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Non-Markovian Configurational Diffusion and Reaction Coordinates for Protein Folding
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The non-Markovian nature of polymer motions is accounted for in folding kinetics, using frequency-
dependent friction. Folding, like many other problems in the physics of disordered systems, involves
barrier crossing on a correlated energy landscape. A variational transition state theory that reduces
to the usual Bryngelson-Wolynes Kramers approach when the non-Markovian aspects are neglected is
used to obtain the rate, without making any assumptions regarding the size of the barrier, or the memory
time of the friction. The transformation to collective variables dependent on the dynamics of the system
allows the theory to address the controversial issue of what are “good” reaction coordinates for folding.
[S0031-9007(98)06219-X]
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According to the energy landscape theory [1], prote
folding can be seen as a stochastic motion of a fe
collective coordinates describing protein conformatio
on an average thermodynamic potential [2]. To fir
approximation this motion is Brownian, and the foldin
time can be computed from diffusive rate theory [3,4
A good quantitative comparison between the analytic
energy landscape theory and lattice simulations of sma
proteins has been made [3]. The diffusive behavi
of the reaction coordinate’s motion is approximate;
lattice simulations a fraction of the trajectories hav
ballistic crossings over the barrier, while others are qui
diffusive [5], suggesting a wide range of time scale
for the collective reaction coordinate. Non-Markovia
dynamics, expected on a rugged energy landscape,
affect reaction rates when the time to cross the top
the barrier is comparable to the memory time of th
fluctuating forces acting on the collective coordinat
Analysis of such situations for reactions in condens
phases has led to a number of good approximatio
for rates [6–9]. In our treatment we use variation
transition state theory (VTST) [8–10] to discuss ho
non-Markovian dynamics of the chain affects folding
and to address the question of what is the best react
coordinate for folding. We apply our results to the motio
of a heteropolymeric protein chain, but many of the sam
issues occur for kinetics in other disordered systems,
example, the nucleation of a crystal from a glassy liqui
We first discuss the form of the effective frequency
dependent friction̂z svd for motion on a correlated energy
landscape, specifically for a heteropolymer. Then w
apply VTST to find corrections to the Kramers folding
rate due to memory effects in̂z svd and anharmonicities
in the potential.

Protein conformational motion can be mapped onto
generalized master equation, with escape rates from
statistical ensemble of configurations given in terms
a waiting time distributionPQst, T̃ d [1]. The configu-
rational states may be grouped together in strata w
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a common value of their similarity to the native con-
formation, which is an approximate reaction coordinat
for folding. This is often taken to beQ [5,11], the
fraction of native contacts, but other choices are po
sible. Finding a “best” reaction coordinate is currently
of great interest [5,12–14]. By projecting onto this co
ordinate, a diffusion equation for its probability distri-
bution is obtained with a frequency-dependent diffusio
coefficient [1]. Correspondingly, the coordinate’s mo
tion can be characterized by an overdamped generaliz
Langevin equation (GLE):2dFsQdydQ 2

Rt
0 dt zQst 2

t, T d ÙQstd 1 jstd ­ 0, with a frequency-dependent fric-
tion satisfyingkjstdjst 0dl ­ TzQst 2 t0, Td and related to
the diffusion coefficient byẑQsv, T d ­ kBTyD̂Qsv, T d
in the overdamped regime.

The GLE implies thatQ responds linearly to fluctuations
in the other coordinates of the polymer chain apart from th
nonlinearity inherent in the thermodynamic potential fo
Q. This should be a good approximation if many individ-
ual configurational states of the polymer chain are sampl
for each value ofQ, as expected above the glass transitio
temperature of the stratum atQ. ẑQsv, T d is given by av-
eraging overPQst, Td as ẑQsv, T d ­ lQktys1 1 vtdly
k1ys1 1 vtdl or lQLtke2tytlyLt

