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Non-Markovian Configurational Diffusion and Reaction Coordinates for Protein Folding
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The non-Markovian nature of polymer motions is accounted for in folding kinetics, using frequency-
dependent friction. Folding, like many other problems in the physics of disordered systems, involves
barrier crossing on a correlated energy landscape. A variational transition state theory that reduces
to the usual Bryngelson-Wolynes Kramers approach when the non-Markovian aspects are neglected is
used to obtain the rate, without making any assumptions regarding the size of the barrier, or the memory
time of the friction. The transformation to collective variables dependent on the dynamics of the system
allows the theory to address the controversial issue of what are “good” reaction coordinates for folding.
[S0031-9007(98)06219-X]
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According to the energy landscape theory [1], proteina common value of their similarity to the native con-
folding can be seen as a stochastic motion of a fewWormation, which is an approximate reaction coordinate
collective coordinates describing protein conformationfor folding. This is often taken to be& [5,11], the
on an average thermodynamic potential [2]. To firstfraction of native contacts, but other choices are pos-
approximation this motion is Brownian, and the folding sible. Finding a “best” reaction coordinate is currently
time can be computed from diffusive rate theory [3,4].0f great interest [5,12—-14]. By projecting onto this co-
A good quantitative comparison between the analyticaprdinate, a diffusion equation for its probability distri-
energy landscape theory and lattice simulations of smalldpution is obtained with a frequency-dependent diffusion
proteins has been made [3]. The diffusive behaviorcoefficient [1]. Correspondingly, the coordinate’s mo-
of the reaction coordinate’s motion is approximate; intion can be characterized by an overdamped generalized
lattice simulations a fraction of the trajectories havelangevin equation (GLE):-dF(Q)/dQ — [odr {o(t —
ballistic crossings over the barrier, while others are quiter. 7)Q(7) + £(1) = 0, with a frequency-dependent fric-
diffusive [5], suggesting a wide range of time scalestion satisfying(¢(1)¢(#')) = TZp(t — +,T) and related to
for the collective reaction coordinate. Non-Markovianthe diffusion coefficient bylo(w,T) = ksT/Dg(w,T)
dynamics, expected on a rugged energy landscape, will the overdamped regime.
affect reaction rates when the time to cross the top of The GLE implies thaQ responds linearly to fluctuations
the barrier is comparable to the memory time of thein the other coordinates of the polymer chain apart from the
fluctuating forces acting on the collective coordinate.nonlinearity inherent in the thermodynamic potential for
Analysis of such situations for reactions in condensed2. This should be a good approximation if many individ-
phases has led to a number of good approximationgal configurational states of the polymer chain are sampled
for rates [6-9]. In our treatment we use variationalfor each value oD, as expected above the glass transition
transition state theory (VTST) [8-10] to discuss howtemperature of the stratum @t o (w,T) is given by av-
non-Markovian dynamics of the chain affects folding, €raging overPy(r,T) aslp(w,T) = Ag(r/(1 + w7))/
and to address the question of what is the best reactiofl /(1 + w7)) or Ay L (e /™)) L, =% (e~!/7), where L,
coordinate for folding. We apply our results to the motionis the Laplace transform. The conformational motion
of a heteropolymeric protein chain, but many of the samelistance scale is set by, = 2kgT/(AQ%y(), whereAQ
issues occur for kinetics in other disordered systems, fois the step size angly, is the probability a jump changes
example, the nucleation of a crystal from a glassy liquid.Q. Py(7,T) on acorrelatedenergy landscape is obtained
We first discuss the form of the effective frequency-by first defining a local progress coordinateamong the
dependent frictior (w) for motion on a correlated energy stratum of states a distangg to the native, as similarity
landscape, specifically for a heteropolymer. Then weo the given trap state, so the typical rate of escape
apply VTST to find corrections to the Kramers folding [15] involves the calculation of the free energy barrier
rate due to memory effects ifi(w) and anharmonicities [Fy(g¥) — Fo(1)] for jumps among different states all
in the potential. having native similarity=Q, assuming the elementary

