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In heteropolymers, energetic correlations exist due to polymeric constraints and the locality of
interactions. Pair correlations in conjunction with theriori specification of the existence of a
particularly low energy state provide a method of introducing the aspect of minimal frustration to
the energy landscapes of random heteropolymers. The resulting funneled landscape exhibits both a
phase transition from a molten globule to a folded state, and the heteropolymeric glass transition in
the globular state. We model the folding transition in the self-averaging regime, which together with
a simple theory of collapse allows us to depict folding as a double-well free energy surface in terms
of suitable reaction coordinates. Observed trends in barrier positions and heights with protein
sequence length and thermodynamic conditions are discussed within the context of the model. We
also discuss the new physics which arises from the introduction of explicitly cooperative many-body
interactions, as might arise from sidechain packing and nonadditive hydrophobic forcd997©
American Institute of Physic§S0021-96007)52406-§

I. INTRODUCTION teins have used much of the mathematical techniques used to
o _ _ _ treat spin glassésand regular magnetic systerh3he poly-
Molecular scientists view protein folding as a complex meric nature of the problem must also be taken into account.
chemical reaction. Another fruitful analogy from statistical \jean field theories based on replica techni§uarsd varia-
physics is that folding resembles a phase transition in a finitcﬁona| method&have been very useful, but are more difficult

systgm. A new vieyv of the f(_)lding process cc_)mbines thes% make physically intuitive than the straightforward ap-
two ideas along with the notion that a statistical character-

S . . , vat= broach of the random energy mod@iwhich flexibly takes
ization of the numerous possible protein configurations 'ﬁF;]to account many of the types of partial order expected in
sufficient for understanding folding kinetics in many re-

— biopolymers'! Recently we have generalized the latter ap-

The resulting energy landscape theory of folding ac_proach to take into account correlations in the landscape of

- finite-sized random heteropolymeéfsThis treatment used
knowledges that the energy surface of a protein is roquht’he formalism of the generalized random energy model
containing many local minima like the landscape of a spin 9 9y

glass. On the other hand, in order to fold rapidly to a stabléGREM) analyzed by Derrida and Gardriérin this paper,

structure there must also be guiding forces that stabilize th € extgnd that .anaIyS|s o take into account Fhe minimum
native structure substantially more than other local minim rustration principle and thereby treat proteinlike, partially
on the landscape. This is the principle of minimum nonrandom heteropolymers. ) i

frustration! The energy landscape can be said then to re- |Nere are various ways of introducing the aspect of
semble a “funnel.”? Folding rates then depend on the sta-MiNimum frustration to analytical models with rugged land-

tistics of the energy states as they become more similar to tHFaPes. One way recognizes that many empirical potentials
native state at the bottom of the funnel. actually are obtained by a statistical analysis of a database,
One powerful way of investigating protein energy land- and when the database is finite, there is automatically an
scapes has been the simulation of “minimalist’ models.aspect of minimal frustration for any member of that data-
These models are not fully atomistic, but caricature the probase. Thus the so-called “associative memory” Hamiltonian
tein as a series of beads on a chain either embedded inmodels® have coexisting funnel-like and rugged features in
continuuni or on a lattice! A correspondence, in the sense their landscape. Other methods of introducing minimal frus-
of phase transition theory, between these models and refRtion model the process of evolution as giving a Boltzmann
proteins has been set up using energy landscape jdeaslistribution over sequences for an energy gap between a
Many issues remain to be settled however in understandinfixed target structure and unrelated ofiell of the above
how these model landscapes and folding mechanisms changgproaches can be straightforwardly handled with replica-
as the system under study becomes larger and as one intleased analyses. Here we show that the GREM analyses can
duces greater complexity into the modeling of this corre-be applied to minimally frustrated systems merely by requir-
spondence, as for example, by explicitly incorporating manying the energy of a given state to be specified as having a
body forces and extra degrees of freedom. Simulationparticularly low value(i.e., less than the putative ground
become cumbersome for such surveys, and an analytical ustate valug Minimally frustrated, funneled landscapes are
derstanding is desirable. just a special case of the general correlated landscape studied
Analytical approaches to the energy landscape of proearlier.
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A convenient aspect of the correlated landscape model i$he denaturation curve as determined by the constant and
that it allows the treatment of the polymer physics in a veryvariable density models. In Sec. VI we discuss the results
direct way, using simple statistical thermodynamics in theand conclude with some remarks.
tradition of Flory® Here we will show how the interplay of
collapse anq topological qrdering can be studied. In order 9 A THEORY OE THE EREE ENERGY
do this we introduce a simple “core-halo” model to take
into account the spatially inhomogeneous density. We will  In this section, we show how the existence of a particu-
also discuss the role of many-body forces in folding. Explic-larly low energy configuration, together with energetic cor-
ity cooperative many-body forces have often been involvedelations for similar states, leads to a model for the folding
in the thinking about protein structure formation. Hydropho-transition and corresponding free energy surface in protein-
bic forces are often modeled as involving buried surfacdike heteropolymers. This ansatz for the correlated energy
area. Such an energy term is not pairwise additive but inlandscape corresponds to the introduction of minimal frustra-
volves three or more interacting bodies. Sidechain packingion in a random energy landscape, where the order param-
involves objects fitting into holes created by more than oneeter hergwhich will function as a reaction coordinate for the
other part of the chain, thus the elimination of sidechaingolding transition) counts the number of native contacts or
from the model can yield an energy function for backbonehydrogen bonds.
units with explicit nonadditivity. These many-body forces ~ We start by assuming a simple “ball and chain” model
can be treated quite easily by the GREM, and we will sedor a protein which is readily comparable with simulations,

that they can make qualitative changes in the funnel topog€-d., of the 27-mer, which is widely believed to capture many
raphy. of the quantitative aspects of foldiri§ec. V). Proteins with

To illustrate the methods here, we construct two-Significant secondary structure have an effectively reduced
dimensional free energy surfaces for the folding funnel offumber of interacting units as may be described by a ball and
minimally frustrated polymers. These explicitly show the chain model. Properties of both, when appropriately scaled
coupling between density and topological similarity in fold- PY critical state variables such as the folding temperafigre
ing. We pay special attention to the location of the transitiondlass temperatur@ g, and collapse temperaturgc, will
state ensemble and discuss how this varies with system sizabey a law of corresponding stateShus the behavior de-
cooperatively of interactions, and thermodynamic conditionsScribing a complicated real protein can be validly described
In the case of the 27-mer on a lattice, a detailed fit to they an order parameter applied to a minimal ball and chain
lattice simulation dathis possible. Although delicate cancel- Mmodel in the same universality class.
lations of energetic and entropic terms are involved in the For a 27-mer on a three-dimensional cubic lattice, there
overall free energy, plausible parameters fit the data. are 28 contacts in the most collaps@uibic) structure. For

The trends we see in the present calculations are iﬁoncreteness we take such a maX|ma”y CompaCt structure to
rough agreement with experimental information on the nabe the configuration of our ground state, the generalization to
ture and location of the transition state ensenibié al- @ less compact ground state being straightforward in the con-
though the theory suggests that fluctuation mechanisms, #¢Xt of the model to be described. For a collapsed polymer of
the form of independently folding unitéfoldons [A. R.  sequence lengtN, the number of pair contacts per mono-
Panchenkoet al, Proc. Natl. Acad. Sci. USAQ93, 2008 Mer,zy, is a combination of a bulk term, a surface term, and
(199@] become more important at |argNr_‘ We intend later @ lattice CO”’eCtiOi’? [See Eq.(A4)] The effect of the surface
to return to the experimental comparison, especially taking®n the number of contacts is quite important even for large
into account more structural details within the protein. macromolecules, ag, approaches its bulk value of 2 con-

