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In heteropolymers, energetic correlations exist due to polymeric constraints and the locality of
interactions. Pair correlations in conjunction with thea priori specification of the existence of a
particularly low energy state provide a method of introducing the aspect of minimal frustration to
the energy landscapes of random heteropolymers. The resulting funneled landscape exhibits both a
phase transition from a molten globule to a folded state, and the heteropolymeric glass transition in
the globular state. We model the folding transition in the self-averaging regime, which together with
a simple theory of collapse allows us to depict folding as a double-well free energy surface in terms
of suitable reaction coordinates. Observed trends in barrier positions and heights with protein
sequence length and thermodynamic conditions are discussed within the context of the model. We
also discuss the new physics which arises from the introduction of explicitly cooperative many-body
interactions, as might arise from sidechain packing and nonadditive hydrophobic forces. ©1997
American Institute of Physics.@S0021-9606~97!52406-8#
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I. INTRODUCTION

Molecular scientists view protein folding as a compl
chemical reaction. Another fruitful analogy from statistic
physics is that folding resembles a phase transition in a fi
system. A new view of the folding process combines th
two ideas along with the notion that a statistical charac
ization of the numerous possible protein configurations
sufficient for understanding folding kinetics in many r
gimes.

The resulting energy landscape theory of folding a
knowledges that the energy surface of a protein is rou
containing many local minima like the landscape of a s
glass. On the other hand, in order to fold rapidly to a sta
structure there must also be guiding forces that stabilize
native structure substantially more than other local mini
on the landscape. This is the principle of minimu
frustration.1 The energy landscape can be said then to
semble a ‘‘funnel.’’2 Folding rates then depend on the s
tistics of the energy states as they become more similar to
native state at the bottom of the funnel.

One powerful way of investigating protein energy lan
scapes has been the simulation of ‘‘minimalist’’ mode
These models are not fully atomistic, but caricature the p
tein as a series of beads on a chain either embedded
continuum3 or on a lattice.4 A correspondence, in the sens
of phase transition theory, between these models and
proteins has been set up using energy landscape id5

Many issues remain to be settled however in understan
how these model landscapes and folding mechanisms ch
as the system under study becomes larger and as one
duces greater complexity into the modeling of this cor
spondence, as for example, by explicitly incorporating ma
body forces and extra degrees of freedom. Simulati
become cumbersome for such surveys, and an analytica
derstanding is desirable.

Analytical approaches to the energy landscape of p
2932 J. Chem. Phys. 106 (7), 15 February 1997 0021-9606/9
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teins have used much of the mathematical techniques use
treat spin glasses6 and regular magnetic systems.7 The poly-
meric nature of the problem must also be taken into acco
Mean field theories based on replica techniques8 and varia-
tional methods9 have been very useful, but are more difficu
to make physically intuitive than the straightforward a
proach of the random energy model,10 which flexibly takes
into account many of the types of partial order expected
biopolymers.11 Recently we have generalized the latter a
proach to take into account correlations in the landscape
finite-sized random heteropolymers.12 This treatment used
the formalism of the generalized random energy mo
~GREM! analyzed by Derrida and Gardner.13 In this paper,
we extend that analysis to take into account the minim
frustration principle and thereby treat proteinlike, partia
nonrandom heteropolymers.

There are various ways of introducing the aspect
minimum frustration to analytical models with rugged lan
scapes. One way recognizes that many empirical poten
actually are obtained by a statistical analysis of a datab
and when the database is finite, there is automatically
aspect of minimal frustration for any member of that da
base. Thus the so-called ‘‘associative memory’’ Hamiltoni
models14 have coexisting funnel-like and rugged features
their landscape. Other methods of introducing minimal fru
tration model the process of evolution as giving a Boltzma
distribution over sequences for an energy gap betwee
fixed target structure and unrelated ones.15 All of the above
approaches can be straightforwardly handled with repli
based analyses. Here we show that the GREM analyses
be applied to minimally frustrated systems merely by requ
ing the energy of a given state to be specified as havin
particularly low value~i.e., less than the putative groun
state value!. Minimally frustrated, funneled landscapes a
just a special case of the general correlated landscape stu
earlier.
7/106(7)/2932/17/$10.00 © 1997 American Institute of Physics
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2933Plotkin, Wang, and Wolynes: Protein folding funnels
A convenient aspect of the correlated landscape mod
that it allows the treatment of the polymer physics in a ve
direct way, using simple statistical thermodynamics in
tradition of Flory.16 Here we will show how the interplay o
collapse and topological ordering can be studied. In orde
do this we introduce a simple ‘‘core-halo’’ model to tak
into account the spatially inhomogeneous density. We w
also discuss the role of many-body forces in folding. Expl
itly cooperative many-body forces have often been involv
in the thinking about protein structure formation. Hydroph
bic forces are often modeled as involving buried surfa
area. Such an energy term is not pairwise additive but
volves three or more interacting bodies. Sidechain pack
involves objects fitting into holes created by more than o
other part of the chain, thus the elimination of sidecha
from the model can yield an energy function for backbo
units with explicit nonadditivity. These many-body force
can be treated quite easily by the GREM, and we will s
that they can make qualitative changes in the funnel top
raphy.

To illustrate the methods here, we construct tw
dimensional free energy surfaces for the folding funnel
minimally frustrated polymers. These explicitly show th
coupling between density and topological similarity in fol
ing. We pay special attention to the location of the transit
state ensemble and discuss how this varies with system
cooperatively of interactions, and thermodynamic conditio
In the case of the 27-mer on a lattice, a detailed fit to
lattice simulation data4 is possible. Although delicate cance
lations of energetic and entropic terms are involved in
overall free energy, plausible parameters fit the data.

The trends we see in the present calculations are
rough agreement with experimental information on the
ture and location of the transition state ensemble,17,18 al-
though the theory suggests that fluctuation mechanisms
the form of independently folding units~foldons! @A. R.
Panchenkoet al., Proc. Natl. Acad. Sci. USA93, 2008
~1996!# become more important at largerN. We intend later
to return to the experimental comparison, especially tak
into account more structural details within the protein.

The organization of this paper is as follows: In Sec.
we introduce a theory of the free energy at constant den
and in this context investigate the effects of cooperative
teractions on the transition state ensemble and correspon
free energy barrier. In Sec. III we detail a simple theo
coupling collapse with topological similarity, and resultin
in the core-halo model described there. In Sec. IV we ap
this collapse theory to obtain the free energy in terms
density and topological order, now coupled via the core-h
model. In the same section we compare our model of
minimally frustrated heteropolymer with lattice simulatio
of the 27-mer. In terms of the categorization of Bryngels
et al.2 these free energy surfaces depict scenarios descr
as type I or type IIa folding. We then study the quantitati
aspects of the barrier as a function of the magnitude of th
body effects. The dependence of position and height of
barrier as a function of sequence length is studied, as we
the effects of increasing the stability gap. Finally, we stu
J. Chem. Phys., Vol. 106, N
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the denaturation curve as determined by the constant
variable density models. In Sec. VI we discuss the res
and conclude with some remarks.

II. A THEORY OF THE FREE ENERGY

In this section, we show how the existence of a partic
larly low energy configuration, together with energetic co
relations for similar states, leads to a model for the foldi
transition and corresponding free energy surface in prot
like heteropolymers. This ansatz for the correlated ene
landscape corresponds to the introduction of minimal frus
tion in a random energy landscape, where the order par
eter here~which will function as a reaction coordinate for th
folding transition! counts the number of native contacts
hydrogen bonds.

We start by assuming a simple ‘‘ball and chain’’ mod
for a protein which is readily comparable with simulation
e.g., of the 27-mer, which is widely believed to capture ma
of the quantitative aspects of folding~Sec. IV!. Proteins with
significant secondary structure have an effectively redu
number of interacting units as may be described by a ball
chain model. Properties of both, when appropriately sca
by critical state variables such as the folding temperatureTF ,
glass temperatureTG , and collapse temperatureTC , will
obey a law of corresponding states.5 Thus the behavior de
scribing a complicated real protein can be validly describ
by an order parameter applied to a minimal ball and ch
model in the same universality class.

For a 27-mer on a three-dimensional cubic lattice, th
are 28 contacts in the most collapsed~cubic! structure. For
concreteness we take such a maximally compact structur
be the configuration of our ground state, the generalizatio
a less compact ground state being straightforward in the c
text of the model to be described. For a collapsed polyme
sequence lengthN, the number of pair contacts per mon
mer,zN , is a combination of a bulk term, a surface term, a
a lattice correction19 @see Eq.~A4!#. The effect of the surface
on the number of contacts is quite important even for la
macromolecules, aszN approaches its bulk value of 2 con
tacts per monomer rather slowly, as;2–3N21/3.

