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A systematically coarse-grained model for DNA and its predictions
for persistence length, stacking, twist, and chirality
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We introduce a coarse-grained model of DNA with bases modeled as rigid-body ellipsoids to
capture their anisotropic stereochemistry. Interaction potentials are all physicochemical and
generated from all-atom simulation/parameterization with minimal phenomenology. Persistence
length, degree of stacking, and twist are studied by molecular dynamics simulation as functions of
temperature, salt concentration, sequence, interaction potential strength, and local position along the
chain for both single- and double-stranded DNA where appropriate. The model of DNA shows
several phase transitions and crossover regimes in addition to dehybridization, including unstacking,
untwisting, and collapse, which affect mechanical properties such as rigidity and persistence length.
The model also exhibits chirality with a stable right-handed and metastable left-handed helix.
© 2010 American Institute of Physics. [doi:10.1063/1.3269994 |

I. INTRODUCTION

DNA is likely the most well-studied biomolecule, with
structural, energetic, and kinetic characterizations spanning
over 6 decades of research since its isolation as the carrier of
genetic information by Avery and co-workers.' Elucidating
the varied behaviors of DNA has been primarily an experi-
mental endeavor due in large part to the difficulties in cap-
turing the molecule’s complex motion and function either
computationally or theoretically. The computational difficul-
ties are primarily due to the fact that much of the interesting
behavior takes place on time scales three to six orders of
magnitude longer than the longest all-atom simulations of a
system comparable to the typical size of a gene (currently
nanoseconds?).

For example, RNA polymerase transcribes DNA at a rate
of about 14 ms/nucleotide in eukaryotes3 during elongation
with comparable rates in E. Coli.* These rates are further
slowed by transcriptional pausing to regulate arrest and
termination”’ by ~seconds per pause. Even “fast” processes
such as bacteriophage DNA ejection have translocation times
greater than 10 us/ bp.g’9 Time scales for DNA packaging
into the viral capsid are ~10 ms/ bp.10 Nucleosome conden-
sation time scales at in vivo histone concentrations are
~10 ms." To address any of these biologically relevant phe-
nomena computationally currently requires the introduction
of coarse-grained models. The choice of coarse-grained
DNA model reflects the empirical phenomena the model in-
tends to capture. For example, a description of zinc-finger
protein binding to DNA would require an accurate represen-
tation of major and minor grooves, whereas a description of
the sequence dependence of nanopore translocation would
require an accurate description of the stereochemistry of
bases. As in the above examples, these phenomena also ex-
hibit slow kinetics compared to time scales accessible with
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atomistic simulations. Binding rates for transcription
factors'? are of the order of 1/ms per promoter at a cellular
concentration of ~10°/nucleus, and translocation times for
single-stranded DNA at typical experimental voltages are of
the order of 100 us for a 100 bp sequence.13

On the coarsest scale, a piece of double-stranded DNA
may be described as a semiflexible polymer using the worm-
like chain model. On this level, the only parameters charac-
terizing the molecule are its total length and its bending ri-
gidity «, which determines the persistence length
€,=K/kgT. This model is very successful in capturing chain
properties on scales larger than €, for instance, the force-
extension relation,14 but carries no information about the in-
ternal structure of the double strand. Slightly more refined
models approximate single-stranded DNA as a semiflexible
chain of sterically repulsive spheres,lS’16 which may carry
charge and thus interact with an external field, although Cou-
lombic monomer-monomer interactions were neglected in
these models. One bead per nucleotide representations of
DNA have also been used to describe supercoiling and local
denaturation in plasmids.l7 Bead-spring models of double-
stranded DNA with nonlinear interchain coupling through
hydrogen bonds have been used to study vibrational energy
transport and localization."® An extension of the bead-spring
idea, where base pairs were represented by a planar collec-
tion of 14 harmonically coupled beads, allowed for an inves-
tigation of spontaneous helix formation from initial ladder-
like conformations.” More detailed representations have
been proposed that describe DNA on the level of spherically
symmetric base monomers attached to a chain of similar
monomers representing the backbone.”*** In these ap-
proaches base molecules and repeat units on the backbone
are modeled as spheres that interact with other bases through
phenomenological potentials mimicking van der Waals and
hydrogen bonds. On this level of resolution, it is, for ex-
ample, possible to study thermal denaturation of DNA, as
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well as mechanical properties such as bending rigidity.
Zhang and Collins® treated base-ribose moieties as a single
rigid body with residues at the positions of hydrogen bond-
ing heavy atoms. While the rigid bodies were constrained to
undergo two-dimensional motion, base pairing through a
modified Morse potential allowed for a systematic study of
the structural changes during thermal denaturation. More re-
cently, Knotts et al. *% introduced a refined bead-spring model
that distinguishes between sugar and phosphate groups on
the backbone and individual base molecules. After parameter
adjustment, which included introducing a Go-like potential23
to bias the system to the crystal structure, the model was able
to describe several features of DNA physics such as the de-
pendence of €, and duplex stability on ionic concentration,
as well as the dynamics of thermally activated bubble forma-
tion in hybridization.