The organization of this paper is as follows: In Sec. Il tacts per monomer rather slowly, a2—3N """,
we introduce a theory of the free energy at constant density, T0 describe states that are not completely collapsed, we
and in this context investigate the effects of cooperative inintroduce the packing fractiop=Ng/R] as a measure of the
teractions on the transition state ensemble and correspondirignsity of the polymer, where is the volume per monomer
free energy barrier. In Sec. Il we detail a simple theory@ndRy is the radius of gyration of the whole protein. So for
coupling collapse with topological similarity, and resulting less dense states the total number of contacts is reduced from
in the core-halo model described there. In Sec. IV we applyts collapsed valudNzy, to Nzy7.
this collapse theory to obtain the free energy in terms of In the spirit of the lattice model we have in mind for
density and topological order, now coupled via the core-hal@oncreteness, we introduce a simple contact Hamiltonian to
model. In the same section we compare our model of th&letermine the energy of the system,
minimally frustrated heteropolymer with lattice simulations
of the 27-mer. In terms of the categorization of Bryngelson 7/=2 €ijTij s (2.1
et al? these free energy surfaces depict scenarios described =)
as type | or type lla folding. We then study the quantitativewhere g;; =1 when there is a contact made between mono-
aspects of the barrier as a function of the magnitude of threemers{ij} in the chain, andr; =0 otherwise. Here contact
body effects. The dependence of position and height of theneans that two monome{sj }, nonconsecutive in sequence
barrier as a function of sequence length is studied, as well aaong the backbone chain, are adjacent in space at neighbor-
the effects of increasing the stability gap. Finally, we studying lattice sitesg; is a random variable so that, at constant
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density, the total energies of the various configurations, each < P(E,Q,E,)

the sum of many; , are approximately Gaussianly distrib- (n,(E,Q,Ep))=e%? ~ P(En)

uted by the central limit_theorem, with mean energy at a :

given densityn given by E,=Nzyne, wheree is simply 1

defined as the mean energy per contact bizg» is again ~expNys,(Q)— 2(1-0Q9)

the total number of contacts, and vanamcE2 Nzy7e?, _ _

whereé is the effective width of the energy dlstr|but|on per (E-E)—Q(E,—E) 2

contact. X NJ, ! (2.9

Suppose there exists a configurational statef energy . ) B ) )
E, (which will later become the “native” stajeThen if the ~WhereJ;=zyze” ands,(Q)=S,(Q)/N. Equation(2.5) is

Hamiltonian for our system is defined as in E2.1), we can  Still Gaussian with a large number of states proviéedE is

find the probability that configuratiom has energf, , given ~ Within a band of energies having. — E = Q(E, — E)
thata has an overla,, with n,* whereQ,,=Q is the = NJ;¥2(1-Q%)s,(Q) as upper and lower bounds. There

number of contacts that statehas in common witi, di- 1S @ negligibly small number of states with energies above or
vided by the total number of contadi&z 7, below this ranggwhere the exponent changes sign in Eq.
(2.5].

At temperaturé® T, the Boltzmann factore ¥7/z
weighting each state shifts the number distribution of ener-
> ofof. (220 gies so that the maximum of the thermally weighted distri-
bution can be interpreted as the most probakiermody-
namig energy at that temperature

NZN77

Since this analysis is at constant density batandn have _ — Nzy7€e3(1-Q?)
Nz, 7 contacts. This probability is obtained directly fromthe ~ E,(T,Q,E,)=E+Q(E,—E)— T
Hamiltonian (2.1) by averaging over Gaussian distributions
of contact energies;; , The above expression for the most probable energy is useful
provided the distributiorf2.5) is a good measure of the ac-
tual number of states & andQ, the condition for which is
Pan(Ea,Q.En)  (SEa— Z({oi D1 En— ({0l D]) trr:at thrt]e fluctustion? in the numllf)er of Etatesdbe much ksmﬁlller
= (L. , than the number of states itself. To this end, we make here
n(En) (9LEn '%({Uij})]> 2.3 the simplifying assumption that in each “stratum” defined
' by the set of states which have an over@with the native
state, the states themselves are not further correlated with
where {02} is the set of contacts in configuratian The €ach other, ie., P(E,,Q.E,,Q|Eq))=P(E,,Q.Ey)
conditional probability distribution is simply a Gaussian with X P(E;,Q,E), so that in each stratum of the reaction coor-
a Q dependent mean and variance, dinate Q, the set of states is modeled by a random energy
model. Then since the number of statgegE,Q,E) counts
a collection of random uncorrelated variables—large when

. (2.6

Pan(Ea,Q.E) [(Ea—E_)—Q(En—E_)]2 E>E.—the relative fluctuations\/((n—<n))2)/(n> are
W“‘EP(— 2Nzy7ed(1- QD) ~(n)"  and  are  thus  negligible.  So

(2.4) n(E,Q.E,)~(n(E,Q,E,)), and we can evaluate the expo-
nent in the number of statd¢2.5) at the the most probable
energy (2.6) as an accurate measure of tt@-dependent

WhenQ=1, statesa andn are identical and must then have thermodynamic entropy at temperattire

the same energy, which E@.4) imposes by becoming delta Nzy7e2(1— Q?)

function, and wherQ =0 statesa andn are uncorrelated and S,T,Q,En)=S,(Q)— — oz - (2.7
then Eq.(2.4) becomes the Gaussian distribution of the ran-

dom energy model for the energy of stateExpression(2.4) The assumption of a REM at each stratungis clearly

holds for all states of the same density rase.g., all col- a first approximation to a more accurate correlational
lapsed states if is the native statéthe degree of collapse scheme. The generalization to treat each stratum itself as a
must be a somewhat coarse-grained description to avoi@REM as in our earlier work is nevertheless straightforward,
fluctuations due to lattice effects coupled with finite $ize  since our earlier work suggested only quantitative changes,

Previously a theory was developed of the configurationalvhich we will not pursue here. If two configuratioasandb
entropy’ S ,(Q) as a functlon of similarityQ with a given  have an overlaf with staten and thus are correlated to
state, at constant density!? The results of this theory are energetically, they are certainly correlated to each other, par-
summarized in Appendix A. Give$,(Q) and the condi- ticularly for large overlaps where the number of shared con-
tional probability distribution(2.4), the average number of tacts is large. Using the REM scheme at each stratum is more
states of energf and overlapQ with staten, all at density  accurate for smallQ and breaks down to some extent for
7, IS large Q. In the ultrametric scheme of the GREM, states
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andb have an overlam,,=Q, which is more accurate for From the thermodynamic expressions for the energy
large overlap than at sma@, since at smalQ statesa and  (2.6) and entropy(2.7) with the mean energy at density,

b need not sharanybonds and still can both have overl@  we can write down the free energy per monomer above the
with n. One can also further correlate the energy landscapglass temperature as the sum of four terms,

of states by stratifying with respect @,,=q and so on, 9

resulting in a hierarchy of overlaps and correlations besE(T Q,E,) =2zyne+ Qzyde,—Ts,(Q)— INT€ (1-Q?)
treated using renormalization group ideas. N© e AT no 2T ’

All of the states in each stratum defined Qyare still (2.9
correlated to state, and their statistics are correspondingly where ZN5€n:ZN(€n—E_):(En—E_)/N is the extra energy
modified. For smaller values @, most of the states have for each bond beyond the mean homopolymeric attraction
zero overlap with each other essentially because their corenergy(the energy “gap” between an average molten glob-
figurational entropy is largest when their is no topologicalule structure and the minimally frustrated onémes the
constraint between the states. Microscopic ultrametricity issumber of bonds per monomer, asg(Q)=S,(Q)/N is the
broken in thaty,,, the overlap between any two statesl{)  entropy per monomer described in Appendix A.
in the stratum, is less tha@. As Q increases, there is a The first term in Eq.(2.9) multiplied by N is just the
crossover to a regime where microscopic ultrametricity behomopolymeric attraction energy between all the monomers,
comes a more accurate description. We assume here that thig a polymer of densityy. It depends only on the degree of
happens typically afteQ~0.5, where there must be some collapse, and not on how many contacts are native contacts.
overlap between states andb. In this regime the form of The second term is the average extra bias energy if a contact
the thermodynamic functions is modified by the replacemenis native, times the average number of native contacts per
of (1-Q?) in expressiong2.6), (2.7), (2.9), etc., by(1-Q).  monomer. The third term measures the equilibrium bias to-
For a derivation of these formulas in the ultrametric regimeward larger configurational entropy at smaller values of the
see Appendix B. reaction coordinat€). The last term accounts for the diver-