To describe states that are not completely collapsed,
introduce the packing fractionh>Ns/Rg

3 as a measure of the
density of the polymer, wheres is the volume per monome
andRg is the radius of gyration of the whole protein. So f
less dense states the total number of contacts is reduced
its collapsed valueNzN , to NzNh.

In the spirit of the lattice model we have in mind fo
concreteness, we introduce a simple contact Hamiltonia
determine the energy of the system,

H5(
i, j

e i js i j , ~2.1!

wheresi j51 when there is a contact made between mo
mers $ i j % in the chain, andsi j50 otherwise. Here contac
means that two monomers$ i j %, nonconsecutive in sequenc
along the backbone chain, are adjacent in space at neigh
ing lattice sites.ei j is a random variable so that, at consta
o. 7, 15 February 1997
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2934 Plotkin, Wang, and Wolynes: Protein folding funnels
density, the total energies of the various configurations, e
the sum of manyei j , are approximately Gaussianly distrib
uted by the central limit theorem, with mean energy a
given densityh given by Ēh5NzNhē, where ē is simply
defined as the mean energy per contact andNzNh is again
the total number of contacts, and varianceDEh

25NzNhe2,
wheree2 is the effective width of the energy distribution p
contact.

Suppose there exists a configurational staten of energy
En ~which will later become the ‘‘native’’ state!. Then if the
Hamiltonian for our system is defined as in Eq.~2.1!, we can
find the probability that configurationa has energyEa , given
that a has an overlapQan with n,12 whereQan[Q is the
number of contacts that statea has in common withn, di-
vided by the total number of contactsNzNh,

Q5
1

NzNh ( s i j
as i j

n . ~2.2!

Since this analysis is at constant density botha andn have
NzNh contacts. This probability is obtained directly from th
Hamiltonian ~2.1! by averaging over Gaussian distributio
of contact energiesei j ,

Pan~Ea ,Q,En!

Pn~En!
5

^d@Ea2H~$s i j
a %!#d@En2H~$s i j

n %!#&

^d@En2H~$s i j
n %!#&

,

~2.3!

where $si j
a % is the set of contacts in configurationa. The

conditional probability distribution is simply a Gaussian wi
aQ dependent mean and variance,

Pan~Ea ,Q,En!

Pn~En!
;expS 2

@~Ea2Ē!2Q~En2Ē!#2

2NzNhe2~12Q2!
D .

~2.4!

WhenQ51, statesa andn are identical and must then hav
the same energy, which Eq.~2.4! imposes by becoming delt
function, and whenQ50 statesa andn are uncorrelated and
then Eq.~2.4! becomes the Gaussian distribution of the ra
dom energy model for the energy of statea. Expression~2.4!
holds for all states of the same density asn, e.g., all col-
lapsed states ifn is the native state~the degree of collapse
must be a somewhat coarse-grained description to a
fluctuations due to lattice effects coupled with finite size!.

Previously a theory was developed of the configuratio
entropy20 Sh(Q) as a function of similarityQ with a given
state, at constant densityh.12 The results of this theory ar
summarized in Appendix A. GivenSh(Q) and the condi-
tional probability distribution~2.4!, the average number o
states of energyE and overlapQ with staten, all at density
h, is
J. Chem. Phys., Vol. 106, N
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^nh~E,Q,En!&5eSh~Q!
P~E,Q,En!

P~En!

;expNH sh~Q!2
1

2~12Q2!

3S ~E2Ē!2Q~En2Ē!

NJh
D 2J , ~2.5!

whereJh
2[zNhe2 and sh(Q)[Sh(Q)/N. Equation~2.5! is

still Gaussian with a large number of states providedE2Ē is
within a band of energies havingEc 2 Ē 5 Q(En 2 Ē)
6 NJhA2(12Q2)sh(Q) as upper and lower bounds. The
is a negligibly small number of states with energies above
below this range@where the exponent changes sign in E
~2.5!#.

At temperature21 T, the Boltzmann factore2E/T/z
weighting each state shifts the number distribution of en
gies so that the maximum of the thermally weighted dis
bution can be interpreted as the most probable~thermody-
namic! energy at that temperature

Eh~T,Q,En!5Ē1Q~En2Ē!2
NzNhe2~12Q2!

T
. ~2.6!

The above expression for the most probable energy is us
provided the distribution~2.5! is a good measure of the ac
tual number of states atE andQ, the condition for which is
that the fluctuations in the number of states be much sma
than the number of states itself. To this end, we make h
the simplifying assumption that in each ‘‘stratum’’ define
by the set of states which have an overlapQ with the native
state, the states themselves are not further correlated
each other, i.e., P(Ea ,Q,Eb ,QuEn)5P(Ea ,Q,En)
3P(Eb ,Q,En), so that in each stratum of the reaction coo
dinateQ, the set of states is modeled by a random ene
model. Then since the number of statesnh(E,Q,En) counts
a collection of random uncorrelated variables—large wh
E.Ec—the relative fluctuationsA^(n2^n&)2&/^n& are
;^n&21/2 and are thus negligible. So
n(E,Q,En)'^n(E,Q,En)&, and we can evaluate the expo
nent in the number of states~2.5! at the the most probable
energy ~2.6! as an accurate measure of the~Q-dependent!
thermodynamic entropy at temperatureT,

Sh~T,Q,En!5Sh~Q!2
NzNhe2~12Q2!

2T2
. ~2.7!

The assumption of a REM at each stratum ofQ is clearly
a first approximation to a more accurate correlatio
scheme. The generalization to treat each stratum itself
GREM as in our earlier work is nevertheless straightforwa
since our earlier work suggested only quantitative chang
which we will not pursue here. If two configurationsa andb
have an overlapQ with staten and thus are correlated ton
energetically, they are certainly correlated to each other,
ticularly for large overlaps where the number of shared c
tacts is large. Using the REM scheme at each stratum is m
accurate for smallQ and breaks down to some extent f
largeQ. In the ultrametric scheme of the GREM, statesa
o. 7, 15 February 1997
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2935Plotkin, Wang, and Wolynes: Protein folding funnels
andb have an overlapqab>Q, which is more accurate fo
large overlap than at smallQ, since at smallQ statesa and
b need not shareanybonds and still can both have overlapQ
with n. One can also further correlate the energy landsc
of states by stratifying with respect toqab5q and so on,
resulting in a hierarchy of overlaps and correlations b
treated using renormalization group ideas.

All of the states in each stratum defined byQ are still
correlated to staten, and their statistics are corresponding
modified. For smaller values ofQ, most of the states hav
zero overlap with each other essentially because their c
figurational entropy is largest when their is no topologic
constraint between the states. Microscopic ultrametricity
broken in thatqab , the overlap between any two states (a,b)
in the stratum, is less thanQ. As Q increases, there is
crossover to a regime where microscopic ultrametricity
comes a more accurate description. We assume here tha
happens typically afterQ'0.5, where there must be som
overlap between statesa andb. In this regime the form of
the thermodynamic functions is modified by the replacem
of ~12Q2! in expressions~2.6!, ~2.7!, ~2.9!, etc., by~12Q!.
For a derivation of these formulas in the ultrametric regim
see Appendix B.

Just as the number of states~2.5! has a characteristic
energy for which it is exponentially small, the REM entrop
for a stratum atQ ~2.7! vanishes at a characteristic tempe
ture

Tg~Q!

e
5AzNh~12Q2!

2sh~Q!
, ~2.8!

which signals the trapping of the polymer into a low ener
conformational state within the stratum characterized byQ.

If Tg(Q) is a monotonically decreasing function ofQ, as
the temperature is lowered the polymer will gradually
thermodynamically confined in its conformational search
smaller and smaller basins of states. The basin around
native state is the largest basin with the lowest ground st
and hence is the first basin within which to be confined.
characteristic size at temperatureT is just the number of
states within overlapQ0(T), whereQ0(T) is the value of
overlapQ that givesTg(Q0)5T in Eq. ~2.8!. Thus there is
now no longer a single glass temperature at which ergo
confinement suddenly occurs, as in the REM, but there
continuum of basin sizes to be localized within at cor
sponding glass temperatures for those basins.

If Tg(Q) has a single maximum at sayQ* , the glass
transition is characterized by a sudden REM-like freezing
a basin of configurations whose size is determined byQ* .
The range of glass temperatures will turn out to be low
than the temperature at which a folding transition occurs~see
Fig. 3!, so that this model predicts a proteinlike heteropo
mer whose folded state is stable by severalkBT at tempera-
tures where freezing becomes important. A replic
symmetric analysis of the free energy is therefore suffici
to describe the folding transition to such deep native sta
that are minimally frustrated.
J. Chem. Phys., Vol. 106, N
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From the thermodynamic expressions for the ene
~2.6! and entropy~2.7! with the mean energy at densityh,
we can write down the free energy per monomer above
glass temperature as the sum of four terms,

Fh

N
~T,Q,En!5zNhē1QzNden2Tsh~Q!2

zNhe2

2T
~12Q2!,

~2.9!

where zNden5zN(en2 ē)5(En2Ē)/N is the extra energy
for each bond beyond the mean homopolymeric attrac
energy~the energy ‘‘gap’’ between an average molten glo
ule structure and the minimally frustrated one!, times the
number of bonds per monomer, andsh(Q)5Sh(Q)/N is the
entropy per monomer described in Appendix A.