Protein conformational motion can be mapped onto anoves are sufficiently local. A bilinear approximation to
generalized master equation, with escape rates from the entropic part of’y(¢g) can be used [15], since contacts
statistical ensemble of configurations given in terms offormed at smallg, i.e., for a more weakly constrained
a waiting time distributionP,(7,T) [1]. The configu- polymer, cost more entropy than for a strongly constrained
rational states may be grouped together in strata witlone at highy. The escape timeexp(AF*/T) depends on
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two parameters: (1) The reduced temperafure 7/7Tg,
where T¢ = (AE/2S0)'/? is the glass temperature
for the Q stratum. Sy, is the configurational entropy
at 0 while AEG = (1 — Q) (AEy + QAER) is the

closed form for the friction expressible through hypergeo-

metric functions. The corresponding diffusion coefficient

Do(w,T) = ksT/{o(w,T) is plotted in Fig. 1.
Non-Markovian rate theory [8] proceeds by recognizing

energetic variance of the states in terms of the variancthat the GLE is equivalent to a particle bilinearly coupled

of native (N) and non-native(M) contacts, and (2) the
reduced energy of the trapped stdte= E/E,, where

toa baﬂ; of oscillators [19] with an effective Hazmiltonian
H = pp/2m* + F(Q) + %Zj[pi/mj + mjwi(x; —

Eos. = —(2S9AE()'/? is the ground state energy of the ¢;0/m;w7)*] with £(1) = Y ;(c}/m;w}) cogw;r). Be-

ensemble of states @&. The escape time from a trap with
energy E, 7o(E,T), is given by roexgSoe(1 — ¢T) X
QE/T — 1/at — 1/T%6,]. Hereq' is the location of
the barrier peak, ana’ = (1 — ¢%)S,/S*, where st

cause of the overdamped dynamicgafm™ will be set to
zero at the end of the calculation, i.e., there are no inertial
terms. The observables*w*? = F/(Q%) and {(¢) are
taken to remain finite in this limit. The additional collec-

is the fraction ofS, at the barrier peak (for the 64-mer tive modes describe the dynamics@ffluctuations within

q" =03 and o = 1.6, see Fig. 4(9) of [15]). For
states withE < E4(T) or whenT > T4(E) (determined

linear response. Rather than dealing with non-Markovian
dynamics ofQ we can study the dynamics of this equiva-

by setting the barrier to zero), escape becomes dowrent many-dimensional system without memory. When a

hill with short lifetimes of roughly the Rouse-Zimm
time(s) = 7o, henced, = 0(E — EA(T))0(TA(E) — T)

in the exponent. AT = 1 the system is frozen into one
of a few ground state$E = 1), and the typical escape
time is 7o(1,1) = ToexgSe(1 — ¢ (1 — 1/a®)], or

To exp(0.27SQ4) for the 64-mer. Correlations lower the
barrier to roughly1/4 the total configurational entropy

single barrier exists iF’(Q) it makes sense to use multi-
dimensional transition state theory. If the barrier is large
and its parabolic part dominate®{ is quadratic and may

be diagonalized by a normal mode transformation, which
singles out as a reaction coordinate an unstable mode
p Wwith imaginary frequencyiA* given by the solution

of A lp:(AH,T) = m*w*? = |9°F(Q)/00%|p:. This

[15], as opposed to the full entropy as in uncorrelated landfrequency is identical to the (overdamped — 0) Grote-

scapes. At temperatures beldly, the deeper the trap,

Hynes reactive frequency [6]. Friction leaves the barrier

the longer the escape time, up until a maximum given byreight unchanged, but rotates the reaction coordinate to
escape from a ground state. The distribution of occupie@ different direction in configuration space. When the

state energieE~ at temperatur@ is a Boltzmann weighted
GaussianPy(E,T) ~ exd—So(E — 1/T)*]. Reflecting

motion is purely diffusive, the reactive frequency is that of
an overdamped inverted harmonic oscillator correspond-

this, the distribution of escape times is easily calculated a#g to the Kramers prefactor in the rate. For a general

Po(r.T) = [1dE Po(E.T)8l7 —ro(E.T)] = PE" +

F(Q) we can separate the quadratic part from the anhar-

PS. Apart from barrierless escapes at a single fasfNonic part of F. Then in the (mass weighted) normal

time scale: P (r,T) = A(T)8(r — 7o) with weight

A(T), this yields essentially a log-normal distribution:

PS(r,T) = 05(A/7)exd—aoIn*(r/7)] where ay =
T2/4So(1 — ¢')?, 7' = roexdSo(l — ¢") (1/T* -
1/ah)], 05 = 6(T4(1) — T)0(r — 70)0(7(1,T) — 1),
andA = Ay (T) is a normalization constant.