Just as the number of stat€g.5) has a characteristic sity of energy states that exist on a rough energy landscape,
energy for which it is exponentially small, the REM entropy the variance of which lowers thermodynamically the energy
for a stratum aQ (2.7) vanishes at a characteristic tempera-more than the entropy, and so lowers the equilibrium free

ture energy.
For a special surface indg,,e,T) space, expression
T4(Q) zy7(1—Q?) (2.9) has a double minimum structure in the reaction coordi-
= > : (2.8 nateQ, with one entropic minimum at loW) corresponding
€ $,(Q) to the “molten globule” state, separated by a barrier from an

energetic minimum at higlQ corresponding to a “folded”

which signals the trapping of the polymer into a low energystate. For a given temperature, valuesdef and € can be
conformational state within the stratum characterizeddyy obtained which are reasonably close to the values obtained

If T4(Q) is a monotonically decreasing function@f as by a more accurate analysis which includes the coupling of
the temperature is lowered the polymer will gradually bedensity with topology, but we will not examine the constant
thermodynamically confined in its conformational search todensity case in much detail for reasons discussed below, ex-
smaller and smaller basins of states. The basin around theept to make the following remark¢l) The true coupling
native state is the largest basin with the lowest ground statdyetween density an€) constraints need not be strong to
and hence is the first basin within which to be confined. Itsobtain a double-well free energy structuf@) For mono-
characteristic size at temperatufeis just the number of meric units with pair interactions, at constant density, the
states within overlaQy(T), where Qqy(T) is the value of molten globule and folded minima are not@&=0 and 1,
overlapQ that givesT,(Qq)=T in Eq. (2.8). Thus there is respectively. The position of the molten globule state is near
now no longer a single glass temperature at which ergodithe maximum of the entropy of the system, which is at
confinement suddenly occurs, as in the REM, but there is =0.1 for the 27-mer due to the interplay of confinement
continuum of basin sizes to be localized within at corre-effects and the combinatorial mixing entropy inherent in the
sponding glass temperatures for those basins. “coarse-grained” descriptionQ.}> The native minimum

If T4(Q) has a single maximum at s&*, the glass shifts to Q=1 when many-body interactions are introduced
transition is characterized by a sudden REM-like freezing tdsee the next sectign(3) The barrier height, at position
a basin of configurations whose size is determineddly  Q%=0.25 for the 27-mer with proteinlike parameters
The range of glass temperatures will turn out to be lowenTe/Tg=2), is small AF°~kgTg), due to the effective can-
than the temperature at which a folding transition oc¢seg  cellation of entropy loss by negative energy gain, as the sys-
Fig. 3), so that this model predicts a proteinlike heteropoly-tem moves toward the native stafehis cancellation is re-
mer whose folded state is stable by sevégdl at tempera- duced when many-body forces are taken into acqouat
tures where freezing becomes important. A replica-When a linear form for the entropy is used in EB.9), e.g.,
symmetric analysis of the free energy is therefore sufficiens(Q) =sy(1— Q) instead of the more accuratéQ) obtained
to describe the folding transition to such deep native statem Ref. 12 the double minimum structure disappears and is
that are minimally frustrated. replaced by a single minimum nedg at Q~1/2, with the
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=0 and Q=1 states becoming free energy maxima. Soquestion. The condition that the square root term in Eq.
Q=0 and Q=1 states b ing f i S ti Th diti that th t t in E
folding is downhill or spinodal-like in this approximation.  (2.11) be real gives the minimum gap for global foldability
in terms of the roughness
(c)

As the interactions between monomeric segments be- den _ ﬁ%ﬁ 2.12
come more explicitly cooperative, the energetic correlations € ZaN '
between states become significant only at greater similaritfyhere  the minimum folding temperature is then
with the system approaching the REM limit ferbody in- T~ 5¢(9/2 (or equivalently, one can obtain the maxi-
teractions, where the statistical energy landscape assumes,m roughness for foldability as 12 of a given gap en-
rough “_golf-course” topography with a steep funnel close toergw. For typical proteins(with folding temperatures at
the native state. _ _ ~330 K) gap energies aréat least ~1 kcal/mol (lattice

In the presence ofm-body interactions, the homopoly- yniy Note that Eq(2.12 is precisely the same result, as it
m‘Lg?'l'apse energy scales as a higher power of density,qiq pe, to that obtained previoidyin the context of
~ez" ). For even moderaten~(1) a first-order phase finqing optimal folding energy functions, by requiring the
transition to collapsed states results, which effectively CONGuantity Te/Tg>1, where the glass temperatur@g

fines all reaction paths in the coordina@ebetween rr_10|t_en = \ZneZl(2s,) is evaluated at the molten globule overlap
globule and folded states to those where the density is cony =

stant and=1. So within this constant density approximation E\?allluatingF(T Q,E,)/N [Eq. (2.10] with proteinlike
H H n . .

we can investigate the nature of the folding transition as ®nergetic parameters at the folding temperafire we ob-
function of the cooperativity of the interactions, and see how; frae energy curves as in Figal, plotted for illustrative
the correlated landscape simplifies to the REM in the limit Ofexamples wittm=3 andm=12, for a 27-mer lattice protein.
m-body interactions with largen. _ Note that the transition state ensemtitee collection of
In the presence ofm-body interactions, th&® depen-  giate5 a)=Q* where the free energy is a maximie-

dence in the pair energy distributid@.4) scales withQ as  ¢,mes more and more native likand thus the ensemble
Q™ %, whenQ is defined as in Eq(2.2), and the terms ocomes smaller and smaller, eventually going to 1 state in
Tiji---m IN the modified Ham|lton|an factorize into pair inter- e REM as the energy correlations become more short-
action termso;; -+ through a suitable decomposition 1aw 50464 inQ (i.e., asm increases—see Fig. 1b). The corre-
such as in the superposition approximation in the theory ngonding free energy barrier then grows withas the ener-
fluids 2% Using this modified pair distribution along with the getic bias (~Q™ 1) overcomes the entropic barrier only

collapsed homopolymeric state as our zero point energy, thg, e closer to the native state, and the barrier becomes more

A. Effects of cooperative interactions

free energy(2.9) becomes and more entropic and less energdtiee Fig. {c)]. There
F are less kinetic paths to the native state through the transition
- - tate ensemble.
N (TQE)=-Tsi(Q)— Q"™ 'zy|de s . .
N " ' vl Ol As was already mentioned, the above analysis was for a
. polymer of constant collapse density. However, experimental
- g_T (1—Q3m=1y, (2.10  evidence of folding, as well as numerical evidence for lattice

models, suggest a coupling of density with nativeness, with

. . energetically favorable nativelike states typically being
wheres, (Q) is the entropy as a function of constraftfor denser. So to this end we now investigate in detail a simple

a fully collapsed polymer. For pure three-body interactions,[heo ; - : :

: ry coupling collapse density with nativenessQ, as-
and higher, the globule_and folded_ states are very nearly astuming a nativéQ=1) state which is completely collapsed
Q=0 a_nszl,.respectllvel){see Fig. 18)]. To the extent (7=1). Including this effect in Eq(2.9) will complete our
that. this approximation is good, we can equate the free erEimpIe model of the folding funnel topography in two
ergies of the molten globul@at Q= Q,,c=0) and folded(Q reaction-coordinate dimensions.
=1) structures and obtain am-independent folding tem-

perature(note again that this is not a good approximation for

5 The GREM theory for random heteropolymers devel-
T =ZN|5€n| (1+ /1_ 2s0€ ) 2.11) oped by us earlier investigates the interplay between entropy
Fo 25 z\ €’ ' loss and energetic roughness as a function of similarity to
any given reference state, all at fixed density. However for
where s, is the maximum of the entropy as a function of exceptional reference states such as the ground state of a
constraintQ (essentially the log of the total number of con- well-packed protein, the density is not independent of con-

figurations. figurational similarity, so a theory of the coupling of density
From expressiofi2.11) we can obtain a first approxima- # with topological similarityQ must also be developed.
tion to the constraint on the magnitude of the gap endegy We wish to obtain the polymer densityas a function of

in order to have a global folding transitiofrather than both the fraction of total contactz, and fraction of native
merely a local glass transitiprio the low energy state in contactQ. At low degrees of nativeness, a good approxima-
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FIG. 2. (8 A model of the partially native protein can be pictured as a
frozen native core surrounded by a halo of non-native polymer of variable
density.(b) The halo densityr; as a function of the fraction of the total
contactsz/zy, .