2d
dt ke2tytl, where Lt

is the Laplace transform. The conformational motion
distance scale is set bylQ ; 2kBTysDQ2gQd, whereDQ
is the step size andgQ is the probability a jump changes
Q. PQst, T d on acorrelatedenergy landscape is obtained
by first defining a local progress coordinateq among the
stratum of states a distanceQ to the native, as similarity
to the given trap state, so the typical rate of escap
[15] involves the calculation of the free energy barrie
fFQsqzd 2 FQs1dg for jumps among different states all
having native similarityøQ, assuming the elementary
moves are sufficiently local. A bilinear approximation to
the entropic part ofFQsqd can be used [15], since contacts
formed at smallq, i.e., for a more weakly constrained
polymer, cost more entropy than for a strongly constraine
one at highq. The escape time~expsDFzyT d depends on
© 1998 The American Physical Society 5015
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two parameters: (1) The reduced temperatureT̃ ­ TyTG ,
where TG ­ sDE2

Qy2SQd1y2 is the glass temperature
for the Q stratum. SQ is the configurational entropy
at Q while DE2

Q ­ s1 2 Qd sDE2
M 1 QDE2

N d is the
energetic variance of the states in terms of the varian
of native sNd and non-nativesMd contacts, and (2) the
reduced energy of the trapped stateẼ ­ EyEg.s., where
Eg.s. ­ 2s2SQDE2

Qd1y2 is the ground state energy of the
ensemble of states atQ. The escape time from a trap with
energy Ẽ, tQsẼ, T̃ d, is given by t0 expfSQs1 2 qyd 3

s2ẼyT̃ 2 1yay 2 1yT̃2dur g. Hereqy is the location of
the barrier peak, anday ­ s1 2 qydSQySy, where Sy

is the fraction ofSQ at the barrier peak (for the 64-mer
qy > 0.3 and ay > 1.6, see Fig. 4(9) of [15]). For
states withẼ , ẼAsT̃ d or when T̃ . T̃AsẼd (determined
by setting the barrier to zero), escape becomes dow
hill with short lifetimes of roughly the Rouse-Zimm
timessd . t0, hence ur ­ usssẼ 2 ẼAsT̃ ddddusssT̃AsẼd 2 T̃ddd
in the exponent. At̃T ­ 1 the system is frozen into one
of a few ground statessẼ ­ 1d, and the typical escape
time is tQs1, 1d ­ t0 expfSQs1 2 qyd s1 2 1yaydg, or
t0 exps0.27S

s64d
Q d for the 64-mer. Correlations lower the

barrier to roughly1y4 the total configurational entropy
[15], as opposed to the full entropy as in uncorrelated lan
scapes. At temperatures below̃TA, the deeper the trap,
the longer the escape time, up until a maximum given b
escape from a ground state. The distribution of occupi
state energies̃E at temperaturẽT is a Boltzmann weighted
Gaussian:PQsẼ, T̃d , expf2SQsẼ 2 1yT̃d2g. Reflecting
this, the distribution of escape times is easily calculated
PQst, T̃d ­

R1
21 dẼ PQsẼ, T̃ddft 2 tQsẼ, T̃dg ­ PB-L

Q 1

PB
Q. Apart from barrierless escapes at a single fa

time scale: PB-L
Q st, T̃ d ­ DsT̃ddst 2 t0d with weight

DsT̃ d, this yields essentially a log-normal distribution
PB

Qst, T̃d ­ uBsAytd expf2a0 ln2styt0dg where a0 ­
T̃ 2y4SQs1 2 qyd2, t0 ­ t0 expfSQs1 2 qyd s1yT̃2 2

1yaydg, uB ­ usssT̃As1d 2 T̃ dddust 2 t0dussstQs1, T̃d 2 tddd,
andA ­ AQsT̃ d is a normalization constant.

The above analysis applies at temperature higher th
the thermodynamic glass transition temperatureTG . At
or below TG the temperature independent distribution o
state energies becomesPsEd , expsEyTGd. Arrhenius-
like escape from states yields the distribution of esca
timesPsssEstddddyj

dt

dE j , t2s11TyTG d, giving stretched expo-
nential relaxations [16,17]. In this regime the assume
linearity of Q dynamics is questionable however.