For phenomena such as protein-DNA binding and DNA
translocation, the base stereochemistry characterizing the
DNA sequence is of particular importance. To this end, we
introduce a model of DNA where phosphate and sugar
groups are represented by one coarse-grained (spherical)
residue and bases by a rigid-body ellipsoid. Sterically, bases
of DNA more accurately resemble a flat plate than a spheri-
cal object. Energetically, base-stacking interactions, pre-
dominantly governed by electron correlation (van der Waals)
interactions,”* play a significant if not dominant role in the
stability of the double helix.”> We adopt a systematic coarse-
graining approach, where we parameterize the effective in-
teractions through all-atom simulations wherever possible.
The interactions describing the stacking of bases are opti-
mized against a fully atomistic representation of the base
residues. Interactions describing covalent bonds, angles, and
dihedrals along the DNA strand are obtained from equilib-
rium simulations of a short all-atom strand of DNA. One
central difference in the present model from previous models
is therefore the absence of any structure-based potentials,
i.e., we do not use effective Go-like potentials to bias the
system toward an experimentally determined structure. All
behavior in the present model is a direct consequence of
physicochemical interactions and the systematic parameter-
ization procedure.

The definition of the model and details of our coarse-
graining scheme are described in the subsequent Model sec-
tion and in the supplementary material (SM).® We then in-
vestigate the predictions of the model for several important
properties of DNA, in particular persistence length €, and
radius of gyration R, of both double- and single-stranded
DNA. We introduce intuitive and quantitative methods to
calculate both helical twist and the stacking of bases as order
parameters characterizing the degree of native DNA struc-
ture. The behavior of these quantities is quantified as several
internal and environmental factors are varied, including se-
quence, interaction strength, strand length, temperature, and
ionic concentration. Finally, we investigate the chiral bias of
right-handed DNA over left-handed DNA exhibited by the
model.
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FIG. 1. Our coarse-graining scheme overlaid onto an all-atom visualization.
Panel (a) shows a section of three nucleotides: spherical sugar (s) and phos-
phate (p) residues together with ellipsoidal bases. Panel (b) shows a close up
of a base with ellipsoid overlay. The axes indicate the principal axes of the
base and are aligned with the principal axes of the ellipsoid, which deter-
mine the base’s initial orientation.

Il. MODEL
A. Parameterization of the model

Figure 1 depicts a piece of DNA in our coarse-grained
model superimposed on the all-atom representation. Alternat-
ing sugar (S) and phosphate (P) groups are replaced by
spherically symmetric residues. The sugar residue is located
at the position of the C1’ atom in standard crystallographic
notation, which is connected to the base by a single covalent
bond. The phosphate residue is located at the center of mass
of the phosphate group (PO,). The bases adenine, cytosine,
guanine, and thymine are represented as ellipsoidal objects
whose structure and interaction potential are described be-
low.

An immediate problem in coarse-grained systems is the
loss of knowledge regarding the Hamiltonian or energy func-
tion governing dynamics in the system. In all-atom classical
molecular dynamics simulations, this problem is resolved by
characterizing quantities such as partial charges and interac-
tion potentials with empirical parameters derived from best
fit to combinations of experimental and ab initio quantum
mechanical target data.”” We wish to adopt a similar meth-
odology with respect to the extraction of phenomenological
parameters here by characterizing our coarse-grained system
in terms of effective parameters derived from all-atom simu-
lations. The potential energy function for our system has the
following form:

V= VRE2(B1’B2) + VREZ(Bl,reSZ) + VHB(BI’BZ)
+ VLJ(rm’rsp) + VC(rpp) + Vbond(r) + Vangle(g)
+ Vainedral(9) - (1)

The individual terms in Eq. (1) are described below.