tion to the density can be obtained by assuming homoge-

neous collapse, ap=2/zy, . In this approximation the density

is a function of total contacts only, irrespective of nativeness.
At higher degrees of nativeness, we adopt a simple

model consisting of a native “core” region of densig=1

FIG. 1. (a) Free energy per monomerN for a 27-mer, in units okgT as Surro_ur,]ded by a typlca”y less dense “halo .reglm_.il)
a function ofQ, at constant density=1, with s,=0.8, for proteiniike en- ~ CONsisting of dangling loops and enfisee Fig. 2a)]. We
ergetic parameter&e, ,e)=(—2.28, 1.55. For these parametelig~|de,|. then seek the functional form of the halo density(Q,z).
For illustrative purposes, two values af-body interactions are chosen: We make the approximation that at constzTnthe halo

(solid line) pure three-body interactiongdashed ling pure twelve-body ity i imatel tant. i tact il
interactions. Note the trends in height and position of the barrier, and notéjenSI y IS approximately constant. 1.€., contacts will increase

how in them=12 case the free energy curve is essentially times the ~ the halo density by reducing the effective loop size in the
entropy curves(Q) of Fig. 10 with »=1, until Q is very large(b) Position halo, which is determined by total contacts only, irrespective
of the transition state ensemb@* along the reaction coordinat@ as a of nativeness. Note that thetal density includes both core

function of the explicit cooperativity in puma-body forcesm. The fact that . .
the asymptotic limitQ,,., is less than one is due to the finite size of the and halo density, and is of courqedependent.

system, so tha®, the fraction of native contacts, is not a continuous pa- We determine the functiomy,(z/z,) by first construct-
rameter.(c) The free energy barrier heightF in units ofkgTe as a function  ing a theory of loop density for a given length. Then we
of the explicit cooperativity of then-body force,m. The barrier height rises obtain the |00p Iength as a function of total contacts by cal-

to the limit of S(Q=0) as m—, when it becomes completely entropic. . . . — .
Also shown are the energetidashedl and entropig(solid) contributions to culating it along the linez=2zyQ, and using theQ depen-

the barrier. dence of free loop length from the high entropy theory of
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2938 Plotkin, Wang, and Wolynes: Protein folding funnels

Appendix A. The highQ theory gived ¢(Q) and(l neied Q))
along the lineQ=z/z, . Using the fact thaty, should be a
function of total contacts only gives the density for@lland T
'z. The highQ expressions for loop sizes will be a good 1.5

approximation since the molten globule and folded states are
largely collapsed, so thaD=z/z, is in the strongly con-
strained regime.

To estimate the packing fraction of a polymer end
75(1), consider a chain of sequence lenbthwith intrinsic
volumel :b?, confined to a half-plane making a self-avoiding
walk. The characteristic volume of space it occupies is given
by 1R3,.=2Y%b®, so its packing fraction ig5=2I 5. For
a loop of lengthl its characteristic volume is approximately 0.5
3(1/2)%%3%,  giving a denser packing fraction
() =2x 2991745 Next, we average the density over the
total number of loops and ends,

1.0

] e et
Er]i 7, Nf29/5| 74/5_’_ 2|E4/5 075 : 3 ‘ ‘: i
()= sn Nf+2 ' @D 05 P s
025% | HHS 1
Equation(3.1) is the halo density when the loops and 0 05 0.75
ends have no cross-links or bonds, i.e., along the line 0 0.25 '
z=24Q. The quantities!(Q) =(lneed Q). 1e(Q). and Q

Nf(Q) are taken from the higp entropy analysigsee Ref.
12 and Appendix A Putting these values into Eﬁj3.1) FIG. 3. The folding temperatur: and glass transition temperatufg as a
gives the halo densiy(Q) along the lneQ— 27z, Then _ Relen o e Tacen o i conee snd e e ot b
we use the independence @OOp denS|_ty on the nativeness %ﬁst values oRQ andz, for proteinlike energetic parameters used in fitting
contacts made so that,(Q,z/zy) = n4(2/zy). the theory to simulationée=1.1 andde,=—2.1).

Figure 2b) gives a plot ofy,(z/zy). The value az=0
is the density of an end of lengti/2 (~0.24 for a 27-mex
The true packing fraction should be roughly 1/2 of this, how-
ever this artifact of the theory has little effect on the folding self
transition, which involves states with/zy typically larger
than=0.6.

We can now reinvestigate the glass transition temper

The scalarTe/Tg(Q,2) is a rather simple indication of
-averaging, and a more rigorous method to determine the
degree of self-averaging would be to follow the calculations
by Derrida and Toulougéof the moments of the probability
: — : ) Aistribution on=2joZ, measuring the sample to sample
tre as a function of botQ andz through the insertion of fluctuations of the sum of weights of the free energy valleys,

the halo densityy,(2/zy) into Eq. (2.8). This gives the re- 4 goneralize them to finding the probability distribution of
gions in the space of these reaction coordinates where t (Q.2)

dynamics tends to become gIassyTB‘(Q,z_) is comparable

to T (see Fig. 3 We can see from Fig. 3 tha@i-/T; grows

during the folding process, with a corresponding slowing

down of the dynamicsTr=T5 whenQ=0.85. At these high IV. THE DENSITY-COUPLED FREE ENERGY

values ofQ the dynamics is glassy. At the transition state,  |n this section we obtain the free energy in terms of the
(Q*,z*)~(0.50, 0.92, TE/Ts=L1.5 [these coordinates are reaction coordinate® andz through the introduction of the
determined in Sec. IV, see Fig(®}]. Te/Tg~2.3 in the  halo density(3.1).

molten-globule phase aQug, Zue)=(0.14, 0.67. This The halo densityy,(z/zy) from Eq.(3.1) will appear in
value is larger than that obtained from simulations:the roughness term of E@2.9) since this term arises as a
Te/Te(Qume Zmc)=1.6. Values closer to 1.6 are easy to ob-result of non-native interactions which contribute to the total
tain by adjusting the energetic parameters, however thesgriance of state energies. The entropic term in &9
new parameters move the transition state to loQeralues.  contains the configurational entropy(Q) atQ and density

In any event, both theory and simulations justify a replica-;. The most accurate values of barrier position and height
symmetric treatment of the folding transition for minimally are obtained by inserting i, (Q) an interpolated form of
frustrated polymers, particularly regarding the characterizadensity, between homogeneous collapse valid at@vand
tion of the barrier. Thermodynamic quantities are self-the highQ core-halo formula3.1),

averaging aff ¢, with the exception of very nativelike states - 2

where_ the fr_ee energy becomes strongly sequence dependent 77&”!((‘),2):(1_(_‘)) il +Q77H<_)-

for a finite size polymer. AN z
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F(Qz)

(b)

0.8

0.6

NI

il

0 0.2 04 0.6 0.8 1

Q

FIG. 4. (a) The free energy v§ andz, at the folding temperaturgg , from
simulations(Ref. 5. The native minimum is in the upmost right-hand cor-
ner. (b) Free energy surface i for the 27-mer, obtained from E¢4.1)
with the parameterse(e, de,,Tg)=(1.1, —1.27, —2.1, 1.5). The surface
has a double well structur@arker is deepérwith a transition state en-
semble aQ*=0.50, and barrier height3.0kgT.

surface as a function of the reaction coordinaeghe frac-
tion of native contacts, and, the total contacts per mono-
mer,

F —
N (T.QZE)=~Ze~ Qayl 6e,| ~TS(Q.2)

2
-2 (1-02), @1

wheres(Q,z) = s(Q, 7'%"(Q,z)). The first term is an equilib-
rium bias toward states that simply have more contacts and
depends only oz, whereas the second term is a bias toward
states with greater nativeness and depends onlQpil-
though the maximum value of this biase, does depend on

'z. The entropic term biases the free energy minimum toward
both small values of) andz where the entropy is largest.
The free energy bias due to landscape roughness is largest
when there are many non-native contdetss large and is
smal)), which means that the protein can find itself in non-
native low energy states due to the randomness of those non-
native interactions.

To model the protein behavior at the folding tempera-
ture, the temperatur€ is held fixed at a valu@  described
below, and the other energetic parametetsse, , ande) are
adjusted so as to give the free energy a double well structure
with folded and unfolded minima of equal depth.