EvaluatingD̂Qsv, T̃ d or ẑQsv, T̃ d aboveTG, note that
ke2tytl ,

RzU

zL
dz e2Sz2

expf2b
t

t0
e2c2Szg (where c2 ­

2s1 2 qydyT̃ , b ­ expfSs1 2 qyd s1yay 2 1yT̃ 2dg, and
zU andzL are proportional to the upper and lower bound
of the log escape time) is reminiscent of the after-effe
function fsbtyt0, csy

p
S d used for nonexponential decay

in glasses [18]. But for the mesoscopic systems releva
to folding sN & 100d, a better approximation is to lin-
earize the Gaussian term on the rangeszL, zUd, yielding a
5016
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closed form for the friction expressible through hypergeo
metric functions. The corresponding diffusion coefficien
D̂Qsv, T̃d ­ kBTyẑQsv, T̃ d is plotted in Fig. 1.

Non-Markovian rate theory [8] proceeds by recognizing
that the GLE is equivalent to a particle bilinearly coupled
to a bath of oscillators [19] with an effective Hamiltonian
H ­ p2

Qy2m? 1 FsQd 1
1
2

P
jfp2

xj
ymj 1 mjv

2
j sxj 2

cjQymjv
2
j d2g with z std ­

P
jsc2

j ymjv
2
j d cossvjtd. Be-

cause of the overdamped dynamics ofQ, m? will be set to
zero at the end of the calculation, i.e., there are no inerti
terms. The observablesm?vz2 ­ F00sQzd and z std are
taken to remain finite in this limit. The additional collec-
tive modes describe the dynamics ofQ fluctuations within
linear response. Rather than dealing with non-Markovia
dynamics ofQ we can study the dynamics of this equiva-
lent many-dimensional system without memory. When
single barrier exists inFsQd it makes sense to use multi-
dimensional transition state theory. If the barrier is larg
and its parabolic part dominates,H is quadratic and may
be diagonalized by a normal mode transformation, whic
singles out as a reaction coordinate an unstable mo
r with imaginary frequencyilz given by the solution
of lzẑQzslz, T̃d ­ m?vz2 ­ j≠2FsQdy≠Q2jQz . This
frequency is identical to the (overdampedm? ! 0) Grote-
Hynes reactive frequency [6]. Friction leaves the barrie
height unchanged, but rotates the reaction coordinate
a different direction in configuration space. When theQ
motion is purely diffusive, the reactive frequency is that o
an overdamped inverted harmonic oscillator correspon
ing to the Kramers prefactor in the rate. For a genera
FsQd we can separate the quadratic part from the anha
monic part ofF. Then in the (mass weighted) normal

FIG. 1. t0D̂Qzsv, T̃ d for 64-mer near the transition state
Qz ø 0.3, as a function of frequency (in units oft0), at several
temperatures between the thermodynamic glass temperature
kinetic (activated) glass temperature. There is a rapid increa
from the zero frequency valuêDQs0, T̃ d dependent on the
typical escape time, to a higher asymptotic value dependin
on how many of the states are untrapped and have sho
lifetimes at that temperature. The dispersion in the value
of the diffusion is thus maximum at intermediate values o
temperature. The largest values of the diffusion constan
are set bysQ ; kBTylQ, and at T̃A, D̂Qz sv, T̃Ad ­ sQ ­
DQ2gQy2t0 ø 0.0015yt0 for the 64-mer.
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coordinates at the saddle pointH ­ 1
2 fp2

r 2 lz2r2 1P
jsp2

yj
1 l

2
jy2

j dg 1 F1fm?21y2su00r 1
P

j uj0yjdg. The
coefficients uj0 are elements of the orthogona
normal-mode transformation such thatm?1y2Q0 ;
m?1y2sQ 2 Qzd ­ u00r 1

