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We use a free energy functional theory to elucidate general proper-
ties of heterogeneously ordering, fast folding proteins, and we test
our conclusions with lattice simulations. We find that both structural
and energetic heterogeneity can lower the free energy barrier to
folding. Correlating stronger contact energies with entropically likely
contacts of a given native structure lowers the barrier, and anticor-
relating the energies has the reverse effect. Designing in relatively
mild energetic heterogeneity can eliminate the barrier completely at
the transition temperature. Sequences with native energies tuned to
fold uniformly, as well as sequences tuned to fold reliably by a single
or a few routes, are rare. Sequences with weak native energetic
heterogeneity are more common; their folding kinetics is more
strongly determined by properties of the native structure. Sequences
with different distributions of stability throughout the protein may
still be good folders to the same structure. A measure of folding route
narrowness is introduced that correlates with rate and that can give
information about the intrinsic biases in ordering arising from native
topology. This theoretical framework allows us to investigate sys-
tematically the coupled effects of energy and topology in protein
folding and to interpret recent experiments that investigate these
effects.

protein folding u energy landscapes u f values u free energy functional

The energy landscape has been a central paradigm in under-
standing the physical principles behind the self organization

of biological molecules (1–4). A central feature of landscapes of
biomolecules that has emerged is that the process of evolution,
in selecting for sequences that fold reliably to a stable confor-
mation within a biologically relevant time, induces a new energy
scale into the landscape (5–7). In addition to the ruggedness
energy scale already present in heteropolymers, it now has the
overall topography of a funnel (2, 8–10). A sequence with a
funneled landscape has a low-energy native state occupied with
large Boltzmann weight at temperatures high enough that fold-
ing kinetics is not dominated by slow escape from individual
traps.

As an undesigned heteropolymer with a random unevolved
sequence is cooled, it becomes trapped into one of many
structurally different low-energy states, similar to the phase
transitions seen in spin glasses, glasses, and rubber. The low-
temperature states typically look like a snapshot of the high-
temperature collapsed states but have dramatically slower dy-
namics. On the other hand, when a designed heteropolymer or
protein is cooled, it reliably and quickly finds the dominant
low-energy structure(s) corresponding to the native state, in a
manner similar to the phase transition from the gas or liquid to
the crystal state. As in crystals, the low-temperature states
typically have a lower symmetry group than the many high-
temperature states (11). Connections have been made between
native structural symmetry and robustness to mutations of
proteins (11–13). Funnel topographies are maximized in atomic
clusters when highly symmetric arrangements of the atoms are
possible, as in van der Waals clusters with ‘‘magic numbers’’ (14,
15), and similar arguments have been applied to proteins (11),
where funneled landscapes are directly connected to mutational
robustness (16).

It is appealing to make the connection between symmetry
and designability of native structures to the actual kinetics of
the folding process, arguing that symmetry or uniformity in
ordering the protein maximizes the number of folding routes
and thus the ease of finding a candidate folding nucleus, thus
maximizing the folding rate. Explicit signatures of multiple
folding routes as predicted by the funnel theory (17, 18) have
been seen in simulations of well-designed proteins (8, 19–23)
as well as experiments on several small globular proteins
(24–26). However, these folding routes are not necessarily
equivalent. There is an accumulating body of experimental
(27–31) and simulation (22, 32–42) evidence that shows vary-
ing degrees of heterogeneity in the ordering process. These
data refine the funnel picture by focusing on which parts of the
protein most effectively contribute to ordering and on the
effects of native topology and native energy distribution on
rates and stability. The ensemble of foldable sequences with a
given ratio of TFyTG . 1 has a wide distribution of mean first
passage times (17, 33, 43), indicating that several other prop-
erties of the sequence and structure contribute to folding
thermodynamics and kinetics. These include topological prop-
erties of the native structure (11, 44–51) (e.g., mean loop
length ,, dispersion in loop length d,, and kinetic accessibility
of the native structure), the distribution over contacts of total
native energy in the protein, and the coupling of contact
energetics with native topology.

In this paper, we integrate the above sundry observations into
a theory that explicitly accounts for native heterogeneity, struc-
tural and energetic, in the funnel picture. We introduce a simple
field theory with a nonuniform order parameter to study fluc-
tuations away from uniform ordering, through free energy
functional methods introduced earlier by Wolynes and collabo-
rators (36, 48)a. The theory is in agreement with simulations also
performed in this paper. We organize the paper as follows. First
we outline the calculation and results. Next we derive and use an
approximate free energy functional that captures the essence of
the problem. Then we conclude and suggest future research,
leaving technical aspects of the derivation for the methods
section.