A. Comparison with a simulation

The 27-mer lattice model protein has been simulated for
polymer sequences designed to show minimal
frustration*?>26The system we are interested in is modeled
by a contact Hamiltonian as in E¢R.1), but now the beads
representing the monomers are of three different kinds with
respect to their energies of interaction. If like monomers are
in contact, they have an energy=—3, otherwiseg;; = —1,
where the interaction energy is in arbitrary units of order
kgT. Specific sequences are modeled to have a fully col-
lapsed native state with a specific set of 28 contacts and a
ground state energy of 3x28.

In the thermodynamic limit, the discrete interaction en-
ergies used in the simulation give a Gaussian distribution for
the total energy of the system by the central limit theorem,

This gives more weight to the two behaviors in their respecwhose mean and width naturally depends on the fraction of
tive regimes: mean-field uniform density at weak constrainhative contacts.

or low Q, and core-halo behavior at strong constraint.
The total densityn=2/z\ appears in the homopoly-

If we call Z the total number of contacts of any kind, the
energy atQ andZ is determined simply by the energies of

meric energy since this term is a function only of the numbeithese native and non-native contacts above, while the en-
of contacts, irrespective of whether they were native or nottropy at high temperatures is the log of the number of states
The extra gap energy defined with respect to fully collapsedatisfying the constraints of total contacts angk native

states in Eq(2.9) is an energetic contribution added to eachcontacts. However, the temperature range where folding oc-

native bond formed, independent af up to the limit
Qzy=z, where the gap term in Ed2.9) becomes simply
Zd€, .

These substitutions in Eq2.9) describe a free energy

curs is well below the temperature of homopolymeric col-
lapse, and so the polymer can be considered to be largely
collapsed. This can be seen either by direct computation or
by computing the entropy, defined through
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2940 Plotkin, Wang, and Wolynes: Protein folding funnels

fying the conditions for global foldability. The system has a

S(Q,z,T)= —E p; log p; double-well structure with a weakly first-order transition be-
' tween a semicollapsed globule, &y ,.Zye)=(0.14, 0.67,
e BT e BT and a fully collapsed, near-native folded state at
-2 ( Z, )'°9< Z, ) 42 (Qr 2)=(0.98,2y=1.03.

In what follows letN-=the number of native residues in

where Z,, is the (partia) partition function, the sum being the core, and leN,,=the number of non-native residues in
over all of the states consistent with the constraints charadhe halo. The molten globule states have a halo density of
terized by andZ above. 7y=0.91, and there amd=NzyQ*/zyo~8 native residues
Onuchicet al® have obtained the free energy BssE  in the various ~NI/Nc!INy!~2x10° cores consisting of
—TSfor the 27-mer, which mimics the landscape of a smallQucNzy=4 native contacts. The total density is given by
helical protein, as a surface plot versus the total number of/=N#7y/(Nc7y+Ny) which is=0.93 in the molten globule
contacts per monomer=Z/N, andQ=(total number of na- state. The folded state has a core w#R7 contacts, contain-
tive bond3/28, see Fig. ). The largest value o for a  ing =26 monomergalmost al) and at densitypc=1 and a
given Z is Z/28, because there cannot be more native concollapsed halo of about 1 monomer at densify=1. The
tacts than there are total contacts, hence the allowable regidalded state is fully collapsed. It is energetically favored over
is the upper left-hand side of the surface plot. The surfacéhe molten globule by about &gT per monomer
plot in Fig. 4a) has a double minimum structure at a specific(Es—Emg=—28.%gT) and  thus less  entropic
(folding) temperatureTz=1.51 on the energy scale where [Tr(S;—Spng)=—28.XgT].
€;={—3,—1} described above. The free energy barrier of The core residues in the transition state ensemble at
~2kgTE is small compared with the entropic barrier of the (Q*,2*)=(0.50, 0.92 contain approximately
system(~14kgT¢). The transition ensemble at reaction co- NzyQ*/zyqg=16 monomers. The 11 remaining monomers in
ordinates Q*,z*)=(0.54, 0.88, consists of about the dangling loops and ends are nearly collapsed, with
expNs(Q*,z¥)=2000 thermally occupied states and.0® 74=0.99, so the total density is very nearly nearly one. The
configurational states. transition state ensemble in the theory consists~d600
There are four energetic parameters in the free energfiermally occupied states ane-4x10° configurational
theory (¢, €, J¢,, andkgTg), and three parameters in the states. Its thermal entropy is7.4kg. The folding free en-
simulation[e(like units), e(unlike unity, andkgT¢], plus the ~ ergy barrier AF=F(Q*,z")—F(Qug.Zye) is =3.0kgT.
roughness parameter, which is implicitly evaluated throughfhe energetic gain from Ed2.6) is =—17.7%3T, and the
the diversity of energies consistent with over@pMinimal ~ entropic barrier from Eq(2.7) is =20.%gT. The full free
frustration in the lattice simulation is implicit in the sequence€nergy barriet=3.0kgT) arises from the delicate incomplete
design, in that the ground state is topologically consisten€ancellation of entropic losses with energetic gains.
with all the pair interactions between like monomers. Ener- One aspect of lattice simulations also present in our
getic correlations are implicit from minimal frustration, since theoretical model is an essentially native folded minimum
states at similarityQ to the native state are also low in en- Which persists up to high temperatufés! In simulations
ergy. this is a lattice effect. The very few near native states avail-
We should note however that the gap energy in thes@ble on a lattice create an entropic barrier to escape from the
simulations is functionally somewhat different than our theo-native state. This barrier has led to some confusion in iden-
retical model in that contacts between like monomers ardifying the position of the folding transition staté.The na-
always favored whether native or not, and in the theory onlytive state has a glass temperatdig(Q=1), which in the
true native contacts have explicit contributions to the energgsREM formalism is determined by the ratio of energetic
gap. gains to entropic losses as the native state is approached. The
We do not undertake here a comparison of simulations aliscrete nature of lattice models gives the native state an
all parameter values with theory. Rather, we compare simueffective high glass temperature above any simulation tem-
lations and theory only for the 27-mer, with parameters choperature. In our analytical model, the collective nature of
sen to be proteinlike according to the corresponding state@elting (i.e., I andlgc are>0, see Appendix Aleads to a
principle analysis of Onuchiet al® The scheme for com- similar gap in the density of states along tQecoordinate.
parison between the simulations and theory for the 27-mer ighis also causes a weak barrier0.4kgT) between a near-
to hold T¢ fixed at the simulational value of 1.5, and then folded local minimum and the native folded minimysee
determine the remaining three energetic parameterkig. (4b)]. Again this weak barrier is a result of discrete
(e,6€,,€) by the conditions of folding equilibriuridouble-  quantities in the simulations and theoretical model.
well structure ofF(Q,Zz)], and a barrier position and height More elaborate theories should incorporate a local na-
consistent with simulations and experiments. tiveness parametéd(x) which varies in space, allowing for
The result of this is shown in Fig.(d), which shows the rigid as well as fluctuating regions of the protein.
free energy surface alp obtained from the parameters
(€,€,8¢,,Tg)=(1.1, —1.27, —2.1, 1.5). These values are
very compatible with those of the simulations. The gap to It is interesting to investigate the effects of explicit
roughness ratio for this minimal model [i8¢,|/e=1.9, satis- many-body cooperativity on the folding funnel by introduc-

B. Explicit three-body effects
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a weakly decreasing function af [Fig. 5@a)] (although as

Q#: Zya 88N/kT described aboveQ* is not independent ofn, the order of
1.0 B the m-body interactions We eventually expect this trend to
-1 reverse for largem as in Fig. 1b). The position of the
-1.15 folded stateQp remains near native ar@y is also roughly
-1.2 constant. However as homopolymer attraction becomes more
-1.25 collective (increasinge), zyg increases and the molten glob-
13 ule state becomes dengé&ig. 5a)]. The transition becomes
135 more first-order-like with increasing, as the trend in ener-
' getic loss is not as great as entropic loss, so that the free
-1.4 energy barrier increases with[Fig. 5(b)].
0.2 -1.45
0 0.2 04 0.6 0.8 1 C. Dependence of the barrier on sequence length
@ o It is simple in our theory to vary the polymer sequence
length. One recalculatefQ) at constant density for a larger
kBT chain? and inserts this, along with the densipy [Eq. (3.2)]
p) ) ) SR at the larger value dfl, into the free energy4.1). To model
—TAS TTTTmeeesmemeessmesseees the barrier atTp, one must scale the temperature with
10 since in our model larger proteins fold at higher temperatures