P
j uj0yj (u00 ; m?1y2y00 is

given in terms of the friction kernel asy2
00 ­ u2

00ym? ­
2fẑQz slz, T̃ dylz 1 ≠ẑQzss, T̃dy≠sjs­lz g21). In ad-
dition to the Grote-Hynes coordinater one can de-
fine a residual collective bath coordinatem?1y2s ;
s1 2 u2

00d21y2
P

j uj0yj ; s1yu1d
P

j uj0yj, which ap-
pears in the anharmonic part of the potential. The effec
of dynamic friction, reflected by recrossings in theQ
coordinate, are accounted for by ballistic motion across
new thermodynamicallydetermined dividing surface in-
volving a 2D potential insr, sd [8]. The equilibrium flux
across any dividing surface is given as an average ov
the Hamiltonian H : G ­ kds fd s=f ? pdus=f ? pdl.
Heref ­ r 2 gssd serves as a new progress coordinat
f ­ 0 determines a dividing surface between reactan
and products, the factords fd localizes the integration
to that surface, while=f ? p ­ pr≠fy≠r 1 ps≠fy≠s

is the flux density across the surface. The average o
H depends only on two coordinatesr and s. Thus
the averages can be carried out yielding a correcti
to the Grote-Hynes (G-H) rate:G ­ PslzyvzdG0.
G0 ­ sv0y2pd exps2bFzd is the TST rate, while
lzyvz is the G-H transmission factor. The anharmon
correction to the G-H prefactor is given by a quadra
ture: P ­

R
`

2` ds sssd expf2bEs gdg, where sssd ­
sbm?V2y2pd1y2s1 1 fdgssdydsg2d1y2 and Es gd ­
1
2 fm?V2s2 2 lz2gssd2g 1 F1fy00gssd 1 u1sg. Here
m?V2 ­ sy2

00ylz2 2 1ym?vz2d21 is a collective bath
frequency andu1 ­ 1 in the overdamped limit. If
F1 vanishes, the potential is parabolic, and variation
minimization of the rate yieldsf ­ r as the progress
coordinate andQ0 ­ s as the ideal dividing surface. The
transition state position is coupled strongly to the ba
mode, but the correction givesP ­ 1, reproducing the
G-H rateG ­ slzyvzdG0. For systems with large barriers
*10kBT , this parabolic approximation is highly accurate
but we can find corrections to it by finding a more gener
planar dividing surfacef ­ u00r 1

P
j u0juj 2 r0 ­ 0

(wherer0 is the distance of the dividing surface from the
barrier peak) oriented such that the TST rate is minimize
Using the variational framework developed in [9] alon
with the correlated landscape theory ofẑQsv, T̃ d, we find
corrections to the G-H rate at the folding temperatureTF ,
where the unfolded and folded free energies are equ
see Fig. 2. The optimal barrier locationr0 (see inset A)
is little different from the naive choice of the free energ
maximum, for the 64-mer. The rate enhancement ov
the Kramers result peaks at intermediateTFyTG , since
here the friction felt on the barrier crossing time scale
weakest compared to its (zero frequency) Kramers val
(see Fig. 1). For systems this large, the planar dividin
surface assumption is accurate to within 5%.
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FIG. 2. Solid line: Ratio of the Grote-Hynes rate to th
Kramers rate, as a function ofTFyTG . Dashed line: VTST
rate enhancement including anharmonic effects of a finite s
barrier. The effect here is small; however, larger effects a
seen for shorter polymers (see text). The system is a 64-
at folding equilibrium. The variance of interaction energies
varied, so that the temperature ratioTFyTG varies (TFyTG ­
p

h 1
p

h 2 1, with h ­ E2
N y2S0DE2

M , where EN is the
native state energy, andS0 is total entropy). The rate closely
follows the G-H result kGHykKR ­ ẑQz s0, T̃ dyẑQz slGH, T̃ d.
Inset A: Thermodynamic potentials vsQ at TF . For more
rugged landscapes the barrier is flatter, and this reduces
prefactor to the rate since there are more recrossings.
TFyTG values are 2.45, 1.84, and 1.24 in order of decreas
barrier size. The small vertical bars near the barrier peak
where the VTST dividing surfaces cross the coordinateQ.
Inset B: Enhancement of the rate at the maximum value
3.8 at TFyTG ø 1.6 by allowing the prefactorlQ ; kBTysQ

in D̂slGH, T̃ d to vary (sQ ø 0.0015 is the original value).