B. Base-base van der Waals interactions

The base-base interaction potentials Viz2(B,,B;) must
account for the shape and relative orientation of the aniso-
tropic ellipsoids representing the bases. We adopt the func-
tional form derived by Babadi er al.,”®* which is a modifi-
cation of Gay—Berne potentials3 % to better capture the long-
distance convergence to all-atom force fields. This so-called
RE? potential has a somewhat complicated form and is sum-
marized in the Appendix. Describing the effective ellipsoids
characterizing the bases involves several geometrical and en-
ergetic parameters. These are the three “half-diameters” for
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each base along principal axes (o, 0y,0,), three correspond-
ing “reciprocal well depths” for each base (e,,€,,€,), a pa-
rameter o, characterizing the interaction range between at-
oms in the all-atom potential, and the Hamaker constant
A,=4me€ ;p?0® in Lennard-Jones (LJ) units [given by Eq.
(2)], where p is the number density or reciprocal of the ef-
fective volume of each ellipsoid. The above 14 parameters
are found for the ten possible base-base interactions (A-A,
A-C, etc.) by best fit between the RE? functional form and an
all-atom molecular mechanics (MM3) force field®' with
Buckingham exponential-6 potentials, following the param-
eterization procedure in Ref. 29. The resulting values are
used in Vgg2(B,,B,) in Eq. (1) and are summarized in Table
SI in SM.*

Though the values in Table SI are essential to describe
the potential, it is more useful intuitively to determine the
half-diameters of the bases by taking two identical bases and
aligning them along the three principal axes. Two identical
bases are brought together along a principal axis until their
RE? potential is equal to 1kgT and 10kgT. The distances that
result are measures of the energetically determined effective
diameters of the ellipsoid representing the base and are tabu-
lated for all residues in Tables SII and SIII in SM.*® The
distances determined in this manner from the RE? equipoten-
tials should correlate with the size of the bases as determined
by other independent measures such as the effective hydro-
dynamic radii of the bases, which can be extracted from
all-atom simulation studies of the diffusion of a base in wa-
ter. This comparison is described below and in the Appendix.

C. Base-sugar and base-phosphate van der Waals
interactions

Bases may interact as well with phosphate or sugar resi-
dues according to so-called sphere-asphere potentials
Vre2(B, ,res,), which are a limiting case of RE? interactions
when one entity is spherical. The form of this potential is
shown in Egs. (A5). Computation of sphere-asphere poten-
tials is more efficient than the full RE? potential. We take
RE? parameters between the base in question and a sphere of
the LJ radius o. These parameters are given in Tables SIV
and SV for the interactions of bases with phosphates and
sugars, respectively. Base-phosphate potentials are derived
from fits to the MM3 potential in the same manner as base-
base interactions and result in well depths between about
0.2kgT and 0.7kgT. Base-sugar interaction parameters are se-
lected so that their corresponding potentials are nearly purely
repulsive. This results in small values of the energy param-
eters and an interaction radius of 2 A (see Tables SIV and
SV).

D. Sugar-sugar and sugar-phosphate van der Waals
interactions

Sugars may interact with nonlocal sugar and phosphate
residues that happen to be in spatial proximity. We model
their interaction with a LJ potential
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FIG. 2. Explanation of the hydrogen bond potential Eq. (3). (A) shows two
bases aligned in the minimum energy configuration where r=ry, and (B)
shows the two bases in a higher energy configuration where r#ry and
6,,0,%0.

Vii(r) = de [ (o/r)'? = (a/r)°] (2)

between residues i and j such that j>i+2. We use a well
depth of € ;=0.25 kcal/mol and a distance of =2 A. This
potential mainly serves to prevent steric overlap of backbone
residues.