/A_L/— [see Fig. 63)], e.g., in Eq.(2.1) Trxz,. The barrier posi-

tion Q* mildly decreases witiN [Fig. 6(b)].2% Plotted along

e with the theoretical curve are two experimental measure-
AE ments of the barrier position. The square represents the mea-
-10 e —— — T T surement for truncatel repressot, a ~80 residue protein
- - - fragment with largely helical structure. The corresponding
states analysishows that the formation of helical secondary
0 0.2 0.4 0.6 0.8 1 - . . L
(b) o structure within thex repressor makes it entropically similar

to the lattice 27-mer. Also plotted in Fig. @ircle) is the
experimental barrier measurement for Cytochromé& @,
r';'Gn- i (fl)_n('tfft n?x;? nPOISiﬂOTGSTOS the b’?fﬂe?*ﬂ af}j‘ihmttf;'r bOEdZ per 104 residue helical protein which is entropically similar to
eﬁ(‘)ici(()enteoz.I (Rigeht a?xig D%greuasgmitamf ia:l ;Jh-: Loecé)ssari/ en‘iaergyogi;c:o the 64-mer latt_lce mOdeI'_ The Slmp.l(? proposed mOd,e_l has the
maintain equilibrium atT. Plots are for the 27-mer with fitted energy S@me decreasing trend in the position of the transition state
parameters (Sec. IVA. (b)) Free energy barier AF  ensemble that is observed experimentally, but decreases
=F(Q*,z") ~F(Quec :2yc) in units ofkg T, and its energetic and entropic - mych slower. This suggests that a local nucleation descrip-
contributions, for the 27-mer, as a function @f The barrier grows moder- .. . .
ately with «, i.e., the energetic drop decreases faster than entropic IossegIon may become more appropr!ate Bsincreases, rather
due to the collective nature of the energetic interactions. than the homogeneous mean field theory proposed here.
However the question as to whether energetic heterogeneity
induces a specific nucletlsrather than an ensemble of nu-
ing a three-body interaction in addition to the pair interac-clei with correspondingly many kinetic paths, is an open is-
tions already present. Models with such partially explicit co-sue. In Appendix C, we show for thoroughness that experi-
operativity mimic the idea that only formed secondarymental plots of folding rate versus equilibrium constant used
structure units can couple, and have been introduced in latn the experiments above are indeed a measure of the posi-
tice models by Kolinsket al* Three-body interactions enter tion of the transition state ensemble.
into the energetic contributions of E@.1) as an additional Figure &c) shows the roughly linear trend of the barrier
Q? term in the bias and roughness, and term in the ho-  height withN. This mean-field result applies for smalf as
mopolymer attraction, so that those terms in the free energil grows, fluctuation mechanisms begin to dominate the scal-
become ing behavior, and mayégreproduce the sublinear ?galing with
1=V a7 2 e =T (1 — 2 N seen in lattice studiésand by scaling arguments.
[(1= @)zt az®)[ - [(1-a)Q+ aQ%Jzy|ocy| The overall folding time results from a combination of
Znn(Zlzy) €2 912 thermodynamic barrier crossing dealt with here, and kinetic
_T{l_[(l_“)QJr“Q I (4.3 diffusion between locally stable basiffs®® Experimental
. measurements from the folding rateTat can thus lead to an
where « is a measure of the amount of three-body forceqgtimate for the reconfiguration time &*. For example,

present. In the model defined by Edg.1) and (4.3, pro-  rearranging Eq(C2), the folding rate over the reconfigura-
teins with more three-body forces need not be as stronglyy rate is given by

optimized, and so the magnitude of the gap is a decreasing
function of « at fixed T, €, ande [see Fig. 5a)]. With this
correction included, we find the barrier positiQt () to be

F(Q*)—Fy
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FIG. 6. (a) The folding temperatur& is an increasing function of polymer
sequence lengtN. (b) Position of the barrieQ* as a function of sequence
lengthN. The solid line is the theory as determined by E41), and the
points marked are experimental resiiiee the tejt (c) Free energy barrier
heightAF in units ofkgT¢, as a function of sequence lendth

For the\ repressdr at the folding midpoint, the folding rate
ke is about 400 sl Using the barrier height
F(Q*)—F,=3kgT for the corresponding 27-mer gives a re-
configuration timet(Q*) ~ 10" s. Since the Rouse—Zimm

time is typically in theus range, this suggests that configu-

rational diffusion in the transition region is typically acti-
vated. Of course there are many issues involved in the loc
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FIG. 7. (a) Two plots of the free energy W@ for the 27-mer with the fitted
parametergFig. 4(b)]. The upper curve is the free energy with the fitted
stability gap de,=—2.1, and de,=—2.5 in the lower curve. These one-
dimensional plots are the most folding probable pa&thimimum free energy
along coordinat& determined bydF/dz=0) on the 2D surface plot of Fig.
4. From the figure we can see that|&s,| increases the folding becomes
downhill. Folding becomes purely downhill with no barrier|at,|=2.75.
Because of the stability of the molten globule position, the barrier shifts
slightly to lower Q* (from 0.51 to 0.4%, and decreases in heigktfrom
about XgT to 0.&gT). (b) Position of the barrielQ* as a function of
magnitude of the energy gdpe,| (in units of kgT), for the fitted 27-mer
described in(@). Q* weakly decreases untibe,|/kgT=1.75, and then rap-
idly merges with the positio®y,g of the molten globule gtde,|/kgT=1.82
as the barrier vanisheg) Free energy barrier in units &&T vs magnitude
f stability gap|Se,|. The short dashed line is the entropic contribution to the
arrier, and the long dashed line is minus the energetic contribution. These

d_ynamics an'd StrUCtlure of fqlding proteins, 'W.hiCh make prétyo terms merge and become zero|at,|/ksT=1.82 where the barrier
cise comparisons with specific examples difficult. The num-anishes.
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FIG. 9. (Solid ling Probability to be in the unfolded state vs temperatime
) ) ) ) ) simulation unit$ for the two-order parameter model used in fitting the 27-
FIG. 8. (Right axig Plot of the logarithm of the folding rate vs the logarithm mer simulations. With this moddle=1.51 andA T/T¢=0.14.(Dashed ling

of the unfolding equilibrium constan(Left axiy Reading the slope of the  same probability for the one-order parameter model using(£8§). Here
folding rate gives a measure of the position of the bai@&r Also plotted Te=2.14 andAT/Te=0.22.

is the actual value of* directly calculated from the free energy curves.
The values compare well for most values of the gap where the free energy
has a double-well structure.

-1
P,=

bers we quote should be interpreted as estimates showing the
reasonableness of the current parametrizations. whereF, andF; are the free energies at temperatliref the

unfolded and folded miniméat T, F;=F, and P,=1/2).

This can be used to obtain denaturation curves as a function
D. Dependence of the barrier on the stability gap, at of temperature. For illustration, we make the simplifying as-
fixed temperature and roughness sumptions that both the folded and globule states are col-

As the stability gap is increased at fixed temperaturelapsed, makind®, independent o, and that the folded and

folding approaches a downhill process, with a folded globaglobule states occur approximately @:=1 and Quc=0.
equilibrium statdsee Fig. 7a)]. We can see from Fig.(@ As the temperature is lowered, the molten globule
that the barrier position and height are decreasing functioneezes _into _a low energy configuration affy
of stability gap, with true downhill foldingzero barrieyoc- = €yzn(1—Qp9)/(25(Qmg) = €4/zn/(250) (see Fig. 3 and
curring when|de,|/e=2.5 or | Se,|/ Tesy=1.4 for the 27-mer the expression foP, becomes one of equilibrium between
[see Figs. ®) and 7c)]. At folding equilibrium, two temperature independent states with the corresponding
| 8€ql/ Tesp=1.1. Thus, achieving downhill folding requires a “Shottky” form of the energy and specific heat:

1
1+exp{—f (Fi—Fy)

considerable change of stability—an estimate for a 60-aa 15e,| € -1
protein (27-mer lattice modglwould be an excess stability P =|1+exp —Nsy)exp NzN<—"— —2) , Tg<T
of ~12KsTe . T 21
We can apply the equations of Appendix C to changes of Nzy 25, -1
the transition state free energy by modifying stability. Figure = 1+expT | Sen| — GVZ) , T<Tq. (49

8 shows a plot of the log of a normalized folding rate
In(ke/kg) vs the log of the unfolding equilibrium constant The condition thatTg/Tg=1 gives Eq.(2.12. Using the

In Keq, Whose slope is a measure of the barrier posi@n  glass temperature of the globule state, this is equivalent to
The increasing magnitude of slope with increasing<|g &2
means that the barrier position is shifting toward the native T, —,

state as the gap decreases. Also shown is a comparison be- Sen

tween the position of the barri@™* calculated directly from  which is the temperature where the hiilexpression foP,,

the theory, andQ* as derived from the slope of lk§/ky)  in 4.5 has a minimum. Hence cold denaturation will not be
using Eq.(C5). The linear free energy relation works well for seen in the constant density modas$ it would if there were
the range of parameters having a double-well free energyo glass transition and P, will always decrease to zero at
surface. low temperatures.