Outline
The free energy functional description allows, in principle, for a
fairly complete understanding of the folding process for a
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particular sequence; this includes effects caused by the three-
dimensional topological native structure, possible misfolded
traps, and heterogeneity among the energies of native contacts.
We model a well-designed minimally frustrated protein with an
approximate functional, but many of the results we obtain are
quite general. We find that for a well-designed protein, gains in
loop entropy andyor core energy always dominate over losses in
route entropy, so the thermodynamic folding barrier is always
reduced by any preferential ordering in the protein.b However,
as long as ordering heterogeneity is not too large, there are still
many folding routes to the native structure, and the funnel
picture is valid. When there are very few routes to the native state
because of large preferential ordering, folding is slow and
multiexponential at temperatures where the native structure is
stable. In this scenario, the rate is governed by the kinetic traps
along the path induced, rather than the putative thermodynamic
barrier that is absent. Several physically motivated arguments
giving the above results are described in the supplementary
material (www.pnas.org.).

To analyze the effects of native energetic as well as structural
heterogeneity on folding, we coarsely describe the native struc-
ture through its distributions of native contact energies {«i} and
native loop lengths {,i}. Here, «i is the solvent-averaged effec-
tive energy of contact i, and ,i is the sequence length pinched off
by contact i. The labeling index i runs from 1 to M, where M 5
zN is the total number of contacts, N is the length of the polymer,
and z, the number of contacts per residue. In the spirit of the
density functional theory of fluids (52), we introduce a coarse-
grained free energy functional F({Qi(Q)}u{«i}, {,i}) approxi-
mating the physics of secondary (as, e.g., along a helix) and
tertiary (nonlocal) contacts in ordering. Q is defined as the
overall fraction of native contacts made, used here to stratify the
configurations with given similarity to the native state. The
fraction of time contact i is made in the subensemble of states
at Q is Qi (Q). From a knowledge of this functional, all relevant
thermodynamic functions can be calculated in general, such as
transition-state entropies and energies, barrier heights, and
surface tensions. Moreover, derivatives of the functional give the
equilibrium distribution and correlation functions describing the
microscopic structure of the inhomogeneous system, as we see
below.

Given all the contact energies {«i} and loop lengths {,i} for
a protein, the thermal distribution of contact probabilities
{Qi(Q)} is found by minimizing the free energy functional
F({Qi(Q)} u {«i}, {,i}) subject to the constraint that the average
probability is Q, i.e., ¥iQi 5 MQ (Q parameterizes the values of
the Q9is).c Because in the model the probability of a contact to
be formed is a function of its energy and loop length, we can next
consider the minimized free energy as a function of the contact
energies for a given native topology: F({«i} u {,i}). Then we can
seek the special distribution of contact energies {«i

,(,i)} that
minimizes or maximizes the thermodynamic folding barrier to a
particular structure by finding the extremum of F†({«i} u {,i})
with respect to the contact energies «i, subject to the constraint
of fixed native energy, ¥i«i 5 M«# 5 EN. This distribution, when
substituted into the free energy, gives in principle the extremum
free energy barrier as a function of native structure F†({,i}),

which might then be optimized for the fastestyslowest folding
structure and its corresponding barrier. We found that in fact the
only distribution of energies for which the free energy was an
extremum is the distribution that maximizes the barrier by tuning
all the contact probabilities to the same value.

Methods
We derive an approximate free energy functional, which takes
account for ordering heterogeneity, starting from a contact
Hamiltonian *({Dab}u{Dab

N }) of the form

* 5 O
a,b

@«ab
N DabDab

N 1 «abDab~1 2 Dab
N !# [1]

Here the double sum is over residue indices, Dab 5 1 (0) if
residues a and b (do not) contact each other and Dab

N 5 1 (0)
if these residues (do not) contact each other in the native
configuration. Weighting the contacts by native energies «ab

N and
nonnative energies «ab gives the energy for a particular configu-
ration.d To obtain the thermodynamics, we proceed by obtaining
the distribution of state energies in the microcanonical ensemble
by averaging nonnative interactions over a Gaussian distribution
of variance b2: P(EuEN, {DabDab