The first term in Eq.~2.9! multiplied by N is just the
homopolymeric attraction energy between all the monom
for a polymer of densityh. It depends only on the degree o
collapse, and not on how many contacts are native conta
The second term is the average extra bias energy if a con
is native, times the average number of native contacts
monomer. The third term measures the equilibrium bias
ward larger configurational entropy at smaller values of
reaction coordinateQ. The last term accounts for the dive
sity of energy states that exist on a rough energy landsc
the variance of which lowers thermodynamically the ene
more than the entropy, and so lowers the equilibrium f
energy.

For a special surface in (den ,e,T) space, expression
~2.9! has a double minimum structure in the reaction coor
nateQ, with one entropic minimum at lowQ corresponding
to the ‘‘molten globule’’ state, separated by a barrier from
energetic minimum at highQ corresponding to a ‘‘folded’’
state. For a given temperature, values ofden and e2 can be
obtained which are reasonably close to the values obta
by a more accurate analysis which includes the coupling
density with topology, but we will not examine the consta
density case in much detail for reasons discussed below
cept to make the following remarks:~1! The true coupling
between density andQ constraints need not be strong
obtain a double-well free energy structure.~2! For mono-
meric units with pair interactions, at constant density,
molten globule and folded minima are not atQ50 and 1,
respectively. The position of the molten globule state is n
the maximum of the entropy of the system, which is
Q>0.1 for the 27-mer due to the interplay of confineme
effects and the combinatorial mixing entropy inherent in t
‘‘coarse-grained’’ descriptionQ.12 The native minimum
shifts toQ51 when many-body interactions are introduc
~see the next section!. ~3! The barrier height, at position
Q0>0.25 for the 27-mer with proteinlike paramete
~TF/TG>2!, is small (DF0'kBTF), due to the effective can
cellation of entropy loss by negative energy gain, as the s
tem moves toward the native state~This cancellation is re-
duced when many-body forces are taken into account!. ~4!
When a linear form for the entropy is used in Eq.~2.9!, e.g.,
s(Q)5s0(12Q) instead of the more accurates(Q) obtained
in Ref. 12 the double minimum structure disappears and
replaced by a single minimum nearTF at Q'1/2, with the
o. 7, 15 February 1997
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2936 Plotkin, Wang, and Wolynes: Protein folding funnels
Q50 andQ51 states becoming free energy maxima.
folding is downhill or spinodal-like in this approximation.

A. Effects of cooperative interactions

As the interactions between monomeric segments
come more explicitly cooperative, the energetic correlatio
between states become significant only at greater simila
with the system approaching the REM limit for̀-body in-
teractions, where the statistical energy landscape assum
rough ‘‘golf-course’’ topography with a steep funnel close
the native state.

In the presence ofm-body interactions, the homopoly
mer collapse energy scales as a higher power of den
~;ē z̄m21!. For even moderatem;O ~1! a first-order phase
transition to collapsed states results, which effectively c
fines all reaction paths in the coordinateQ between molten
globule and folded states to those where the density is c
stant and'1. So within this constant density approximatio
we can investigate the nature of the folding transition a
function of the cooperativity of the interactions, and see h
the correlated landscape simplifies to the REM in the limit
m-body interactions with largem.

In the presence ofm-body interactions, theQ depen-
dence in the pair energy distribution~2.4! scales withQ as
Qm21, whenQ is defined as in Eq.~2.2!, and the terms
si jk •••m in the modified Hamiltonian factorize into pair inte
action termss i js jk••• through a suitable decomposition la
such as in the superposition approximation in the theory
fluids.22 Using this modified pair distribution along with th
collapsed homopolymeric state as our zero point energy,
free energy~2.9! becomes

F

N
~T,Q,En!52Ts1~Q!2Qm21zNudenu

2
zNe2

2T
~12Q2~m21!!, ~2.10!

wheres1(Q) is the entropy as a function of constraintQ for
a fully collapsed polymer. For pure three-body interactio
and higher, the globule and folded states are very nearl
Q>0 andQ>1, respectively@see Fig. 1~a!#. To the extent
that this approximation is good, we can equate the free
ergies of the molten globule~atQ5QMG>0! and folded~Q
51! structures and obtain anm-independent folding tem
perature~note again that this is not a good approximation
pair interactions!,

TF5
zNudenu
2s0

S 11A12
2s0e

2

zNden
2D , ~2.11!

where s0 is the maximum of the entropy as a function
constraintQ ~essentially the log of the total number of co
figurations!.

From expression~2.11! we can obtain a first approxima
tion to the constraint on the magnitude of the gap energyden
in order to have a global folding transition~rather than
merely a local glass transition! to the low energy state in
J. Chem. Phys., Vol. 106, N
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question. The condition that the square root term in E
~2.11! be real gives the minimum gap for global foldabilit
in terms of the roughnesse,

den
~c!

e
5A2s0

zN
'&, ~2.12!

where the minimum folding temperature is the
kBTF

(c)'den
(c)/2 ~or equivalently, one can obtain the max

mum roughness for foldability as'1/& of a given gap en-
ergy!. For typical proteins~with folding temperatures a
'330 K! gap energies are~at least! '1 kcal/mol ~lattice
unit!. Note that Eq.~2.12! is precisely the same result, as
should be, to that obtained previously23 in the context of
finding optimal folding energy functions, by requiring th
quantity TF/TG.1, where the glass temperatureTG
5 AzNe2/(2s0) is evaluated at the molten globule overla
Q5Qg .

EvaluatingF(T,Q,En)/N @Eq. ~2.10!# with proteinlike
energetic parameters at the folding temperatureTF , we ob-
tain free energy curves as in Fig. 1~a!, plotted for illustrative
examples withm53 andm512, for a 27-mer lattice protein

Note that the transition state ensemble~the collection of
states atQ5Q* where the free energy is a maximum! be-
comes more and more native like~and thus the ensembl
becomes smaller and smaller, eventually going to 1 stat
the REM! as the energy correlations become more sh
ranged inQ ~i.e., asm increases!—see Fig. 1~b!. The corre-
sponding free energy barrier then grows withm as the ener-
getic bias ~;Qm21! overcomes the entropic barrier on
much closer to the native state, and the barrier becomes m
and more entropic and less energetic@see Fig. 1~c!#. There
are less kinetic paths to the native state through the trans
state ensemble.

As was already mentioned, the above analysis was f
polymer of constant collapse density. However, experime
evidence of folding, as well as numerical evidence for latt
models, suggest a coupling of density with nativeness, w
energetically favorable nativelike states typically bei
denser. So to this end we now investigate in detail a sim
theory coupling collapse densityh with nativenessQ, as-
suming a native~Q51! state which is completely collapse
~h51!. Including this effect in Eq.~2.9! will complete our
simple model of the folding funnel topography in tw
reaction-coordinate dimensions.

III. A SIMPLE THEORY OF COLLAPSE

The GREM theory for random heteropolymers dev
oped by us earlier investigates the interplay between entr
loss and energetic roughness as a function of similarity
any given reference state, all at fixed density. However
exceptional reference states such as the ground state
well-packed protein, the density is not independent of c
figurational similarity, so a theory of the coupling of densi
h with topological similarityQ must also be developed.

We wish to obtain the polymer densityh as a function of
both the fraction of total contactsz̄/zN and fraction of native
contactsQ. At low degrees of nativeness, a good approxim
o. 7, 15 February 1997
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2937Plotkin, Wang, and Wolynes: Protein folding funnels
FIG. 1. ~a! Free energy per monomerF/N for a 27-mer, in units ofkBTF as
a function ofQ, at constant densityh51, with s050.8, for proteinlike en-
ergetic parameters~den ,e!5~22.28, 1.55!. For these parametersTF'udenu.
For illustrative purposes, two values ofm-body interactions are chosen
~solid line! pure three-body interactions;~dashed line! pure twelve-body
interactions. Note the trends in height and position of the barrier, and
how in them512 case the free energy curve is essentially2T times the
entropy curves(Q) of Fig. 10 withh51, untilQ is very large.~b! Position
of the transition state ensembleQ* along the reaction coordinateQ as a
function of the explicit cooperativity in purem-body forces,m. The fact that
the asymptotic limitQmax is less than one is due to the finite size of th
system, so thatQ, the fraction of native contacts, is not a continuous p
rameter.~c! The free energy barrier heightDF in units ofkBTF as a function
of the explicit cooperativity of them-body force,m. The barrier height rises
to the limit of S(Q50! asm→`, when it becomes completely entropi
Also shown are the energetic~dashed! and entropic~solid! contributions to
the barrier.
J. Chem. Phys., Vol. 106, N

Downloaded¬31¬Jul¬2003¬to¬142.103.236.75.¬Redistribution¬subject
tion to the density can be obtained by assuming homo
neous collapse, orh5z̄/zN . In this approximation the density
is a function of total contacts only, irrespective of nativene

At higher degrees of nativeness, we adopt a sim
model consisting of a native ‘‘core’’ region of densityh>1
surrounded by a typically less dense ‘‘halo’’ region~hH<1!
consisting of dangling loops and ends@see Fig. 2~a!#. We
then seek the functional form of the halo densityhH(Q,z̄).