In the Ilimit of large T, Eq. (4.5 becomes
~1/(1+exp—Nsp)~1, indicating denaturation. At small
Eq. (4.5 tends to zero as exp(constxN/T).

The probabilityP,, for the protein to be in the unfolded Allowing density to vary modifies the denaturation be-
globule state at temperatufeis havior. In Fig. 9, denaturation curves are plotted for the vari-

E. Denaturation with increasing temperature

J. Chem. Phys., Vol. 106, No. 7, 15 February 1997

Downloaded-31-Jul-=2003-t0-142.103.236.75.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



2944 Plotkin, Wang, and Wolynes: Protein folding funnels

able density model with fitted parametel&e, e, de,, Tr) protein density with nativeness. This resulted in a density
=(1.1, —1.27, —2.1, 1.5}], and for the one-dimensional contraction in the process of folding. During folding, a dense
(1D) case for a completely collapséey=1) protein. In the inner native core forms, which grows while possibly inter-
1D case, the same energetic paramef{éf,,e)=(—2.1, changing some native contacts with others upon completion
1.1)] are used in Eq(4.5 but the molten globule entropy is of folding. This core is surrounded by a halo of non-native
the fully collapsed valu¢S,,;=27x0.88. T¢ in the 1D case polymer which shrinks and condenses in the folding process,
increases te=2.14, in units wherd =1.51 as in the simu- as topological constraints upon folding make dangling loops
lation. shorter and denser. The folded free energy minimum is es-
If we define the widtl/AT of the transition between 10% sentially native in the model when parameters are chosen to
and 90% denatured, the ratios of widths to folding temperafit simulated free energy curves for the 27-mer.
tures AT/T are about 0.22 and 0.14 for the 1D and 2D Explicitly cooperative interactions were shown to en-
cases, respectively. Allowing density to vary sharpens théance the first-order nature of the transition through an in-
transition. The values lie between those obtained in latticerease in the size of the barrier, and a shift toward more
studies of the 27-mer3* where AT/T-~0.3 for foldable nativelike transition state ensemblg., at highelQ*). For
sequences, and from measurements of the thermal denatuihe constant density scenario the barrier becomes almost en-
ation of A repressof’ where AT/T~0.05. This suggests tirely entropic when the orden of the m-body interactions
that many-body forces may play a role in the stabilization ofbecomes large, and the transition state ensemble becomes
the native state for laboratory proteins. correspondingly more nativelike. In the energy landscape
picture, as explicit cooperativity increases, the protein fold-
ing funnel disappears, and the landscape tends toward a golf-
course topography with energetic correlations less effective
In this paper we have shown that if the energy of a giverand more short range i@ space. The correlation of stability
configuration of a random heteropolymer is known to begaps and'¢/Tg ratios with kinetic foldability is true only for
lower than expected for the ground state of a completelyixed m much less thamN.
random sequencé.e., the protein is minimally frustratgd A full treatment of th_e barrier as a function of the three
then correlations in the energies of similar configurationsenergetic parameters (e, de,) plus temperaturel would
lead to a funneled landscape topography. The interplay dnvolve the analysis of a multidimensional surface defining
entropic loss and energetic loss as the system approaches fiding equilibrium in the space of these parameters. We
native state results in a free energy surface with weakly twoshall return to this issue in the future, but we have deferred it
state behavior between a dense globule of large entropy, arféir now in favor of the simpler analysis of seeking trends in
a rigid folded state with nearly all native contacts. The weakthe position and height of the barrier as a function of indi-
first-order transition is characterized by a free energy barrievidual parameters such &, andT.
which functions as a “bottleneck” in the folding process.
The barrier is small compared with the total thermal en-
ergy of the system—on the order of a fdyT for smaller ACKNOWLEDGMENTS
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small proteins the model predicts a position of the ba@er  gchyiten, and N. Socci for helpful discussions. This work
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(Q*=1/2). For larger proteins, the barrier height rises lin- Grant No. DMR-89-20538.

early, and its positio®* moves away from the native state
toward the molten globule ensemble roughly ag,1/due
essentially to the fact that the entropy decrease per contact fPPENDIX A
independent ofN initially. Experimental measurements of
the barrier for fast folding proteins are consistent with this ~ Here we summarize the derivation of the configurational
predicted shift in position with increasing sequence length€ntropyS(Q, »), as a function of the topological constraints
but with a shift somewhat greater in magnitude. and densityn. For a complete derivation see Ref. 12.
The unfolded and transition states are not single configu-  The entropy of an unconstrained polymer is given by
rations but ensembles of many configurations. The transition
state ensemble according to the theory consists of about 1600 Sy(7)=N
thermally accessible states for a small protein such aa the
repressor. There are abos#tx10° configurational states in wherev=the number of configurations per mononsix for
the transition state ensemble, less than thk0’ ways of  three-dimensional cubic lattice modgels
choosing 16 core residues in the 27-mer minimal model, so  For a weakly constrained polyméow values ofQ), the
that many but not all nuclei are sampled. The multitude ofentropy loss from the unconstrained state can be decomposed
states afQ* seen in the theory is in harmony with a picture into three terms;
of a transition state ensemble of generally delocalized nuclei, _
a subject investigated recently by various auti6rs® Stow( Q:7)=So(7) + ASg(Q. 1)+ ASmin( Q. 7)
A simple theory of collapse was introduced to couple +ASAR(Q, 7). (A2)

V. CONCLUSION

v 1—7])
In E_ 7 |n(1—7]) , (Al)
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The first termA Sz(Q, #) is the reduction in searchable phase where(A7/b%? is the ratio of the bond radius to the persis-
space due tqu=QNzy» cross-links in the polymer chain, tence length.

first derived by Flory:® For polymers in three dimensions There are many way® Nz, #n cross-links can be formed
this is from theNz » total contacts in each molten globule state, at
least for weakly constrained polymers. This results in a re-

duction of the entropy lost due to a combinatoric or mixin
AS5(Q,7)=3NQzy7 IN(CQzn), (A3) by J

entropy given by
wherezy, the coordination number for a chain of lendth
is given by

1 Smix(Q,7)=—=Nzy7[Q In Q+(1-Q)In(1-Q)].
zy~ g IM[2N—3(N+ 1)23+3] (A4) (AB)

(Int[...] means take the integer pgarand ) N o
There is an additional reduction in the searchable phase

space because of thé&lgy7— QNz,#») native contacts that

3 [Ar 2 cannotbe formed because the overlap can be no larger than
C=——1|73] (A5) :
47e \ b Q:
N [Cam 3 N 3 3
AS(Qm =g | dxIn(1-x*)=— 7% |3Czyn(1-Q)—2Czyn(IN[1~(C2yn) ¥~ Q IN[1-(QCA»*)
AN
2
1-Cg 1+QCzn++QC 1
+In Nn) Q€+ VQCAn +2v3| arctan— [1+2+/Czy7]
1_\QCZN77 1+CZN77+\/CZN77 \/3
1
- arctan‘/—g[ 1+2VQCz7l] |, (A7)

whereC is given in expressiofAb). N
In Ref. 12, surface effects were also considered as reduc- 2 Inj=Ny, (A8)
ing the conformational search when the rms loop size was le
comparable to the size of the globule. This somewhat modi-
fies the previous formulas for small values@f E Im, =N, (A9)
WhenQNzyn=N, there is about 1 cross-link per mono- 1
mer, S, (Q,7)=0, and the lowQ formula is no longer valid.
At some point before this, configurations having fluctuations N
in the mean field contact pattern begin to dominate the free gc Ipi=lE, (A10)
energy. It then becomes more accurate to switch the descrie\;
tion of entropy loss from that due to a dilute “gas” of con-

tacts, to an atomistic description ascribing entropy to Iength&In +SIm,+23Ip,=N. Furthermore, if there ardl fro
| | | — N ' F -