N }) 5 ^d[E 2 *{Dab}]d[EN 2
*{Dab

N }]&n2nat.e The averaging results in a Gaussian distribution
having mean ¥i«i4i and variance Mb2(1 2 Q), where 4i [ Dab

Dab
N , counts native contacts present in the configuration state

inside the stratum Q. From this distribution, the log density of
states is obtained in terms of the configurational entropy of
stratum Q, 6({4i}uQ), and the free energy functional F({4i}uQ)
obtained by performing the usual Legendre transform to the
canonical ensemble (cf. Eq. 4).f

We express the free energy in terms of an arbitrary distribu-
tion of contact probabilities—the distribution of {Qi} that
minimizes F({Qi}uQ) is the (most probable) thermal distribu-
tion.g For the ensemble of configurations at Q, we define the
entropy that corresponds to the multiplicity of contact patterns
as 6ROUTE({Qi}uQ) (.0) and the configurational entropy lost
from the coil state to induce a contact pattern {Qi} as
6BOND({Qi}u{,i}, Q) (,0). We make no capillarity or spinodal
assumption and treat the route entropy as the entropy of a binary
fluid mixture (10, 53), modified by a prefactor l(Q) [ 1 2 Qa,
which measures the number of combinatoric states reduced by
chain topology: residues connected by a chain have less mixing
entropy than if they were freeh:

6ROUTE 5 l~Q!O
i51

M

@2Qiln Qi 2 ~1 2 Qi!ln~1 2 Qi!#. [2]

bFolding heterogeneity affects the free energy in three ways: (i) The number of folding
routes to the native state decreases; this effect increases the folding barrier; (ii) the
conformational entropy of polymer loops increases, because native cores with larger halo
entropies are more strongly weighted. This decreases the folding barrier. (iii) making likely
contacts stronger in energy lowers the thermal energy of partially native structures; this
decreases the folding barrier.

cThis procedure is analogous to finding the most probable distribution of occupation
numbers, and thus the thermodynamics, by maximizing the microcanonical entropy for a
system of particles obeying a given occupation statistics; here, the effective particles (the
contacts) obey Fermi–Dirac statistics; Eq. 7.

dA similar derivation of the free energy for a uniform order parameter Q was calculated in
ref. 10.

eThis approach assumes minimal frustration, in that native heterogeneity is retained
explicitly, and nonnative heterogeneity is averaged over; phenomena specific to a par-
ticular set of nonnative energies, e.g., ‘‘off-pathway’’ intermediates, are smoothed over in
this procedure.

fNote that in Eq. 4, we explicitly include the trace over configurations at overall order Q. The
Qi that minimize F are the thermal values.

gIn the contact representation, the averaged bond occupation probabilities Qi 5 ^4i&TH are
analogous to the averaged number density operator in an inhomogeneous fluid:
^n(x)&TH 5 ^¥id(xi 2 x)&TH.

hThe value a 5 1.37 gives the best fit to the lattice 27-mer data for the route entropy,
whereas a > 1.0 best fits the 27-mer free energy function. We generally use a > 1.0,
because the 27-mer is small; for larger systems, a is smaller: more polymer is buried, and
thus it is more strongly constrained by surrounding contacts.
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We introduce a measure of ‘‘routing’’ 5(Q) by expanding the
entropy to lowest orderi: 6ROUTE({Q 1 dQi}) > 6ROUTE

MAX 2
l5(Q)y2, where we have defined 5(Q) by 5(Q) 5
^dQ2&y^dQ2&MAX, which is the variance of contact probabilities
normalized by the maximal variance,j in the limit 5(Q) 5 0, the
uniformly ordering system has the maximal route entropy. When
Qi 5 0 or 1 only, 5(Q) 5 1, 6ROUTE 5 0, and only one route
to the native state is allowed.k

In the supplementary material (www.pnas.org), we derive a form
for the configurational entropy loss to fold to a given topological
structure by accounting for the distribution of entropy losses to
form bonds or contacts because of the distribution of sequence
lengths in that structure. We let the effective sequence (loop) length
between residues i and j, ,EFF(ui 2 ju, Q) be a function of Q (this is
a mean-field approximation), and we take the entropy loss to close
this loop to be of the Flory form ;(3y2)ln(ay,EFF). The require-
ment that the entropy be a state function restricts the possible
functional form of the effective loop length. The result of the
derivation for the contact entropy loss to form state {Qi} is:

6BOND 5 2~3y2!M~^dQd ln ,& 1 SMF~Q,,!! , [3]

where ^dQd ln ,& 5 (1yM)¥i(Qi 2 Q)(ln ,i 2 ln ,) is the
correlation between the fluctuations in contact probability and
log loop length, and SMF(Q,,) is the mean-field bond entropy
loss (described in supplemental data) and is a function only of
Q and the mean loop length ,. By Eq. 3, the entropy is raised
above that of a symmetrically ordering system when shorter
ranged contacts have higher probability to be formed; this effect
lowers the barrier. Eqs. 2–4 together give expression (6) for the
free energy F({Qi(Q)}u{«i}, {,i}) of a well-designed protein
that orders heterogeneously.

The lattice protein used in Fig. 1 to check the theory is a chain
of 27 monomers constrained to the vertices of a three-dimensional
cubic lattice. Details of the model and its behavior can be found in
refs. 8, 19, 21, 32, 42, and 43. Monomers have nonbonded contact
interactions with a Go# potential (native interactions only).l Cou-
pling energies were chosen for row 1 of Fig. 1 by first running a
simulated annealing algorithm to find the set {«i

,} that makes all the
Qi({«i

,}) 5 Q‡ at the barrier peak. Energies are always constrained
to sum to a fixed total native energy: ¥i«i 5 M«#. Then energies were
relaxed by letting «i 5 «i

, 1 a(«# i 2 «i
,). The values a 5 1, 1.35, and

2.05 were used in rows 2, 3, and 4, respectively.

Free Energy Functional
By averaging a contact Hamiltonian over nonnative interactions,
we can derive an approximate free energy functional for a
well-designed protein (see Methods). We analyze here hetero-
geneity in minimally frustrated sequences, where the roughness
energy scale b is smaller than the stability gap «# . The general
form of the free energy functional is:

F 5 K O
i51

M

@«i4i 2 TS~$4i%uQ!#L 9

THERM

2
Mb2

2T
~1 2 Q! [4]

where 4i 5 (0, 1) counts native contacts in a configurational state
(so the sum on «i4i gives the states energy), summing S({4i}uQ)
gives the states configurational entropy, and then this is thermally
averaged over all states restricted to have MQ contacts. The second
term accounts for low-energy nonnative traps.

The study of the configurational entropy is a fascinating but
complicated problem detailed in Methods. In summary, this entropy
functional generalizes the Flory mean-field result (53, 54) to
account for the topological heterogeneity inherent in the native
structure and a finite average return length for that structure
[contact order (47)], as well as to account for the number of folding
routes to the native structure. The amount of route diversity or
narrowness in folding can be quantified in terms of the relative
fluctuations of contact formation dQ 5 Qi(Q) 2 Q:

5~Q! 5 ^dQ2&y^dQ2&MAX , [5]

which is useful for our analysis below. Our resulting analytic
expression for the free energy of a protein that folds heteroge-
neously ism:

F
M

>
FMF

o

M
1 dQd« 1

lT
2

dQ2

Q~1 2 Q!
1

3
2

dQd ln,. [6]

Here FMF
o (Q) is the uniform-field free energy function (similar

to that obtained previously in ref. 10). The free energy functional
is approximate in that it results from an integration over a local
free energy density whose only information about the surround-
ing medium is through the average field present (Q), F 5
¥i fi(Qi, Q). Cooperative entropic effects caused by local corre-
lations (48, 55) between contacts would be an important exten-
sion of the model and have been treated elsewhere in similar
models (48). Inspection of Eq. 6 shows that as heterogeneity
increases, the effect on the barrier is a competition between
energetic and polymer entropy gains (second and fourth terms)
and route entropy losses (third term), as described above.

Minimizing the free energy (6) at fixed Q, d(F 1 m¥jQj) 5 0
gives a Fermi distribution for the most probable bond occupation
probabilities {Qi

,} for a given {«i} and {,i}:

Qi
,~Q! 5 1y~1 1 exp@~m9 1 «i 2 Tsi!ylT#!, [7]

where the Lagrange multiplier m9 ; 2(1yM)­Fy­Q is related
to the effective force on the potential F(Q). Positive second
variation of F indicates the extremum is in fact a minimum.