The above analysis applies at temperature higher than

the thermodynamic glass transition temperatlige At

or below T; the temperature independent distribution of

state energies becoméXE) ~ expE/Tg). Arrhenius-

like escape from states yields the distribution of escape 0

timesP(E(r))/|4| ~ 7~(1+T/Te), giving stretched expo-
nential relaxations [16,17].
linearity of Q dynamics is questionable however.
EvaluatingDy(w, T) or {p(w,T) aboveTg, note that
(e7!/T)y ~ f?i dz e 5% exd—b%e*zsz] (where ¢; =
201 — ¢NH/T, b = exds( — ¢") (1/at — 1/T?)], and

16, x107 T=T, =257
1o T=145
DQ(u),x) T,
0.8
0.4
02 04 06 08 1
0T,

In this regime the assumed

FIG. 1. ToﬁQ#(w, 7) for 64-mer near the transition state

0% =~ 0.3, as a function of frequency (in units ef), at several
temperatures between the thermodynamic glass temperature and
kinetic (activated) glass temperature. There is a rapid increase
from the zero frequency valu®,(0,7) dependent on the

zu andzy are proportional to the upper and lower boundstypical escape time, to a higher asymptotic value depending

of the log escape time) is reminiscent of the after-effec
function f(bt/ 7o, c;/+/S) used for nonexponential decay

Pn how many of the states are untrapped and have short
[

fetimes at that temperature.
of the diffusion is thus maximum at intermediate values of

The dispersion in the values

in glasses [18]. But for the mesoscopic systems relevantmperature. The largest values of the diffusion constant

to folding (N < 100), a better approximation is to lin-
earize the Gaussian term on the rafige zy), yielding a
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are set byoy = kgT /Ao, and atTy, Dot(w,Ts) = oy =
AQ%yy /219 = 0.0015/7, for the 64-mer.
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coordinates at the saddle poifif = 3[p2 — A*2p? + 2N -

Zj(l?)z,j + )\5}’]2)] + F][m*—1/2(u00p + Z]- ujoyj)]. The 35 VTST// = - A
coefficients u;, are elements of the orthogonal |« 10

normal-mode transformation such thaw*'/?Q' = = s

m*l/Z(Q — 0% = upp + Zj ujoy; (uog = m*1 vy is kKR 0 02 0.4Q 06 08 1

given in terms of the friction kernel ass, = uly/m* = 2.5

2[ZQ#(/\*,T)//\* + 82Q¢(s,7~")/8s|s=;\¢]_1). In ad- 6 B

dition to the Grote-Hynes coordinate one can de- 2 4

fine a residual collective bath coordinate*!/?c = 15 2 Oy (x103)
(1 — ugo) ™23 ujoy; = (1/w) X ujoy;, which ap- Y Tz as e
pears in the anharmonic part of the potential. The effects 1 A A A A A A
of dynamic friction, reflected by recrossings in tlge 14 16 18 2 22 24
coordinate, are accounted for by ballistic motion across a Te 4 TG

new thermodynamicallydetermined dividing surface in-

volving a 2D potential inp, o) [8]. The equilibrium flux  FIG. 2. Solid line: Ratio of the Grote-Hynes rate to the
across any dividing surface is given as an average oveframers rate, as a function dfr/Ts. Dashed line: VTST
the Hamilonian 3 T = (5(/) (V/ - pI(Y - p). _[a crhacementneluing anvaronc fecte of 2 e e
Heref = p —'g(a) SEIVES as a New progress Coord'n"’lteseen for shorter polymers (see téxt). The ’systgm is a 64-mer
f =0 determines a dividing surface between reactantgs foiding equilibrium. The variance of interaction energies is
and products, the factoé(f) localizes the integration varied, so that the temperature rafip/T; varies (/T =

to that surface, Whil&Vf - p = p,af/dp + psdf/dc  ym +m — 1, with n = E{/2S0AEj;, where Ey is the

is the flux density across the surface. The average ovétive state energy, ansi i(}sHtotilLentrppy). _The ratchIgser
H depends only on two coordinatgs and o. Thus follows the G-H resultk®"/k™ = (ot(0,7)/ {0+ (A", T).