E. Base-base hydrogen bonds

Bases in DNA may pair by hydrogen bonding, an inter-
action not accounted for by the RE? potential which is based
on atomic van der Waals interactions. We add this explicitly
using a phenomenological potential with a form generalized
from that used in all-atom studies,’

V(ij)_E |:5(r_N>12 6<V_N>10:|( 4 4
HB = €HB iy B cos*(36;)cos*(3¢,)
+cos*(3 Bj)cos4(3 ). (3)

The hydrogen bond potential for a Watson-Crick pair
can be interpreted as the sum of two potentials V(}’I}3+ Vg;
representing the hydrogen bonds from base i —j and base j
— 1, respectively. The potential can be best understood from
Fig. 2. V(l;)B is a three-body potential between the center of
mass of base i (r;), a point on the exterior of the ellipsoid
considered to be the origin of the hydrogen bond (r,), and a
point on the other base (rg) corresponding to either donor or
acceptor. The hydrogen bonding in the other direction is
similarly defined. We take r, and ry to be the unique points
along the line segments joining r; and r,, which intersect the
surfaces of the two ellipsoids when the bases have the posi-
tions determined by the standard coordinates of the B iso-
form structure of DNA.* In Eq. (3), r=|ry—rg| and ry
=|r) ~r}| in the B isoform structure [see Fig. 2(a)].

The angle 6 in Eq. (3) is defined in Fig. 2(b). The angle
¢ in Eq. (3) captures the empirical fact that multiple hydro-
gen bonds between bases results in a rigidity to fluctuations
that would prevent base 2 from rotating about p,, for ex-
ample. Let n; and n, be the normals of bases i and j, respec-
tively. The ¢;-dependent terms break the symmetry of rota-
tions of base i about p;=r,—r; and rotations of j about p,.
In Fig. 2(b), these normals are all pointing out of the page for
simplicity. For the case of ¢; we project the normal n, onto
the plane perpendicular to p;, and ¢ will be the angle be-
tween this projected vector and n;: cos(¢;)=n;-(n,
—-n,-p;)/|my—n,-p,|. We perform the symmetric calculation
(i+=j, 1+2)to get ¢;. Since the f-dependent terms in Eq.
(3) already provide rigidity against fluctuations such as those
shown in Fig. 2(b) (right) as well as to buckling out of plane,
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we found the above formulation superior to simply using
n;-n,, which would “overcount” the potential cost of those
fluctuations.

As in all-atom hydrogen bond potentials, raising the co-
sines in Eq. (3) to the power of 4 ensures that the potential is
strongly orientation dependent. The factor of 3 inside the
cosine is a result of the fact that we apply an angle cutoff of
/6 to both 6 and ¢. Therefore, when either angle reaches
/6, its contribution to the hydrogen bond potential van-
ishes. This also ensures a well depth ey and avoids multiple
minima in the cosine terms. The equilibrium separation ry is
chosen so that the minimum of the potential matches the
correct equilibrium separation in the crystal structure.

Energy well depths must account for the fact that when a
base pair hydrogen bond is broken, the two bases can form
hydrogen bonds with the solvent. In implicit water, the well
depth of the hydrogen bond represents the free energy differ-
ence between bonded and unbonded base pairs in solvent,
which has been determined experimentally to be
1.2+0.4 kcal/mol for each hydrogen bond.* Additionally,
there is cooperativity in the energies of three hydrogen
bonds, which makes G-C bonds more than 1.5 times stronger
than A-T bonds. The stability of a base pair is also reduced
by the presence of neighbors in the crystal structure, which
induces strain on the base pailr,35 and reduces the value from
that of an isolated base pair,36 to stabilities of 10.2 and 17.2
kcal/mol for A-T and G-C pairs, respectively, in vacuo. The
ratio between these two hydrogen bond well depths is 1.686,
which when applied to the reasonable estimate of 2.4 kcal/
mol for the hydrogen bond strength of A-T pairs in water
gives an estimate of 4.0 kcal/mol for the hydrogen bond
strength of G-C pairs. We therefore take 2.4 and 4.0 kcal/mol
as our well depths eyg for A-T and G-C hydrogen pairings,
respectively.

We allow hydrogen bonds between any pair of bases that
satisfies the Watson—Crick pairing requirement. Due to the
fact that our hydrogen bond potential is strongly orientation
and position dependent, we found that it was very rare that a
base shared a bond with more than one base at a time: on
average, about 95% of the hydrogen bond energy was con-
centrated between the putatively bonded base pairs. The av-
erage base-base-stacking energy at typical temperatures and
ionic concentrations is approximately — 1.6 kcal/mol per pair
of stacked bases. For the same conditions we find an average
hydrogen bond energy per hybridized base pair of —3.2 kcal/
mol. Because a double helix of length N has N base pairs and
2N-2 stacking interactions, the total hydrogen bond energy
and stacking are comparable in strength in our model.