Optimizing Rates, Stability, and Entropy
We now consider the effects on the free energy when the native
interactions between residues are changed in a controlled man-
ner. The theory predicts a barrier at the transition temperature
of a few kBT, in general agreement with experiments on small
single-domain proteins. The barrier height is fairly small com-
pared to the total thermal energy of the system, reflecting the
exchange of entropy for energy as the protein folds. However,
the barrier height can vary significantly depending on which
parts of the protein are more stable in their local native structure.
At uniform stability, we find that the largest barrier (for a given
total native energy) is about twice as large as the barrier when
stability is governed purely by the three-dimensional native
structure, i.e., when all interaction energies are equal. Increasing
heterogeneity, by energetically favoring regions of the protein
that are already entropically likely to order, systematically
decreases the barrier and in fact can eliminate the barrier
entirely if the heterogeneity is large enough. See Fig. 1.

iWe avoid the word ‘‘pathway,’’ because several definitions exist in the literature; here a
single route is unambiguously defined through the limit 6ROUTE 3 0.

jThat is, if MQ contacts were made with probability 1, and M 2 MQ contacts were
made with probability 0, then ^(Qi 2 Q)2&MAX 5 (1yM)(MQ(1 2 Q)2 1 (M 2 MQ)Q2) 5

Q(1 2 Q). Thus 5(Q) is between 0 and 1.

kThat is, because all Qi are only zero or one at any degree of nativeness, each successive
bond added must always be the same one, so folding is then a random walk on the
potential defined by that single route (chain entropy is still present). 5(Q) is in the spirit
of a Debye–Waller factor applied to folding routes.

lCorner, crankshaft, and end moves are allowed. Free energies and contact probabilities are
obtained by equilibrium Monte Carlo sampling by using the histogram method (43).
Sampling error is ,5%.

mWe have expanded the route entropy Eq. 2 to second order in this expression for clarity;
in deriving the results of the theory, the full expression is used.
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Fig. 1. The effects of heterogeneity in contact probability (increased, Top to Bottom) on barrier height F‡, folding temperature TF, and ordering heterogeneity
are summarized here; plots are for simulations of a 27-mer lattice Go# model (yellow) to the same native structure (given in ref. 21), and for the analytic theory
in the text (red). The simulation results make no assumptions as to the nature of the configurational entropy; the theoretical results use the approximate state
function of Eq. 3, along with a cutoff used for the shorter loops so the bond entropy loss for each loop is always #0 (the same loop length distribution is used
as in the lattice structure. In the top row, energies are tuned for both simulation and theory to fully symmetrize the funnel: Qi(«i

,) 5 Q; second row: energies
are then relaxed for the simulation results so they are all equal: «i 5 «# ; energies in the theory are relaxed the same way until a comparable TF is achieved; third
row: energies are then further tuned to a distribution «i > «i

o that kills the barrier (there are many such distributions; all that is necessary is sufficient contact
heterogeneity). The top three rows are funneled folding mechanisms with many routes to the native structure. Bottom row: energies are tuned to induce a single
or a few specific routes for folding. All the while, the energies are constrained to sum to EN: ¥i«i 5 EN. The free energy profile F(Q) (in units of «#) is plotted in
the left column at the folding transition temperature TF, which is given. The next column shows the distribution of thermodynamic contact probabilities Qi(Q‡) ;
f9 at the barrier peak [we use the notation f9, because this is a thermodynamic rather than kinetic measurement; however, for well-designed proteins, the two
are strongly correlated with coefficient '0.85 (42)]. Only simulation results are shown to keep the figure easy to read; the theory gives f9 distributions within
;10%, as may be inferred from their similar route measures. The next column shows the route measure 5(Q) of Eq. 5 and gives the dispersion in native energies
required to induce the scenario of that row [5(0, 1) 5 0y0 is undefined and so is omitted from the simulation plots; it is defined in the theory through the limits
Q 3 0,1]. The right column shows schematically the different folding routes as heterogeneity is increased; from a maximum number of routes through Q† to
essentially just one route. Top row: In the uniformly ordering funnel, we can see first that P(f9) is a d function, and 5(Q‡) 5 0 (cf. Eq. 5), so ordering at the
transition state (or barrier peak Q†) is essentially homogeneous. The number of routes through the bottleneck (cf. Eq. 2) is maximized, as schematically drawn
(Right). Branches are drawn in the routes to illustrate the minimum of 5(Q) at Q‡. The free energy barrier is maximized (Eq. 10), thus the stability of the native
state at fixed temperature and native energy is maximized, and so the folding temperature TF at fixed native energy is maximized. TF in the simulation is defined
as the temperature where the native state (Q 5 1) is occupied 50% of the time. In the theory, at TF the probability for Q $ 0.8 is 0.5. A very large dispersion
in energies is required to induce this scenario. Some contact energies are nearly zero; others are several times stronger than the average. Second row: In the
uniform native energy funnel, the barrier height is roughly halved while hardly changing TF for the following reason. In a Go# model, as the contact energies are
relaxed from {«i

