0.22. Thus, Eq. (10) gives a barrier height roughly independent of b at least
for small b. In (c), on the other hand, the non-native density rises to values larger in overall magnitude and is
monotonically increasing until the barrier peak: h(QÞ) ' 0.35 and h(QU) ' 0.2. For the parameter values in
Table I, Eq. (10) then gives a barrier height decreasing with b as DFÞ/TF ' 210b2/e2. The drop-off at high Q in
(B) and (C) is most probably due to stiffness effects on the small pieces of residual non-native polymer in this
regime.
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would support the existence of a dynamic glass transition
in protein systems.

CONCLUSIONS

As the variance in non-native interactions is increased
from zero, the folding rate initially increases by a factor of
about 2–4 and then eventually drops rapidly toward zero
(see Fig. 1). There is a regime near the Go# Hamiltonian
where, on a log scale, the rate is relatively robust to
changes in non-native interaction strength. The density of
non-native polymer must be greater at the barrier peak
than in the unfolded state for rate enhancement to be
observed. Moreover, rate enhancement implies a regime
where dynamics are relatively unaffected by changes in
ruggedness due principally to the existence of a dynamic
glass temperature.

Why does the rate initially increase? The upshot is as
follows. First, it follows from energy landscape theory that
if there is no change in density upon folding, then changes
in ruggedness do not affect the barrier height for a
well-designed protein, as can be seen from Eq. (11): if
DhÞ 5 0, the barrier is unchanged from the Go# model.
Intuitively, the addition of random non-native interactions
tends to lower the free energy in general. For the free
energy barrier to change, the relative stability of the
unfolded and transition state must change. The only way
this can happen upon increasing non-native interactions is
if the densities of non-native polymer are different in the
unfolded and transition states. Thus, effects on the barrier
must come from the coupling of non-native density to the
degree of nativeness.

We then showed this coupling is such that generically,
the non-native density increases with increasing native-
ness, so long as the protein is sufficiently large and
flexible, and the non-native interactions are weak. Thus,
the free-energy barrier lowers as non-native interaction
strength is increased from zero.

The folding rate increases if the effect of ruggedness on
the prefactor is weaker than the effect on the barrier. The
prefactor is related to the reconfigurational diffusion time.
Because a dynamic glass transition is expected in such
systems, there will be a window for weak ruggedness
within which the diffusion time, and thus the rate prefac-
tor, is relatively unaffected as ruggedness is increased.
The rate tends to initially increase before decreasing
substantially, as shown in Figure 1 and expressed in Eq.
(27). This is the main result of our work.

One might have some concern over the use of Q as a
reaction coordinate in the analysis here. However, the
regime that we considered, namely a Go# model perturbed
by weak ruggedness, is precisely the regime where Q
works best as a reaction coordinate. Indeed, simulations of
some off-lattice model systems observe rate-enhance-
ment.7

For wild-type proteins, which are very well-designed,
the effect may be observable through calorimetric measure-
ments on mutant sequences that still fold to the native
structure. The width of the unfolded density of states,
which is a function of b, may be inferred from calorim-
etry13 and compared with the folding rate for that se-
quence.

This phenomenon provides a good example of how
energy landscape theory can be applied to the physics of
protein folding to reveal and explain a counterintuitive
result.
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APPENDIX A: CAVEATS DUE TO FINITE-SIZE,
GENERIC ATTRACTION, AND

STIFFNESS EFFECTS

The derivation leading to Eq. (11) assumed mean-field
theory could be applied, that the protein could be treated
as a bulk system, and that properties arising from chain
connectivity would not alter the results arising from the
energetics in the problem. In particular, we have assumed
that the polymer persistence length or Kuhn length ,K is
much less than the length of a typical piece of disordered
protein ,0 near the barrier peak, so that a dangling piece of
disordered polymer may interact with itself. If the protein
under study is particularly stiff and/or small, the return
length of polymer fragments may be comparable to the
length of the disordered pieces, reducing the number of
non-native interactions near the barrier peak relative to
the number in the unfolded state. Then in Eq. (10) the
density h(Q Þ ) & h(0) and no reduction in barrier height
with non-native interactions would be seen.

For the 27-mer lattice model ,K ' 3–4; these models are
relatively stiff compared to their total length. For typical
off-lattice models on the other hand, ,K ' 3, but they are
considerably longer, for example, for SH3, N 5 57. If all
the non-native polymer is in one strand, ,0 < N/2 at the
barrier peak. Then ,K/,0 ' 0.26 for the lattice model, and
,K/,0 ' 0.11 for the SH3 off-lattice model. If the non-native
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polymer is distributed among a number of disordered
strands that can dress the native core, roughly (1/6) 3

N2/3,11 then ,K/,0 ' 0.40 for the lattice model, and ,K/,0 '
0.26 for the off-lattice model.

Neither of these numbers is very small, indicating that
the collapse transitions are quite rounded, and the effect
on folding rate will be mild if it exists. In fact, the
discrepancy of ,K/,0 between the off-lattice and on-lattice
models, although fairly small here, leads to different
behavior of the non-native density h(Q), as shown in
Figure 4. In the lattice system h(Q Þ ) & h(QU), but in the
off-lattice system h(Q Þ ) * h(QU). Hence, we anticipate
the rate-enhancement effects will be seen in off-lattice
models but probably not in at least the shorter on-lattice
models.7

Real proteins may tend to have some net homopolymer
attraction inducing generic collapse. This decreases the
change in density upon folding and would further attenu-
ate any rate enhancement effect present. However, at least
some proteins are sufficiently stable that collapse and
folding are concomitant.32 Moreover, Go# models, for which
collapse and folding are concomitant by construction,
capture at least some of the essential aspects of folding
mechanism.1,5,6,12,26,41,42

Collapse accompanies folding when the folding transi-
tion temperature TF given by Eq. (8) is comparable to the
collapse temperature Tu in Eq. (15). For weak ruggedness,

TF

Tu
<

e

aso
S1 2

so

2z
b2

e2 2
1
2z

b2

a2D. (30)

So the effects of generic collapse are not important in the
problem as long as e * aso, to the first approximation.

Several additional features may affect the folding rate.
In finite-sized systems, the unfolded state tends to have
partial order. Moreover, its position may drift, along with
that of the transition state, as non-native variance is
increased. This modifies the barrier height. The density
h(Q) in Figure 4 is taken from Go# models and so is exact in
the limit b 3 0. However, for nonzero b, the density h(Q)
may begin to alter in structure, as non-native interactions
induce collapse and transient traps. Accounting for these
effects will modify the folding rate, but should not alter the
general trend of Figure 1. A nonzero mean repulsive or
attractive non-native interaction strength, investigated in
lattice models (e.g., Refs. 8, 24, and 43), may be straightfor-
wardly incorporated into the theory developed here. Such
a parameter would couple stability gap to mean homopoly-
mer attraction in the theory.
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