F. Phosphate-phosphate electrostatic interactions

Phosphate atoms in DNA atoms carry a partial charge
close to —e in solution; in our coarse-grained model we thus
assign a charge —e on each P residue. These charged residues
interact by a screened Coulomb potential in the presence of
ionic solution, which is approximated here by Debye—Hiickel
theory. Ions are treated implicitly, and the potential between
charged sites is given by
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FIG. 3. Recipe for the determination of bond, angle, and dihedral potentials
from all-atom simulations (see text).

—r/€

i .e D
Vyo(r) = HE— @)

dmre erj;

Here €=78 is the dielectric constant of water, and ¢p
=(e,ekT/2¢%c)"? is the Debye length. €, is the permittivity
of free space, and c is the ionic concentration. In water with
200 leI ionic concentration of KCI, the Debye length €y,
~6.8 A.

G. Determination of local potentials by all-atom
simulation

For all local potentials: bond, angle, and dihedral in Eq.
(1), no functional form is assumed a priori. Instead the func-
tional form and the potential parameters are extracted from
thermal sampling of equilibrium configurations in all-atom
simulations. For example, bond angle potentials up to an
unimportant constant are given by Vy(6)=—kgT In p(6),
where p(6) is the probability to observe a bond angle of 6.
To obtain statistics that are undistorted by the presence of
potential terms already accounted for in Eq. (1), we designed
a modified system that had no base-base interactions and
minimal Coulombic interactions between phosphates. Three
consecutive bases are taken with center base A, T, G, or C as
in Fig. 3(a). The end bases are then removed and replaced
with a hydrogen atom with the correct bond length to each
C1’ atom [Fig. 3(b)]. This removes any bias in the effective
potentials that would have been due to base-base interac-
tions, which are already included in Eq. (1). The molecule is
then solvated in a box of water such that the water extends 8
A beyond the boundary of the simulated molecule on all 6
sides, and K* and CI~ ions are added at an average concen-
tration of 200 mM [Fig. 3(c)]. In practice this involves add-
ing of order 1 ions to the system. Charge neutrality biases the
number of ions of each type: there are more positive charges
present to balance the negative phosphate backbone. The re-
sulting system is then simulated for ~250 ns for each base
using the NAMD simulation package37 with CHARMM?27 poten-
tial parameter set.”” This long simulation time is required for
the statistics gathered to converge within reasonable limits.
Bond potentials converge to within 1% of their asymptotic
value in 0.02 ns, single well angle potentials converge in 0.5
ns, double well angle potentials converge in 2.5 ns, and the
dihedral potentials converge in 5 ns. The longer simulation
time was to be certain of the convergence and was not pro-
hibitive due to the very small size of the strand we were
simulating. Dihedral potentials converge slower: their poten-
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tials are shallower resulting in longer relaxation times, and a
larger phase space (larger number of atoms) is involved.

We found that the potentials extracted from all-atom
simulations often differed markedly from the commonly as-
sumed phenomenological forms for such potentials between
the same sets of atoms. In the supplemental materials section
C, we show representative plots of the statistics-derived po-
tentials for the case of bonds lengths (Fig. S1), bond angles
(Fig. S2), and dihedral angles (Fig. S3). We use A, T, G, and
C to represent the location of the center of mass of each base.
The parameters for all these potentials are given in Tables
SVII-SX in SM.*

We also found that correlations between the coordinates
used for Boltzmann inversion were generally small but non-
zero, with a rms value for cross-correlations of =0.19.
Larger cross-correlations tended to be between overlapping
degrees of freedom such as bond P3/S and angle P3/SPs5. We
plot the correlation matrix in Fig. S4.

Almost all bonds show Gaussian statistics consistent
with harmonic potentials: Vbond(r)=%k,(r—r0)2; however the
spring constants k, vary considerably. The stiffest bonds
were between the center of mass of the bases and the C1’
sugar residue. For this bond, pyrimidines, being the smaller
bases, were stiffer than purines. The effective bond spring
constant correlates well with that predicted by the phonon
dispersion relation for a one-dimensional (1D) chain of
coupled oscillators (Fig. 18). The bond potentials between
base center of mass and C1’ are quite stiff, having natural
frequencies of order 0.1 fs~'. Explicitly including these
would necessitate a prohibitively short time step in coarse-
grained simulations. For this reason we treat the base-C1’
system as a single entity, i.e., the base ellipsoid plus C1’
residue are hard-coded as a rigid object with fixed internal
geometry. Because the position of the neighboring sugar resi-
due is always the same relative to the base, a force on the
sugar induces the same force as well as a torque on the base
ellipsoid.