,} to a uniform value «i 5 «# , the energy of the transition state is essentially constant: initially the energy is ¥iQi
,(Q†)«i

, 5 Q ¥i «i
, 5 QEN and

as the contact energies are relaxed to a uniform value¥iQi«# 5 «#¥iQi 5 QEN once again. However, the transition-state entropy increases and obtains its maximal
value when «i 5 «# , because then all microstates at Q† are equally probable, because the probability of occupying a microstate is pi , exp( 2 Ei(Q†)yT) 5

exp( 2 QENyT)yZ 5 1yV(Q†). The thermal entropy 2 ¥ipi log pi then equals the configurational entropy log V(Q†) (its largest possible value). Thus, as contact
energies are relaxed from «i

, where they are anticorrelated to their loop lengths (more negative energies tend to be required for longer loops to have equal
free energies) to «# where they are uncorrelated to their loop lengths, the barrier initially decreases because the total entropy of the bottleneck increases (drawn
schematically on the right); i.e., increases in polymer halo entropy are more important than decreases in route entropy. The system is still sufficiently two state
that TF is hardly changed. P(f9) is broad, indicating inhomogeneity in the transition state, solely in this scenario because of the topology of the native structure:
all contacts are equivalent energetically. Routing is more pronounced when «i 5 «# , 5(Q) is a measure of the intrinsic fluctuations in order because of the
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We seek to relax the values of {«j} at fixed native energy EN 5
¥j«j to the distribution {«i

,({,j})} that extremizes the free
energy barrier, by finding the solution of ¥i[dF‡yd«i 2 p]d«i 5
0 for arbitrary and independent variations d«i in the energies. It
can be shown that dFyd«i 5 ­Fy­«i 1 m(dyd«i) ¥jQj; however,
the second term is zero, because dQyd«i 5 0, so by Eq. 4
dFyd«i 5 Qi: the contact probability plays the role of the local
density, and the perturbation d«i the role of an external field, as
in liquid state theory. At the extremum, all contact probabilities
are equal: Qi 5 p 5 Q†, which in our model means that longer
loops have lower (stronger) energies: d« i 5 Tdsi 5
2(3y2)Td ln,i; there is full symmetry in the ordering of the
protein at the extremum. Evaluating the second derivative
mechanical-stability matrix shows Qi 5 Q‡ to be an unstable
maximum:

~d2F‡yd«jd«i!«i
,,«j

, 5 2dijQ‡~1 2 Q‡!yl‡T. [8]

This is clearly negative, meaning that tuning the energies so that
Qi 5 Q‡ maximizes the free energy at the barrier peak. Because the
change in the unfolded state (at Q ' 0) is much weaker than at the
transition state, the barrier height itself is essentially maximized.
Substituting Eq. 8 into a Taylor expansion of the free energy at the
extremum (and using l‡ 5 l(Q‡) ' 1 2 Q‡) gives for the rate:

k 5 kHOMOexp~Q‡Md«2y2T2!, [9]

which is to be compared with Eq. 1 in the supplementary material
(www.pnas.org) (obtained by an argument using the random energy
model). In terms of the route narrowness measure 5(Q), the
change in free energy barrier on perturbation is

dDF‡ 5 2~1y2!Ml‡T5~Q‡!. [10]

A variance in contact participations dQ2 5 0.05, which is about
20% of the maximal dispersion ('1y4, taking Q‡ ' 1y2),
lowers the barrier by about 0.1 NkBT or about 5kBT for a chain
of length N ' 50 [believed to model a protein with ;100 aa (9)].