We make the approximation that at constantz̄, the halo
density is approximately constant. i.e., contacts will incre
the halo density by reducing the effective loop size in t
halo, which is determined by total contacts only, irrespect
of nativeness. Note that thetotal density includes both core
and halo density, and is of courseQ dependent.

We determine the functionhH( z̄/zN) by first construct-
ing a theory of loop density for a given length. Then w
obtain the loop length as a function of total contacts by c
culating it along the linez̄5zNQ, and using theQ depen-
dence of free loop length from the highQ entropy theory of

te

-

FIG. 2. ~a! A model of the partially native protein can be pictured as
frozen native core surrounded by a halo of non-native polymer of varia
density.~b! The halo densityhH as a function of the fraction of the tota
contactsz̄/zN .
o. 7, 15 February 1997
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2938 Plotkin, Wang, and Wolynes: Protein folding funnels
Appendix A. The highQ theory givesl E(Q) and^lmelted(Q)&
along the lineQ5 z̄/zN . Using the fact thathH should be a
function of total contacts only gives the density for allQ and
z̄. The highQ expressions for loop sizes will be a goo
approximation since the molten globule and folded states
largely collapsed, so thatQ5 z̄/zN is in the strongly con-
strained regime.

To estimate the packing fraction of a polymer e
hH
E( l E), consider a chain of sequence lengthl E with intrinsic

volumel Eb
3, confined to a half-plane making a self-avoidin

walk. The characteristic volume of space it occupies is giv
by 1

2Rrms
3 51

2l E
9/5b3, so its packing fraction ishH

E>2l E
24/5. For

a loop of lengthl its characteristic volume is approximate
1
2( l /2)

9/5b3, giving a denser packing fractio
hH
L ( l )>2329/5l24/5. Next, we average the density over th

total number of loops and ends,

^hH&5
(nih i

(ni
52

Nf29/5l24/512l E
24/5

Nf12
. ~3.1!

Equation~3.1! is the halo density when the loops an
ends have no cross-links or bonds, i.e., along the
z̄5zNQ. The quantities l (Q)5^lmelted(Q)&, l E(Q), and
Nf(Q) are taken from the highQ entropy analysis~see Ref.
12 and Appendix A!. Putting these values into Eq.~3.1!
gives the halo densityhH(Q) along the lineQ5 z̄/zN . Then
we use the independence of loop density on the nativene
contacts made so thathH(Q,z̄/zN)5hH( z̄/zN).

Figure 2~b! gives a plot ofhH( z̄/zN). The value atz̄50
is the density of an end of lengthN/2 ~'0.24 for a 27-mer!.
The true packing fraction should be roughly 1/2 of this, ho
ever this artifact of the theory has little effect on the foldi
transition, which involves states withz̄/zN typically larger
than>0.6.

We can now reinvestigate the glass transition tempe
ture as a function of bothQ and z̄ through the insertion of
the halo densityhH( z̄/zN) into Eq. ~2.8!. This gives the re-
gions in the space of these reaction coordinates where
dynamics tends to become glassy ifTg(Q,z̄) is comparable
to TF ~see Fig. 3!. We can see from Fig. 3 thatTF/TG grows
during the folding process, with a corresponding slowi
down of the dynamics.TF>TG whenQ>0.85. At these high
values ofQ the dynamics is glassy. At the transition sta
(Q* ,z̄* )'~0.50, 0.92!, TF/TG>1.5 @these coordinates ar
determined in Sec. IV, see Fig. 4~b!#. TF/TG'2.3 in the
molten-globule phase at~QMG , z̄MG!5~0.14, 0.67!. This
value is larger than that obtained from simulation
TF/TG~QMG ,z̄MG!>1.6. Values closer to 1.6 are easy to o
tain by adjusting the energetic parameters, however th
new parameters move the transition state to lowerQ values.
In any event, both theory and simulations justify a replic
symmetric treatment of the folding transition for minimal
frustrated polymers, particularly regarding the character
tion of the barrier. Thermodynamic quantities are se
averaging atTF , with the exception of very nativelike state
where the free energy becomes strongly sequence depe
for a finite size polymer.
J. Chem. Phys., Vol. 106, N
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The scalarTF/TG(Q,z̄) is a rather simple indication o
self-averaging, and a more rigorous method to determine
degree of self-averaging would be to follow the calculatio
by Derrida and Toulouse24 of the moments of the probability
distribution of Y5S jWj

2, measuring the sample to samp
fluctuations of the sum of weights of the free energy valle
and generalize them to finding the probability distribution
Y(Q,z̄).

IV. THE DENSITY-COUPLED FREE ENERGY

In this section we obtain the free energy in terms of t
reaction coordinatesQ and z̄ through the introduction of the
halo density~3.1!.

The halo densityhH( z̄/zN) from Eq.~3.1! will appear in
the roughness term of Eq.~2.9! since this term arises as
result of non-native interactions which contribute to the to
variance of state energies. The entropic term in Eq.~2.9!
contains the configurational entropysh(Q) atQ and density
h. The most accurate values of barrier position and hei
are obtained by inserting insh(Q) an interpolated form of
density, between homogeneous collapse valid at lowQ, and
the highQ core-halo formula~3.1!,

hH
full~Q,z̄!5~12Q!

z̄

zN
1QhHS z̄zND .

FIG. 3. The folding temperatureTF and glass transition temperatureTG as a
function of the fraction of native contactsQ and the total contacts pe
monomerz̄. The folding temperature is above the glass temperature~2.8! for
most values ofQ and z̄, for proteinlike energetic parameters used in fittin
the theory to simulations~e>1.1 andden>22.1!.
o. 7, 15 February 1997
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2939Plotkin, Wang, and Wolynes: Protein folding funnels
This gives more weight to the two behaviors in their resp
tive regimes: mean-field uniform density at weak constra
or low Q, and core-halo behavior at strong constraint.

The total densityhtot5z̄/zN appears in the homopoly
meric energy since this term is a function only of the num
of contacts, irrespective of whether they were native or n
The extra gap energy defined with respect to fully collap
states in Eq.~2.9! is an energetic contribution added to ea
native bond formed, independent ofz̄, up to the limit
QzN5 z̄, where the gap term in Eq.~2.9! becomes simply
z̄den .

These substitutions in Eq.~2.9! describe a free energ

FIG. 4. ~a! The free energy vsQ andz̄, at the folding temperatureTF , from
simulations~Ref. 5!. The native minimum is in the upmost right-hand co
ner. ~b! Free energy surface atTF for the 27-mer, obtained from Eq.~4.1!
with the parameters (e,ē,den ,TF)5~1.1, 21.27,22.1, 1.51!. The surface
has a double well structure~darker is deeper! with a transition state en-
semble atQ*>0.50, and barrier height>3.0kBT.
J. Chem. Phys., Vol. 106, N
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surface as a function of the reaction coordinatesQ, the frac-
tion of native contacts, andz̄, the total contacts per mono
mer,

F

N
~T,Q,z̄uEn!52 z̄u ēu2QzNudenu2Ts~Q,z̄!

2
zNhHe2

2T
~12Q2!, ~4.1!

wheres(Q,z̄) 5 s(Q,hH
full(Q,z̄)). The first term is an equilib-

rium bias toward states that simply have more contacts
depends only onz̄, whereas the second term is a bias towa
states with greater nativeness and depends only onQ, al-
though the maximum value of this biasz̄den does depend on
z̄. The entropic term biases the free energy minimum tow
both small values ofQ and z̄ where the entropy is larges
The free energy bias due to landscape roughness is la
when there are many non-native contacts~z̄ is large andQ is
small!, which means that the protein can find itself in no
native low energy states due to the randomness of those
native interactions.

To model the protein behavior at the folding tempe
ture, the temperatureT is held fixed at a valueTF described
below, and the other energetic parameters~ē, den , ande! are
adjusted so as to give the free energy a double well struc
with folded and unfolded minima of equal depth.