OT Cha,m rreltgd out from the hfrozer(Qzl) 'threfe—h zen monomers, there arg 7Ng=QNz,» frozen bonds, so,
dimensional native structure, and the combinatorics of t es@.g.,EIn,zN(l—Q)—ZIE. Since Sn,=Sm,=Nf, the av-

pieces of melted chain. erage melted loop length & is given by

In what follows, letNf be the total number of melted or
unconstrained pieces in the chain of any length| ddte the 2|N|n| 1-Q 214(Q)
sequence length of the melted ends of the chain,larachd (I metted Q))= ;’l - E )
lec be the minimum or critical lengths of the melted pieces 21 f(Q) Nf(Q)
or ends, respectively. We can characterize a state by thehis expression will be useful in modeling the polymer den-
number distribution of melted and frozen pieces of lerigth  sity as a function of collapse.

{n;}, and{m,}, respectively, and the probability distribution In terms of the macroscopic paramet€sf, andl g, the
for an end of the chain to have length{p,!. It follows that  entropy in the strongly constrained regime is giveri?by

here Ny, and Ng are the numbers of meltetfree) and
frozen (constrainefl monomers, respectively. It follows that

(A11)
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S(Q,f,l 1- 2(lgc—1
SQHe_j, 3—(—7’)m<1—m [1—Q—f<lc—1>—(L) +Q I Q—(Q=1)In(Q—f)~2f In f
N e n N
le le le le
+ 1—Q—f(|c—1)—2N In 1—Q—f(|c—1)—2N - 1—Q—f|c—2N In 1—Q—f|c—2N
le=(ec—1)| [le—(lgc—1) le—lec) [le—lec In N
+2 N In N -2l =l = 2 (A12)
|
Maximizing S(Q,f,l¢) with respect tof andlg gives Equations(A13) and (A14) determinef(Q) andlz(Q),
1-Q—212/N from which we can obtaifl o Q)) from Eq.(A11l). These
f(Q,lg)= E (A13)  quantities, plotted in Fig. 11 for parameters appropriate for a
letle—lec 27-mer, will be used in calculating the density as a function
and of total contacts. In the higlQ analysis the total polymer
| length in the halo is a linearly decreasing functionQof
le—1e0)'| QUleHle—lg) +Q—1+2—
( E EC) Q( [ E EC) Q N APPENDIX B

E L1 11 Here we derive the form of the thermodynamic functions
| 1-Q-2y|(e—lgct 1) e "pe "=0. (A14)  in the ultrametric approximation, valid for high. We wish

, ) i to find the free energy relative to the statevith energyk,, ,
The solution to Eq(A14) is numeric forl .=3. These equa-

tions put into expressiofA12) gives the entropysgn(Q,7)

in the strongly constrainethigh Q) regime. N £(Q)
The total entropy may be numerically approximated by
an interpolation between the lo@ and highQ expressions, 1
Sl Q7)) = (1= Q)Sou(Q, 7) + QSigh(Q, ), (AL5) 08
which is plotted in Fig. 10 for a 27-mer with.=3, and '
lgc=1.5. Equation(A15) together with Eq.(3.1) gives 0.6
S(Q,z) used in Eq(4.1).
0.4
Inter| 02
polated Entropy/N vs Q
S ' ' ' ' 0
1.2 0 0.2 0.4 0.6 0.8 1
(a) Q
1 L
Smax—| 25
20 End Length
0.6
15
0.4
10
0.2 , T T T > L -
0 5 ;  Loop Length T~ -
\ ' ' ' ' 0 . =
O, 02 04 o 06 08 o, 1 0 02 04 0.6 0.8 1
(b) Q

FIG. 10. Interpolated entropy from E¢A15) for a 27-mer withl -.=3, and

lec=1.5, for two densitiesy=1 and»=0.7. The maximum value d&(Q) FIG. 11. (a) Number of melted piecedree loops Nf(Q) vsQ for a 27-mer

at Q,,»=0.04 is the entropy at the statistically most likely overlap betweenwith |-=4.5,1g-=1.5.(b) Average free end sequence length in the polymer
any two states for the 27-mer. The value@# Q,,,,<1 where the entropy  2I¢(Q) (solid line), and mean melted loop length in the polymert
vanishes is due to the finite chain length that must be collectively melted ouN f(Q){l neired @)) (dashed lingfor the same 27-mer. These parameters are
from the frozen structure. used in deriving the density functiop(Q=2z/zy) [Fig. 2b)].
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F(Q,Z ) Ultrametric Model

FIG. 12. Diagram of the hierarchy used in a microscopically ultrametric
model.

as a function ofQ, if all the states are organized ultrametri-

cally as in Fig. 12. Call the energetic contribution common , .
)t/ . hg | d g” he diff t ib FIG. 13. Free energy surface gt for an ultrametric 27-mer, obtained from

to states with over aR ¢-, and call the different contribu- g, (gs) with the parameterse(e, se,, , Tg)=(1.1, ~1.17,~2.1, 1.54. The

tions ¢ for staten, and¢-. for the group(stratum) of states  surface has a double-well structure with a transition state ensemble at

at Q (¢~ varies from state to stateAs in Fig. 12, Q*=0.52.

En=d+ ¢n>’ E=¢d-+¢o-.
Without the constraing . + ¢ =E,,, the distributions ofp_ AE2
and ¢. are simple Gaussians of widthQAE? and F(Q ¢ )=¢_—TS (Q)— — (1-0Q). (B3)
(1- Q)AE? whereAE?=Nzyne?. These are just the num- 7 T
ber of bonds contributing tep. and ¢-. times the individual
variance of a bond?. Native contacts are energetically het-
erogeneous and also contribute to the total width. We will le
'€=0 for simplicity here since it has no bearing on the cal- 1
culation. Po(F)~exp— 2AE?Q(1-Q) (F—QEn+TS7,(Q)
For the staten of energyE,, however,¢_ is chosen from
the conditional probability distributioﬁ’Q(¢<|En), where

P( <1En)
Po(¢<|En)= f(—En)

Since ¢ is chosen from the distributio(B1), the free en-
tergy functionF in Eq. (B3) is chosen from the distribution

AEZ 2
+?(1—Q)) , (B4)

with the mean and most probable free energy function

¢ (En— )2 F*(Q.T.Ey) given by
il S

2AEZQ 2AE4(1-Q) AE?
~ E? F*(QT.En)=QE~TS,(Q)~ 57 (1-Q) (BS)
N~ 2AE )

for temperatures above the glass temperafiggthe glass
(¢-—QE,)? temperatures in this model have been investigated
”exp( - m) : (B1)  elsewher&.
So the modification of the free energy from EQg.9) is
[which approachesi(¢-) and d(¢-—E,) whenQ—0 and  simply to replacg1—Q?) by (1-Q) in the roughness term.

Q—1 respectively. Supposing we have found a statevith  The entropy and energy follow straightforwardly from the
E, and a given contributiong—, the number of states derivatives ofF* (Q,T,E,).

N(E,q,E,) having overlapQ with it and energyE is given Including homopolymer attraction in EGB5) yields a
by exp[S,(Q)]P(¢-) or free energy surface in coordinated,g) as before(see Fig.
(E—p_)? 13). For the same energy parameters as in Sec. IV A, the
In N(E,Q,E)=S,(Q)— m (B2) surface is very similar to the nonultrametric case. The fold-

ing temperature is slightly highef(e,e,d¢,,Tg)=(1.1,
with ¢_ chosen from the distributionB.1). Using 1T  —1.17, —2.0, 1.54] presumably because the ultrametric
=dIn N/JE, we obtain the free energy relative to the state landscape is smoother. Equivalently, ultrametric polymers
as a function oQQ, need not be as strongly optimized. The barrier is slightly
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