We can extend the analysis by perturbing about a structure
with mean loop length , and including effects on the barrier
caused by dispersion in loop length and correlations between
energies and loop lengths. A perturbation expansion of the free
energy gives to lowest order:

dDF‡

M
5 2

Q‡

2T
d«2 2 T

9
8

Q‡
d,2

,# 2
2

3
4

Q‡
d,d«

,#
, [11]

indicating that the free energy barrier is lowered additionally by
structural variance in loop lengths and also when shorter range
contacts become stronger energetically (d,i , 0 and d«i , 0) or
longer range contacts become weaker energetically (d,i . 0 and
d«i . 0), i.e., in the model the free energy is lowered additionally
when fluctuations are correlated so as to increase further the
variance in contact participations. This effect has been seen in
experiments by the Serrano group (46, 56).

To test the validity of the theory, we compare the analytical
results obtained from our theory with the results from simulation
of a 27-mer lattice protein model. The comparison is shown on
Fig. 1, where a full analysis is performed. All energies are in units
of the mean native interaction strength «# .

The rate dependence on heterogeneity should be experimen-
tally testable by measuring the dependencies of folding rate at
the transition temperature of a well-designed protein on the
dispersion of f values. It is important that before and after the
mutation(s), the protein remain fast folding to the native struc-
ture without ‘‘off-pathway’’ intermediates and that its native
state enthalpy remain approximately the same, perhaps by
tuning environmental variables.

Conclusions and Future Work
In this paper, we have introduced refinement and insight into the
funnel picture by considering heterogeneity in the folding of
well-designed proteins. We have explored in minimally frus-
trated sequences how folding is effected by heterogeneity in
native contact energies as well as the entropic heterogeneity
inherent in folding to a specific three-dimensional native struc-
ture. Specifically, we examined the effects on the folding free
energy barrier, distribution of participations in the transition-
state ensemble TSE9,n as well as the diversity or narrowness of
folding routes. For the ensemble of sequences having a given
TFyTG, homogeneously ordering sequences have the largest
folding free energy barrier. For most structures, where topolog-
ical factors play an important role, this regime is achieved by
introducing a large dispersion in the distribution of native
contact energies, which in practice would be almost impossible
to achieve. As we reduce the dispersion in the contact energy
distribution to a uniform value «# , the dispersion of contact
participations increases, and thus the number of folding routes
decreases, the free energy barrier decreases, and the total
configurational entropy at the TSE9 initially increases because of
polymer halo effects. The folding temperature is only mildly
affected; the prefactor appearing in the rate is probably only

nWe use a prime, because we actually look at the barrier peak along the Q coordinate.

natural inhomogeneity present in the native structure. Different structures will have different profiles, and it will be interesting to see how this measure of
structure couples with thermodynamics and kinetics of folding. Loops and dead ends in the schematic drawings are used to illustrate local decreases and increases
in 5(Q); these fluctuations are captured by the theory only when the routing becomes pronounced (bottom row). The solid curves presented for the theory are
shown for a reduction in TF comparable to the simulations. There is still some energetic heterogeneity present, as indicated. When «i 5 «# in the theory (dashed
curves), the fluctuations in Qi are somewhat larger than the simulation values, and the entropic heterogeneity is sufficient to kill the barrier—the free energy
is downhill at TF > 0.5«# . The free energy barrier results from a cancellation of large terms and is significantly more sensitive than intensive parameters such as
route measure 5(Q). Third row: In approaching the zero-barrier funnel scenario for the simulation, the energies are further perturbed and now begin to
anticorrelate with contact probability (and tend to correlate with loop length); i.e., more probable contacts (which tend to have shorter loops) have stronger
energies. For the theory, not as much heterogeneity is required. Contact energies are still correlated with formation probability, as indicated by the signs in
parentheses. The free energy barrier continues to decrease until some set of energies {«i

o}, where the barrier at TF vanishes entirely. All the while, the transition
temperature TF decreases only ;10%, so that slowing of dynamics (as TF approaches TG) would not be a major factor. At this point, the f9 distribution at the barrier
position Q‡(«#) is essentially bimodal, but the distribution at Q‡({«i

o}) (Inset) is less so because of transition state drift towards lower Q values (the Hammond effect).
A relatively small amount of energetic heterogeneity is needed to kill the barrier at TF. There are still many routes to the native state, because 5(Q‡) < 0.3 2

0.4, but some contacts are fully formed in the transition state (some f9 > 1). Bottom row: As the energies continue to be perturbed to values that cause folding
to occur by a single dominant route rather than a funnel mechanism, folding becomes strongly downhill at the transition temperature, which drops more sharply
towards TG: to induce a single pathway here, TF must be decreased to about 1y4 the putative estimate of TG (about TF({«#})y1.6; see ref. 9). In this scenario, the
actual shape of the free energy profile depends strongly on which route the system is tuned to; nonnative interactions not included here become important.
Contact participation at the barrier is essentially one or zero, and the route measure at the barrier is essentially one. The entropy at the bottleneck is relatively
small (the halo entropy of a single native core). The energetic heterogeneity necessary to achieve this scenario is again very large, comparable to what is needed
to achieve a uniform funnel.