A. Comparison with a simulation

The 27-mer lattice model protein has been simulated
polymer sequences designed to show minim
frustration.4,25,26The system we are interested in is model
by a contact Hamiltonian as in Eq.~2.1!, but now the beads
representing the monomers are of three different kinds w
respect to their energies of interaction. If like monomers
in contact, they have an energyei j523, otherwiseei j521,
where the interaction energy is in arbitrary units of ord
kBT. Specific sequences are modeled to have a fully c
lapsed native state with a specific set of 28 contacts an
ground state energy of23328.

In the thermodynamic limit, the discrete interaction e
ergies used in the simulation give a Gaussian distribution
the total energy of the system by the central limit theore
whose mean and width naturally depends on the fraction
native contacts.

If we call Z̄ the total number of contacts of any kind, th
energy atQ and Z̄ is determined simply by the energies
these native and non-native contacts above, while the
tropy at high temperatures is the log of the number of sta
satisfying the constraints ofZ̄ total contacts andm native
contacts. However, the temperature range where folding
curs is well below the temperature of homopolymeric c
lapse, and so the polymer can be considered to be lar
collapsed. This can be seen either by direct computation
by computing the entropy, defined through
o. 7, 15 February 1997
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2940 Plotkin, Wang, and Wolynes: Protein folding funnels
S~Q,z̄,T!52(
i
pi log pi

52(
i

S e2Ei /T

Zp
D logS e2Ei /T

Zp
D , ~4.2!

whereZp is the ~partial! partition function, the sum being
over all of the states consistent with the constraints cha
terized bym and Z̄ above.

Onuchicet al.5 have obtained the free energy asF5E
2TS for the 27-mer, which mimics the landscape of a sm
helical protein, as a surface plot versus the total numbe
contacts per monomerz̄5Z̄/N, andQ5~total number of na-
tive bonds!/28, see Fig. 4~a!. The largest value ofQ for a
given Z̄ is Z̄/28, because there cannot be more native c
tacts than there are total contacts, hence the allowable re
is the upper left-hand side of the surface plot. The surf
plot in Fig. 4~a! has a double minimum structure at a spec
~folding! temperatureTF51.51 on the energy scale whe
ei j5$23,21% described above. The free energy barrier
'2kBTF is small compared with the entropic barrier of th
system~;14kBTF!. The transition ensemble at reaction c
ordinates (Q* ,z̄* )>~0.54, 0.88!, consists of about
expNs(Q* ,z̄* )>2000 thermally occupied states and;105

configurational states.
There are four energetic parameters in the free ene

theory ~e, ē, den , and kBTF!, and three parameters in th
simulation@e~like units!, e~unlike units!, andkBTF#, plus the
roughness parameter, which is implicitly evaluated throu
the diversity of energies consistent with overlapQ. Minimal
frustration in the lattice simulation is implicit in the sequen
design, in that the ground state is topologically consist
with all the pair interactions between like monomers. En
getic correlations are implicit from minimal frustration, sinc
states at similarityQ to the native state are also low in e
ergy.

We should note however that the gap energy in th
simulations is functionally somewhat different than our the
retical model in that contacts between like monomers
always favored whether native or not, and in the theory o
true native contacts have explicit contributions to the ene
gap.

We do not undertake here a comparison of simulation
all parameter values with theory. Rather, we compare si
lations and theory only for the 27-mer, with parameters c
sen to be proteinlike according to the corresponding st
principle analysis of Onuchicet al.5 The scheme for com
parison between the simulations and theory for the 27-me
to hold TF fixed at the simulational value of 1.5, and the
determine the remaining three energetic parame
(e,den ,ē) by the conditions of folding equilibrium@double-
well structure ofF(Q,z̄)#, and a barrier position and heigh
consistent with simulations and experiments.

The result of this is shown in Fig. 4~b!, which shows the
free energy surface atTF obtained from the parameter
(e,ē,den ,TF)5~1.1, 21.27, 22.1, 1.51!. These values are
very compatible with those of the simulations. The gap
roughness ratio for this minimal model isudenu/e>1.9, satis-
J. Chem. Phys., Vol. 106, N
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fying the conditions for global foldability. The system has
double-well structure with a weakly first-order transition b
tween a semicollapsed globule, at~QMG ,z̄MG!>~0.14, 0.67!,
and a fully collapsed, near-native folded state
(QF ,z̄F)>~0.98,zN>1.03!.

In what follows letNC5the number of native residues i
the core, and letNH5the number of non-native residues
the halo. The molten globule states have a halo density
hH>0.91, and there areNC>NzNQ* /zNQ;8 native residues
in the various;N!/NC!NH!'23106 cores consisting of
QMGNzN>4 native contacts. The total density is given b
h5NhH/(NChH1NH) which is>0.93 in the molten globule
state. The folded state has a core with>27 contacts, contain-
ing >26 monomers~almost all! and at densityhC51 and a
collapsed halo of about 1 monomer at densityhH51. The
folded state is fully collapsed. It is energetically favored ov
the molten globule by about akBT per monomer
~Ef2Emg>228.3kBT! and thus less entropic
@TF~Sf2Smg!>228.3kBT#.

The core residues in the transition state ensemble
(Q* ,z̄* )>~0.50, 0.92! contain approximately
NzNQ* /zNQ>16 monomers. The 11 remaining monomers
the dangling loops and ends are nearly collapsed, w
hH>0.99, so the total density is very nearly nearly one. T
transition state ensemble in the theory consists of'1600
thermally occupied states and'43105 configurational
states. Its thermal entropy is>7.4kB . The folding free en-
ergy barrier DF[F(Q* ,z̄* )2F~QMG ,z̄MG! is >3.0kBT.
The energetic gain from Eq.~2.6! is >217.7kBT, and the
entropic barrier from Eq.~2.7! is >20.7kBT. The full free
energy barrier~>3.0kBT! arises from the delicate incomplet
cancellation of entropic losses with energetic gains.

One aspect of lattice simulations also present in
theoretical model is an essentially native folded minimu
which persists up to high temperatures.26,27 In simulations
this is a lattice effect. The very few near native states av
able on a lattice create an entropic barrier to escape from
native state. This barrier has led to some confusion in id
tifying the position of the folding transition state.27 The na-
tive state has a glass temperatureTG(Q51), which in the
GREM formalism is determined by the ratio of energe
gains to entropic losses as the native state is approached
discrete nature of lattice models gives the native state
effective high glass temperature above any simulation te
perature. In our analytical model, the collective nature
melting ~i.e., l C and l EC are.0, see Appendix A! leads to a
similar gap in the density of states along theQ coordinate.
This also causes a weak barrier~>0.4kBT! between a near-
folded local minimum and the native folded minimum@see
Fig. ~4b!#. Again this weak barrier is a result of discre
quantities in the simulations and theoretical model.

More elaborate theories should incorporate a local
tiveness parameterQ~x! which varies in space, allowing fo
rigid as well as fluctuating regions of the protein.

B. Explicit three-body effects

It is interesting to investigate the effects of explic
many-body cooperativity on the folding funnel by introdu
o. 7, 15 February 1997
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2941Plotkin, Wang, and Wolynes: Protein folding funnels
ing a three-body interaction in addition to the pair intera
tions already present. Models with such partially explicit c
operativity mimic the idea that only formed seconda
structure units can couple, and have been introduced in
tice models by Kolinskiet al.4 Three-body interactions ente
into the energetic contributions of Eq.~4.1! as an additional
Q2 term in the bias and roughness, andz̄ 2 term in the ho-
mopolymer attraction, so that those terms in the free ene
become

2@~12a!z̄1a z̄ 2#u ēu2@~12a!Q1aQ2#zNudenu

2
zNhH~ z̄/zN!e2

2T
$12@~12a!Q1aQ2#2%, ~4.3!

where a is a measure of the amount of three-body for
present. In the model defined by Eqs.~4.1! and ~4.3!, pro-
teins with more three-body forces need not be as stron
optimized, and so the magnitude of the gap is a decrea
function ofa at fixedTF , ē, ande @see Fig. 5~a!#. With this
correction included, we find the barrier positionQ* ~a! to be

FIG. 5. ~a! ~Left axis! Positions of the barrierQ* and total bonds per
monomer in the molten globule~z̄MG!, as a function of the three-body co
efficient a. ~Right axis! Decrease witha in the necessary energy gap
maintain equilibrium atTF . Plots are for the 27-mer with fitted energ
parameters ~Sec. IV A!. ~b! Free energy barrier DF
5F(Q* ,z̄* )2F~QMG ,z̄MG! in units ofkBTF , and its energetic and entropi
contributions, for the 27-mer, as a function ofa. The barrier grows moder-
ately with a, i.e., the energetic drop decreases faster than entropic lo
due to the collective nature of the energetic interactions.
J. Chem. Phys., Vol. 106, N
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a weakly decreasing function ofa @Fig. 5~a!# ~although as
described above,Q* is not independent ofm, the order of
them-body interactions!. We eventually expect this trend t
reverse for largerm as in Fig. 1~b!. The position of the
folded stateQF remains near native andQMG is also roughly
constant. However as homopolymer attraction becomes m
collective~increasinga!, z̄MG increases and the molten glob
ule state becomes denser@Fig. 5~a!#. The transition becomes
more first-order-like with increasinga, as the trend in ener
getic loss is not as great as entropic loss, so that the
energy barrier increases witha @Fig. 5~b!#.