For a 27-mer imitating a small protein atTF > 1.6TG ,
we can use the simulated autocorrelation function
Q, cstd (see Fig. 9 of [3]), to determinêz svd: ẑ svd ­
F00sQzdyf1yĉsvd 2 vg. Here ĉsvd ­ Ltcstd. For the
27-mer the potential obtained from simulations [3,1
is very anharmonic. A planar dividing surface is n
longer optimal. For such low barriers, minimizing th
flux through the TST surface can be carried out usi
the calculus of variations [10,20], yielding a differentia
equation for gssd: g00ys1 1 g0 2d ­ bf g0≠Es gdy≠s 2

≠Es gdy≠gg. Treatingg ands as parametrized variable
in terms of an independent parametert [such thatg0 ­
Ùgy Ùs, and setting the first integral12 s Ùg2 1 Ùs2d ; E0 2

Vb] recasts this variational equation into Hamilton’s equ
tions of motion for g and s on an effective tempera-
ture dependent potentialVb ­ 2s1y2bd expf22bEs gdg
at total energy1

2 s p2
g 1 p2

sd 1 Vb ­ 0. The optimal di-
viding surface is a classical periodic trajectory onVb

with infinite period that divides thesr, sd space into
reactants and products. The correctionP is given in
terms of the action along this optimal trajectory:P ­
sb2m?V2y2pd1y2

R
ds

p
22Vb whereds is the arc length

along the trajectory. The optimal dividing surface fo
the 27-mer is plotted on the potentialEsr, sd in Fig. 3.
5017
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FIG. 3(color). Potential surfaceEsQ 0, sd (solid red) and in
the normal coordinatessy00r, sd (inset), along with the
variational dividing surface which minimizes the TST flux
(heavy line), for a chain of lengthN ­ 27 at the folding
temperature. Contours are drawn at intervals of about2kBT .
The potential in the Markovian case (dashed green), with t
corresponding Kramers rate, is further skewed with respe
to the dividing surface, indicating paths in this case are ev
more diffusive. 3 marks the position of the molten globule
minimum, and s marks the native minimum. The short
vertical lines (and horizontal lines in inset) bound a regio
of ø70% of the total flux across the dividing surface. In
sQ0, sd space there is flux over a wide range ofQ0 values,
DQ0ysQnative 2 Qmgd ø 0.44, so that the transition state theory
that reproduces the multiple crossing physics in Kramers theo
does not have a well defined value ofQz. However, in
sy00r, sd space the TST surface tends towards orthogonal
to the reaction coordinatey00r: Drysrnative 2 rmgd ø 0.04,
indicating trajectories behave more ballistically alongr.

The correctionP > 0.85. The rate is moderately reduced
from the G-H value of1.57kKR, giving k ­ 1.33kKR for
the corrected rate, in closer agreement with the nai
Kramers value. While the Kramers approximation mad
in [3,4] is numerically quite accurate, the optimal divid
ing surface shows the transition region is quite spread o
in the coordinateQ. By finding the optimal dividing sur-
face, VTST seeks that coordinatef which behaves most
ballistically. Including theQ dependence of̂z at higher
nativeness likely explains the remaining discrepancy b
tween simulations and the Kramers result.

The present analysis can easily be generalized to
clude ordering along additional collective coordinates, a
for example, the total density of contacts, which is ofte
important if collapse is not fast [21]. Potentially interest
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ing effects may arise in such scenarios due to anisotrop
friction [9], or heterogeneity and capillarity effects [22],
and are a topic of future work. The methods presente
here are general and also apply to other condensed ma
systems with rugged landscapes, e.g., glasses and cl
ters. Nonlinear couplings between the system and ba
may also be treated; this may allow explicit treatments o
the deep traps in the glassy regime.
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