Plotkin and Onuchic PNAS u June 6, 2000 u vol. 97 u no. 12 u 6513

BI
O

PH
YS

IC
S



mildly affected also, because it is largely a function of TFyTG and
polymer properties (21). Tuning the interaction energies further
results in more probable contacts having stronger energy. Route
diversity decreases to moderate values—there are still many
routes to the native state, and TFyTG is still sufficiently greater
than one. The barrier eventually decreases to zero, at relatively
mild dispersion in native contact energy. The funnel picture, with
different structural details, is valid for the above wide range of
native contact energy distributions. However, tuning the ener-
gies further so that probable contacts have even lower energy
eventually induces the system to take a single or very few folding
routes at the transition temperature. A large dispersion of
energies is required to achieve this, and in this regime the folding
temperature drops well below the glass temperature range,
where folding rates are extremely slow.

Because fine tuning interactions on the funnel may affect the
rate, sequences may be designed to fold both faster or slower to
the same structure of a wild-type sequence, depending on how
the interaction strengths correlate with the entropic likelihood of
contact formation. Folding rates in mutant proteins that exceed
those of the wild type have been receiving much interest in recent
experiments (46, 56–59). Enhancement (or suppression) of
folding rate to a given structure arising from changes in sequence
is modeled in our theory through changes in native interactions;
our results are supported fully by the experiments cited above.
The fact that a minimally frustrated protein is robust to pertur-
bations in the interactions means that at least the folding
scenarios depicted in the center two rows of Fig. 1 are feasible
within the ensemble of sequences that fold to the given structure.
However, the number of sequences should be maximal when all
the native interactions are near their average, and the actual
width of the native interactions depends on the true potential
energy function. Fluctuations in rate because of the weakening
or strengthening of nonnative traps by sequence perturbations is
an interesting topic of future research. The enhancements or
reductions in rate we have explored are mild compared to the
enhancement by minimal frustration (funneling the landscape):
the fine tuning of rates may be a phenomenon manifested by in
vitro or in machina evolution rather than in vivo evolution.
Nevertheless, rate tuning and folding heterogeneity may become

an important factor for larger proteins, where, e.g., stabilizing
partially native intermediates may increase the overall rate or
prevent aggregation. Given that a sequence is minimally frus-
trated, heterogeneity or broken-ordering symmetry in fact aids
folding, similar to the enhancement of nucleation rates seen in
other disordered media (60). Similar effects have been observed
in Monte Carlo simulations of sequence evolution, when the
selection criteria involves a fast-folding rate (33). Here we see
how such phenomena can arise from general considerations of
the energy landscape theory. The notion that rates increase with
heterogeneity at little expense to native stability contrasts with
the view that nonuniform ordering exists merely as a residual
signature of incomplete evolution to a uniformly folding state.
Adjusting the backbone rigidity or the nonadditivity of interac-
tions (10, 61) can also modify the barrier height, possibly as much
as the effects we are considering here. There may also be
functional reasons for nonuniform folding—malleability or ri-
gidity requirements of the active site may inhibit or enhance its
tendency to order. The amount of route narrowness in folding
was introduced as a thermodynamic measure through the mean
square fluctuations in a local order parameter. The route
measure may be useful in quantifying the natural kinetic acces-
sibility of various structures. Although structural heterogeneity
is essentially always present, the flexibility inherent in the
number of letters of the sequence code limits the amount of
native energetic heterogeneity possible. However, some se-
quence flexibility is in fact required for funnel topographies (62)
and so is probably present at least to a limited degree. We have
seen here how a very general theoretical framework can be
introduced to explain and understand the effects of local het-
erogeneity in native stability and structural topology on such
quantities as folding rates, transition temperatures, and the
degree of routing in the funnel-folding mechanism. Such a
theory should be a useful guide in interpreting and predicting
experimental results on many fast-folding proteins.
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