C. Dependence of the barrier on sequence length

It is simple in our theory to vary the polymer sequen
length. One recalculatess(Q) at constant density for a large
chain12 and inserts this, along with the densityhH @Eq. ~3.1!#
at the larger value ofN, into the free energy~4.1!. To model
the barrier atTF , one must scale the temperature withN
since in our model larger proteins fold at higher temperatu
@see Fig. 6~a!#, e.g., in Eq.~2.11! TF}zN . The barrier posi-
tion Q* mildly decreases withN @Fig. 6~b!#.28 Plotted along
with the theoretical curve are two experimental measu
ments of the barrier position. The square represents the m
surement for truncatedl repressor,17 a ;80 residue protein
fragment with largely helical structure. The correspondi
states analysis5 shows that the formation of helical seconda
structure within thel repressor makes it entropically simila
to the lattice 27-mer. Also plotted in Fig. 6~circle! is the
experimental barrier measurement for Cytochrome C,29 a
104 residue helical protein which is entropically similar
the 64-mer lattice model. The simple proposed model has
same decreasing trend in the position of the transition s
ensemble that is observed experimentally, but decrea
much slower. This suggests that a local nucleation desc
tion may become more appropriate asN increases, rathe
than the homogeneous mean field theory proposed h
However the question as to whether energetic heterogen
induces a specific nucleus30 rather than an ensemble of nu
clei with correspondingly many kinetic paths, is an open
sue. In Appendix C, we show for thoroughness that exp
mental plots of folding rate versus equilibrium constant us
in the experiments above are indeed a measure of the p
tion of the transition state ensemble.

Figure 6~c! shows the roughly linear trend of the barri
height withN. This mean-field result applies for smallN; as
N grows, fluctuation mechanisms begin to dominate the s
ing behavior, and may reproduce the sublinear scaling w
N seen in lattice studies31 and by scaling arguments.32

The overall folding time results from a combination
thermodynamic barrier crossing dealt with here, and kine
diffusion between locally stable basins.26,33 Experimental
measurements from the folding rate atTF can thus lead to an
estimate for the reconfiguration time atQ* . For example,
rearranging Eq.~C2!, the folding rate over the reconfigura
tion rate is given by

ln~kFt~Q* !!52
F~Q* !2Fu

kBT
. ~4.4!

es,
o. 7, 15 February 1997
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2942 Plotkin, Wang, and Wolynes: Protein folding funnels
For thel repressor17 at the folding midpoint, the folding rate
kF is about 400 s21. Using the barrier heigh
F(Q* )2Fu>3kBT for the corresponding 27-mer gives a r
configuration timet(Q* ) ' 1024 s. Since the Rouse–Zimm
time is typically in thems range, this suggests that config
rational diffusion in the transition region is typically act
vated. Of course there are many issues involved in the lo
dynamics and structure of folding proteins, which make p
cise comparisons with specific examples difficult. The nu

FIG. 6. ~a! The folding temperatureTF is an increasing function of polyme
sequence lengthN. ~b! Position of the barrierQ* as a function of sequence
lengthN. The solid line is the theory as determined by Eq.~4.1!, and the
points marked are experimental results~see the text!. ~c! Free energy barrier
heightDF in units of kBTF , as a function of sequence lengthN.
J. Chem. Phys., Vol. 106, N
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FIG. 7. ~a! Two plots of the free energy vsQ for the 27-mer with the fitted
parameters@Fig. 4~b!#. The upper curve is the free energy with the fitte
stability gap den522.1, andden522.5 in the lower curve. These one
dimensional plots are the most folding probable paths~minimum free energy
along coordinateQ determined bydF/dz̄50! on the 2D surface plot of Fig.
4. From the figure we can see that asudenu increases the folding become
downhill. Folding becomes purely downhill with no barrier atudenu>2.75.
Because of the stability of the molten globule position, the barrier sh
slightly to lowerQ* ~from 0.51 to 0.47!, and decreases in height~from
about 3kBT to 0.6kBT!. ~b! Position of the barrierQ* as a function of
magnitude of the energy gapudenu ~in units of kBT!, for the fitted 27-mer
described in~a!. Q* weakly decreases untiludenu/kBT>1.75, and then rap-
idly merges with the positionQMG of the molten globule atudenu/kBT>1.82
as the barrier vanishes.~c! Free energy barrier in units ofkBT vs magnitude
of stability gapudenu. The short dashed line is the entropic contribution to t
barrier, and the long dashed line is minus the energetic contribution. T
two terms merge and become zero atudenu/kBT>1.82 where the barrier
vanishes.
o. 7, 15 February 1997
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2943Plotkin, Wang, and Wolynes: Protein folding funnels
bers we quote should be interpreted as estimates showin
reasonableness of the current parametrizations.

D. Dependence of the barrier on the stability gap, at
fixed temperature and roughness

As the stability gap is increased at fixed temperatu
folding approaches a downhill process, with a folded glo
equilibrium state@see Fig. 7~a!#. We can see from Fig. 7~a!
that the barrier position and height are decreasing funct
of stability gap, with true downhill folding~zero barrier! oc-
curring whenudenu/e>2.5 or udenu/TFs0>1.4 for the 27-mer
@see Figs. 7~b! and 7~c!#. At folding equilibrium,
udenu/TFs0>1.1. Thus, achieving downhill folding requires
considerable change of stability—an estimate for a 60
protein ~27-mer lattice model! would be an excess stabilit
of '12kBTF .

We can apply the equations of Appendix C to changes
the transition state free energy by modifying stability. Figu
8 shows a plot of the log of a normalized folding ra
ln(kF/k0) vs the log of the unfolding equilibrium constan
ln Keq, whose slope is a measure of the barrier positionQ* .
The increasing magnitude of slope with increasing lnKeq
means that the barrier position is shifting toward the nat
state as the gap decreases. Also shown is a compariso
tween the position of the barrierQ* calculated directly from
the theory, andQ* as derived from the slope of ln(kF/k0)
using Eq.~C5!. The linear free energy relation works well fo
the range of parameters having a double-well free ene
surface.

E. Denaturation with increasing temperature

The probabilityPu for the protein to be in the unfolde
globule state at temperatureT is

FIG. 8. ~Right axis! Plot of the logarithm of the folding rate vs the logarithm
of the unfolding equilibrium constant.~Left axis! Reading the slope of the
folding rate gives a measure of the position of the barrierQ* . Also plotted
is the actual value ofQ* directly calculated from the free energy curve
The values compare well for most values of the gap where the free en
has a double-well structure.
J. Chem. Phys., Vol. 106, N
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Pu5F11expF2
1

T
~F f2Fu!G G21

,

whereFu andF f are the free energies at temperatureT of the
unfolded and folded minima~at TF , F f5Fu andPu51/2!.
This can be used to obtain denaturation curves as a func
of temperature. For illustration, we make the simplifying a
sumptions that both the folded and globule states are
lapsed, makingPu independent ofē, and that the folded and
globule states occur approximately atQF51 andQMG50.
As the temperature is lowered, the molten globu
freezes into a low energy configuration atTg
5 eAzN(12Qmg

2 )/(2s(Qmg)) > eAzN /(2s0) ~seeFig. 3!, and
the expression forPu becomes one of equilibrium betwee
two temperature independent states with the correspon
‘‘Shottky’’ form of the energy and specific heat:

Pu5F11exp~2Ns0!expNzNS udenu
T

2
e2

2T2D G
21

, Tg,T

5F11exp
NzN
T S udenu2eA2s0

zN
D G21

, T,Tg . ~4.5!

The condition thatTF/TG>1 gives Eq.~2.12!. Using the
glass temperature of the globule state, this is equivalent

Tg>
e2

den
,

which is the temperature where the highT expression forPu

in 4.5 has a minimum. Hence cold denaturation will not
seen in the constant density model~as it would if there were
no glass transition!, andPu will always decrease to zero a
low temperatures.

In the limit of large T, Eq. ~4.5! becomes
'1/~11exp2Ns0!'1, indicating denaturation. At smallT
Eq. ~4.5! tends to zero as exp2~const.3N/T!.