the averages can be carried out yielding a correctioInset A: Thermodynamic potentials 8 at 7. For more
g y g rFugged landscapes the barrier is flatter, and this reduces the

to the Grote-Hynes (G'H) ratell’ = P(A*/w*)l"o_. prefactor to the rate since there are more recrossings. The
Iy = (wo/2m)exp—BF¥) is the TST rate, while T,/T; values are 2.45, 1.84, and 1.24 in order of decreasing

A /w# is the G-H transmission factor. The anharmonicbarrier size. The small vertical bars near the barrier peak are

correction to the G-H prefactor is given by a quadra—Where '_[he Vr']I'ST dividingf srt]Jrfaces cror?s the poordin@lte .
ture: P = ijoo do s(o)exg—BE(g)], where s(a) = Inset B: Enhancement of the rate at the maximum value o

3.8 atTy/Ts =~ 1.6 by allowing the prefactong = kgT /0y
(Bm*Q?/2m)V2(1 + [dg(o)/do)'/? and E(g) = in D(ASH, T) to vary (oo =~ 0.0015 is the original value).
%[m*Qza'2 — M2g(0)?] + Fi[voog(o) + ujo]. Here

m*Q? = (vjo/A*2 — 1/m*0**)~" is a collective bath

frequency andu; = 1 in the overdamped limit. If  For a 27-mer imitating a small protein & = 1.67¢,

F| vanishes, the potential is parabolic, and variationave can use the simulated autocorrelation function of
minimization of the rate yields = p as the progress @, c() (see Fig. 9 of [3]), to determing(w): {(w) =
coordinate an®)’ = ¢ as the ideal dividing surface. The F"(0%)/[1/¢(w) — w]. Hereé(w) = L,c(t). For the
transition state position is coupled strongly to the bati27-mer the potential obtained from simulations [3,11]
mode, but the correction giveB = 1, reproducing the is very anharmonic. A planar dividing surface is no
G-Hratel' = (A*/w*)T. For systems with large barriers longer optimal. For such low barriers, minimizing the
=10kgT, this parabolic approximation is highly accurate, flux through the TST surface can be carried out using
but we can find corrections to it by finding a more generathe calculus of variations [10,20], yielding a differential
planar dividing surfacef = ugpp + X ; ugju; — po =0  equation forg(a): g"/(1 + g'?) = Blg'aE(g)/ oo —
(wherep, is the distance of the dividing surface from the 9E(g)/dg]. Treatingg ando as parametrized variables
barrier peak) oriented such that the TST rate is minimizedin terms of an independent parametefsuch thatg’ =
Using the variational framework developed in [9] alongg/d, and setting the first integra(g> + &%) = Eq —
with the correlated landscape theoryf(w, T), we find V] recasts this variational equation into Hamilton’s equa-
corrections to the G-H rate at the folding temperatfige  tions of motion forg and o on an effective tempera-
where the unfolded and folded free energies are equalyre dependent potentidlz = —(1/28)exd —2BE(g)]
see Fig. 2. The optimal barrier locatign (see inset A) at total energy%(pg + p2) + Vg = 0. The optimal di-

is little different from the naive choice of the free energyviding surface is a classical periodic trajectory R
maximum, for the 64-mer. The rate enhancement ovewith infinite period that divides thép, o) space into
the Kramers result peaks at intermedidtg/T;, since reactants and products. The correctiBnis given in
here the friction felt on the barrier crossing time scale isterms of the action along this optimal trajector§: =
weakest compared to its (zero frequency) Kramers valugg?m*Q?/2m)'/? [ ds ./=2V 4 whereds is the arc length
(see Fig. 1). For systems this large, the planar dividingalong the trajectory. The optimal dividing surface for
surface assumption is accurate to within 5%. the 27-mer is plotted on the potenti&lp, o) in Fig. 3.

5017



VOLUME 80, NUMBER 22 PHYSICAL REVIEW LETTERS 1 UNE 1998

ing effects may arise in such scenarios due to anisotropic
friction [9], or heterogeneity and capillarity effects [22],
and are a topic of future work. The methods presented
here are general and also apply to other condensed matter
systems with rugged landscapes, e.g., glasses and clus-
ters. Nonlinear couplings between the system and bath
may also be treated; this may allow explicit treatments of
the deep traps in the glassy regime.
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