Allowing density to vary modifies the denaturation b
havior. In Fig. 9, denaturation curves are plotted for the va

gy

FIG. 9. ~Solid line! Probability to be in the unfolded state vs temperature~in
simulation units! for the two-order parameter model used in fitting the 2
mer simulations. With this modelTF51.51 andDT/TF>0.14.~Dashed line!
Same probability for the one-order parameter model using Eq.~4.5!. Here
TF52.14 andDT/TF>0.22.
o. 7, 15 February 1997
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2944 Plotkin, Wang, and Wolynes: Protein folding funnels
able density model with fitted parameters@(e,ē,den ,TF)
5~1.1, 21.27, 22.1, 1.51!#, and for the one-dimensiona
~1D! case for a completely collapsed~h51! protein. In the
1D case, the same energetic parameters@~den ,e!5~22.1,
1.1!# are used in Eq.~4.5! but the molten globule entropy i
the fully collapsed value~Smg>2730.88!. TF in the 1D case
increases to>2.14, in units whereTF51.51 as in the simu-
lation.

If we define the widthDT of the transition between 10%
and 90% denatured, the ratios of widths to folding tempe
turesDT/TF are about 0.22 and 0.14 for the 1D and 2
cases, respectively. Allowing density to vary sharpens
transition. The values lie between those obtained in lat
studies of the 27-mer,25,34 whereDT/TF'0.3 for foldable
sequences, and from measurements of the thermal den
ation of l repressor,35 whereDT/TF'0.05. This suggests
that many-body forces may play a role in the stabilization
the native state for laboratory proteins.

V. CONCLUSION

In this paper we have shown that if the energy of a giv
configuration of a random heteropolymer is known to
lower than expected for the ground state of a comple
random sequence~i.e., the protein is minimally frustrated!,
then correlations in the energies of similar configuratio
lead to a funneled landscape topography. The interplay
entropic loss and energetic loss as the system approache
native state results in a free energy surface with weakly t
state behavior between a dense globule of large entropy,
a rigid folded state with nearly all native contacts. The we
first-order transition is characterized by a free energy bar
which functions as a ‘‘bottleneck’’ in the folding process.

The barrier is small compared with the total thermal e
ergy of the system—on the order of a fewkBT for smaller
proteins of sequence length about 60 amino acids. For th
small proteins the model predicts a position of the barrierQ*
about halfway between the unfolded and native sta
~Q*>1/2!. For larger proteins, the barrier height rises li
early, and its positionQ* moves away from the native sta
toward the molten globule ensemble roughly as 1/zN , due
essentially to the fact that the entropy decrease per conta
independent ofN initially. Experimental measurements o
the barrier for fast folding proteins are consistent with t
predicted shift in position with increasing sequence leng
but with a shift somewhat greater in magnitude.

The unfolded and transition states are not single confi
rations but ensembles of many configurations. The transi
state ensemble according to the theory consists of about 1
thermally accessible states for a small protein such as thl
repressor. There are about'43105 configurational states in
the transition state ensemble, less than the;107 ways of
choosing 16 core residues in the 27-mer minimal model
that many but not all nuclei are sampled. The multitude
states atQ* seen in the theory is in harmony with a pictu
of a transition state ensemble of generally delocalized nuc
a subject investigated recently by various authors.36–38

A simple theory of collapse was introduced to coup
J. Chem. Phys., Vol. 106, N
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protein density with nativeness. This resulted in a dens
contraction in the process of folding. During folding, a den
inner native core forms, which grows while possibly inte
changing some native contacts with others upon comple
of folding. This core is surrounded by a halo of non-nati
polymer which shrinks and condenses in the folding proce
as topological constraints upon folding make dangling loo
shorter and denser. The folded free energy minimum is
sentially native in the model when parameters are chose
fit simulated free energy curves for the 27-mer.

Explicitly cooperative interactions were shown to e
hance the first-order nature of the transition through an
crease in the size of the barrier, and a shift toward m
nativelike transition state ensembles~i.e., at higherQ* !. For
the constant density scenario the barrier becomes almos
tirely entropic when the orderm of them-body interactions
becomes large, and the transition state ensemble beco
correspondingly more nativelike. In the energy landsca
picture, as explicit cooperativity increases, the protein fo
ing funnel disappears, and the landscape tends toward a
course topography with energetic correlations less effec
and more short range inQ space. The correlation of stabilit
gaps andTF/TG ratios with kinetic foldability is true only for
fixedm much less thanN.

A full treatment of the barrier as a function of the thre
energetic parameters (e,ē,den) plus temperatureT would
involve the analysis of a multidimensional surface defini
folding equilibrium in the space of these parameters. W
shall return to this issue in the future, but we have deferre
for now in favor of the simpler analysis of seeking trends
the position and height of the barrier as a function of in
vidual parameters such asden andT.
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APPENDIX A

Here we summarize the derivation of the configuratio
entropyS(Q,h), as a function of the topological constrain
and densityh. For a complete derivation see Ref. 12.

The entropy of an unconstrained polymer is given by

S0~h!5NF ln n

e
2S 12h

h D ln~12h!G , ~A1!

wheren5the number of configurations per monomer~six for
three-dimensional cubic lattice models!.

For a weakly constrained polymer~low values ofQ!, the
entropy loss from the unconstrained state can be decomp
into three terms;

Slow~Q,h!5S0~h!1DSB~Q,h!1DSmix~Q,h!

1DSAB~Q,h!. ~A2!
o. 7, 15 February 1997
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2945Plotkin, Wang, and Wolynes: Protein folding funnels
The first termDSB(Q,h) is the reduction in searchable pha
space due tom5QNzNh cross-links in the polymer chain
first derived by Flory.16 For polymers in three dimension
this is

DSB~Q,h!5 3
2NQzNh ln~CQzNh!, ~A3!

wherezN , the coordination number for a chain of lengthN,
is given by

zN'
1

N
Int@2N23~N11!2/313# ~A4!

~Int@...# means take the integer part!, and

C5
3

4pe S Dt

b3 D
2/3

, ~A5!
du
a
d

-

n
fre
cr
-
th

e

r

es
t

n

J. Chem. Phys., Vol. 106, N
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where~Dt/b3!1/3 is the ratio of the bond radius to the persi
tence length.

There are many waysQNzNh cross-links can be formed
from theNzNh total contacts in each molten globule state,
least for weakly constrained polymers. This results in a
duction of the entropy lost due to a combinatoric or mixi
entropy given by

Smix~Q,h!52NzNh@Q ln Q1~12Q!ln~12Q!#.
~A6!

There is an additional reduction in the searchable ph
space because of the (NzNh2QNzNh) native contacts tha
cannotbe formed because the overlap can be no larger t
Q:
DSAB~Q,h!5
N

C E
CQzNh

CzNh
dx ln~12x3/2!52

N

2C F3CzNh~12Q!22CzNh~ ln@12~CzNh!3/2#2Q ln@12~QCzNh!3/2# !

1 lnF S 12ACzNh

12AQCzNh
D 2S 11QCzNh1AQCzNh

11CzNh1ACzNh
D G12)S arctan 1

)

@112ACzNh#

2arctan
1

)

@112AQCzNh# D G , ~A7!
t

n-
whereC is given in expression~A5!.
In Ref. 12, surface effects were also considered as re

ing the conformational search when the rms loop size w
comparable to the size of the globule. This somewhat mo
fies the previous formulas for small values ofQ.

WhenQNzNh>N, there is about 1 cross-link per mono
mer,Slow~Q,h!>0, and the lowQ formula is no longer valid.
At some point before this, configurations having fluctuatio
in the mean field contact pattern begin to dominate the
energy. It then becomes more accurate to switch the des
tion of entropy loss from that due to a dilute ‘‘gas’’ of con
tacts, to an atomistic description ascribing entropy to leng
of chain melted out from the frozen~Q51! three-
dimensional native structure, and the combinatorics of th
pieces of melted chain.

In what follows, letNf be the total number of melted o
unconstrained pieces in the chain of any length, letl E be the
sequence length of the melted ends of the chain, andl c and
l EC be the minimum or critical lengths of the melted piec
or ends, respectively. We can characterize a state by
number distribution of melted and frozen pieces of lengthl ,
$nl%, and$ml%, respectively, and the probability distributio
for an end of the chain to have lengthl , $pl%. It follows that
c-
s
i-

s
e
ip-

s

se

he

(
l c

N

lnl5NM , ~A8!

(
1

N

lml5NF , ~A9!

(
l EC

N

lpl5 l E , ~A10!

whereNM and NF are the numbers of melted~free! and
frozen ~constrained! monomers, respectively. It follows tha
( lnl1( lml12( lpl5N. Furthermore, if there areNF fro-
zen monomers, there arezNhNF5QNzNh frozen bonds, so,
e.g.,( lnl5N(12Q)22l E . Since(nl5(ml5Nf , the av-
erage melted loop length atQ is given by

^ lmelted~Q!&5
( l c
Nlnl

( l c
Nnl

5
12Q

f ~Q!
2
2l E~Q!

Nf~Q!
. ~A11!

This expression will be useful in modeling the polymer de
sity as a function of collapse.

In terms of the macroscopic parametersQ, f , andl E , the
entropy in the strongly constrained regime is given by12
o. 7, 15 February 1997
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2946 Plotkin, Wang, and Wolynes: Protein folding funnels
S~Q, f ,l E!

N
5F ln n

e
2S 12h

h D ln~12h!GF12Q2 f ~ l c21!2
2~ l EC21!

N G1Q ln Q2~Q2 f !ln~Q2 f !22 f ln f

1S 12Q2 f ~ l c21!22
l E
N D lnS 12Q2 f ~ l c21!22

l E
N D2S 12Q2 f l c22

l E
N D lnS 12Q2 f l c22

l E
N D

12S l E2~ l EC21!

N D lnS l E2~ l EC21!

N D22S l E2 l EC
N D lnS l E2 l EC

N D22
ln N

N
. ~A12!
by

r a
ion
r

ns

en

o

er

are
Maximizing S(Q, f ,l E) with respect tof and l E gives

f ~Q,l E!5
12Q22l E /N

l c1 l E2 l EC
~A13!

and

~ l E2 l EC! l cFQ~ l c1 l E2 l EC!1Q2112
l E
NG

2S 12Q22
l E
N D ~ l E2 l EC11! l c21m l c2150. ~A14!

The solution to Eq.~A14! is numeric forl c>3. These equa-
tions put into expression~A12! gives the entropyShigh~Q,h!
in the strongly constrained~highQ! regime.

The total entropy may be numerically approximated
an interpolation between the lowQ and highQ expressions,

Stot~Q,h!5~12Q!Slow~Q,h!1QShigh~Q,h!, ~A15!

which is plotted in Fig. 10 for a 27-mer withl c53, and
l EC51.5. Equation ~A15! together with Eq. ~3.1! gives
S(Q,z̄) used in Eq.~4.1!.

FIG. 10. Interpolated entropy from Eq.~A15! for a 27-mer withl C53, and
l EC51.5, for two densities:h51 andh50.7. The maximum value ofS(Q)
atQmin>0.04 is the entropy at the statistically most likely overlap betwe
any two states for the 27-mer. The value ofQ5Qmax,1 where the entropy
vanishes is due to the finite chain length that must be collectively melted
from the frozen structure.
J. Chem. Phys., Vol. 106, N
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Equations~A13! and ~A14! determinef (Q) and l E(Q),
from which we can obtain̂lmelted(Q)& from Eq.~A11!. These
quantities, plotted in Fig. 11 for parameters appropriate fo
27-mer, will be used in calculating the density as a funct
of total contacts. In the highQ analysis the total polyme
length in the halo is a linearly decreasing function ofQ.

APPENDIX B

Here we derive the form of the thermodynamic functio
in the ultrametric approximation, valid for highQ. We wish
to find the free energy relative to the staten with energyEn ,

ut

FIG. 11. ~a! Number of melted pieces~free loops! Nf(Q) vsQ for a 27-mer
with l C54.5, l EC51.5. ~b! Average free end sequence length in the polym
2l E(Q) ~solid line!, and mean melted loop length in the polymer atQ,
Nf(Q)^lmelted(Q)& ~dashed line! for the same 27-mer. These parameters
used in deriving the density functionh(Q5 z̄/zN) @Fig. 2~b!#.
o. 7, 15 February 1997
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2947Plotkin, Wang, and Wolynes: Protein folding funnels
as a function ofQ, if all the states are organized ultramet
cally as in Fig. 12. Call the energetic contribution comm
to states with overlapQ f, , and call the different contribu
tionsf.

n for staten, andf. for the group~stratum! of states
atQ ~f. varies from state to state!. As in Fig. 12,

En5f,1f.
n , E5f,1f. .

Without the constraintf,1f.
n 5En , the distributions off,

and f. are simple Gaussians of widthsQDE2 and
(12Q)DE2, whereDE25NzNhe2. These are just the num
ber of bonds contributing tof, andf. times the individual
variance of a bonde2. Native contacts are energetically he
erogeneous and also contribute to the total width. We will
ē50 for simplicity here since it has no bearing on the c
culation.

For the staten of energyEn however,f, is chosen from
the conditional probability distributionPQ(f,uEn), where

PQ~f,uEn!5
P~f, ,En!

P~En!

'

expS 2
f,
2

2DE2QDexpS 2
~En2f,!2

2DE2~12Q!
D

expS 2
En
2

2DE2D
'expS 2

~f,2QEn!
2

2DE2Q~12Q! D . ~B1!

@which approachesd~f,! and d~f,2En! when Q→0 and
Q→1 respectively#. Supposing we have found a staten with
En and a given contributionf, , the number of states
N(E,q,En) having overlapQ with it and energyE is given
by exp[Sh(Q)]P~f.! or

ln N~E,Q,En!5Sh~Q!2
~E2f,!2

2DE2~12Q!
~B2!

with f, chosen from the distribution~B.1!. Using 1/T
5] ln N/]E, we obtain the free energy relative to the staten
as a function ofQ,

FIG. 12. Diagram of the hierarchy used in a microscopically ultrame
model.
J. Chem. Phys., Vol. 106, N
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t
-

F~Q,f,!5f,2TSh~Q!2
DE2

T
~12Q!. ~B3!

Sincef, is chosen from the distribution~B1!, the free en-
ergy functionF in Eq. ~B3! is chosen from the distribution

PQ~F !'exp2
1

2DE2Q~12Q! S F2QEn1TSh~Q!

1
DE2

T
~12Q! D 2, ~B4!

with the mean and most probable free energy funct
F* (Q,T,En) given by

F* ~Q,T,En!5QEn2TSh~Q!2
DE2

2T
~12Q! ~B5!

for temperatures above the glass temperatureTG ~the glass
temperatures in this model have been investiga
elsewhere13,33!.

So the modification of the free energy from Eq.~2.9! is
simply to replace~12Q2! by ~12Q! in the roughness term
The entropy and energy follow straightforwardly from th
derivatives ofF* (Q,T,En).

Including homopolymer attraction in Eq.~B5! yields a
free energy surface in coordinates (Q,z̄) as before~see Fig.
13!. For the same energy parameters as in Sec. IV A,
surface is very similar to the nonultrametric case. The fo
ing temperature is slightly higher@(e,ē,den ,TF)5~1.1,
21.17, 22.0, 1.54!# presumably because the ultrametr
landscape is smoother. Equivalently, ultrametric polym
need not be as strongly optimized. The barrier is sligh

c

FIG. 13. Free energy surface atTF for an ultrametric 27-mer, obtained from
Eq. ~B5! with the parameters (e,ē,den ,TF)5~1.1,21.17,22.1, 1.54!. The
surface has a double-well structure with a transition state ensemb
Q*>0.52.
o. 7, 15 February 1997
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2948 Plotkin, Wang, and Wolynes: Protein folding funnels
larger and more native@DF>4.4kBT and (Q* ,z̄* )5~0.52,
0.93!#, and its height scales roughly linearly withN as be-
fore, up to>32.0kBT for a 125-mer.

APPENDIX C

For small,Q dependent changes in the free energy~4.1!,
e.g., changes in temperature, we can approximate the ch
in the free energy at the position of the barrierdF(Q* ) as a
linear interpolation between the free energy changes of
unfolded and folded minimadFu anddF f , here estimated to
be atQu>0 andQf>1, respectively,

dF~Q* !>Q* dF f1~12Q* !dFu . ~C1!

Furthermore let us approximate the kinetic folding time
the thermodynamic folding time38

t5t~Q* !e~F~Q* !2Fu!/kBT ~C2!

whereQ* is the position of the barrier andt̄(Q* ) is the
lifetime of the microstates of the transition ensemble. Th
the log of the folding ratekF is }Fu2F(Q* ). The equilib-
rium constant for the unfolding transitionKeq is the probabil-
ity to be in the unfolded minimum over the probability to b
in the folded minimum, and so lnKeq}F f2Fu . If we plot
ln kF vs lnKeq, the assumption of a linear free energy re
tion ~C1! and a stable barrier position results in a linear d
pendence of rate upon equilibrium constant, with slope

d ln~kF /k0!

d ln Keq
>

d@Fu2F~Q* !#

d@F f2Fu#
5

dFu2dF~Q* !

dF f2dFu
52Q*

~C3!

so that experimental slopes of folding rates versus unfold
equilibrium constants are indeed a measure of the positio
the barrier in our theory.

If the unfolded and folded states are not assumed to b
Q50 andQ51, respectively, Eqs.~C1! and ~C3! are modi-
fied by

dF~Q* !>SQ*2QU

QF2QU
D dF f1SQF2Q*

QF2QU
D dFu ~C4!

and

d@Fu2F~Q* !#

d@F f2Fu#
52SQ*2QU

QF2QU
D , ~C5!

whereQU andQF are the respective positions of the u
folded and folded states. So one can obtain the barrier p
tion from the slope of a plot of lnkF vs lnKeq, given the
positions of the unfolded and folded states~see Fig. 8!.
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