There are 11 different bond angles in the coarse-grained
model. Five of these have harmonic potentials, V,e(6)
=%k0(0— 6,)%, with stiffness coefficients k, ranging from
about 3 to 19 kcal/mol-rad®. The stiffness of S5 Ps.S and
SP5:S3 are equal within error bars and might differ only
through end effects; hence we take the average. Six of the
bond angles were much more readily fit by double well po-
tentials,

Vangle(0) =—kg T In(e~1(0- 02 12kpT 4 f pkal0- 92)2/2kBT)’

(5)

with minimum angles 6; and 6,, effective stiffness constants
kq and k,, and dimensionless weighting factor A. While typi-
cal barrier heights for interconversion were about 1kp7, the
largest barrier for interconversion between wells was about
4kgT for Orsp. - Similar to the bond potentials, the stiffness

coefficients of the harmonic bond angles show a decreasing
trend with mean distance between the participating atoms
(Fig. 18).

The minima of the parameterized angle potentials com-
pare well with the angles extracted from the atomic coordi-
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nates of the standard model of (B, 10,,0.338)-DNA derived
from the crystal structure™ (Fig. S5). In cases with double-
welled angle potentials, the B-form standard model angles lie
between the two parameterized wells, closer to the deeper
one. Therefore, the parameterization taken from a piece of
DNA too small to form anything like a double helix actually
biases the angle potentials to a double helix quite well. An
exception was backbone angles, which showed a significant
discrepancy with those of the B-DNA structure. Other poten-
tials such as stacking may strongly influence the equilibrium
angle observed for larger strands of DNA, as noted by Tep-
per and Voth," who set the equilibrium backbone angle to =
in their model.

There are four types of dihedral potential in the model:
using the notation X for any of the four bases, these are
Ss51P5:SX, S5:P5/SP3/, P5iSP3:S5:, and XSP5:S5 [these coor-
dinates can be seen in Fig. 1(a)]. The dihedral potentials for
different bases generally have different parameters, which
split the above four types into ten distinct dihedral potentials.
The dihedral potentials are well fit by the functional form
(see Table SIX in supporting materials*°)

3
Viginedaral(9) = 2 K, (1 = cos(ndp— &,)). (6)
n=1

Barriers between local minima on the dihedral potential
were all less than about 1.5kg7, indicating rotations with
respect to these degrees of freedom are all quite facile. A
comparison of the minima of the resulting dihedral angles
with those extracted from the crystal structure of B-DNA can
be seen in Fig. S6.

There is an improper angle between the normals to the
planes defined by P3,SX and Ps5,.SX, where X represents the
base. This angle is taken to be zero when the P;/ residue
coincides with Ps,, and 7 when P5:SXPs, all lie in the same
plane in the shape of a “Y.” Generally the parameters enter-
ing into this potential were base-dependent (see Table SX)
and well fit by Eq. (6). There was generally a preferred angle
around 0.8 for the purines and ~0.57 for the pyrimidines
and a large barrier (~5kgT for purines and ~8kgT for the
pyrimidines) that inhibited full rotation.

We found that in the all-atom simulations bases were not
free to rotate: interactions with the rest of the molecule bi-
ased the orientation of the effective ellipsoid to have a pre-
ferred angle. However these interactions are already counted
in base-P or P-P interactions in Eq. (1), so to explicitly in-
clude such effects in an angle potential representing the ori-
entation of the base would be redundant. Moreover, we ob-
served that explicitly adding such a base-orientation potential
derived from the all-atom statistics for three consecutive
bases decorrelates the normal vectors of each base from its
neighbors and thus competes with stacking order. We thus
allowed bases to freely rotate about the C1’-base bond.

H. Langevin thermostat

We have adapted the molecular dynamics package LAM-
MPS (Ref. 38) to simulate the coarse-grained DNA model.
The equations of motion are integrated using a conventional
velocity Verlet method for translational and rotational de-
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grees of freedom with a timestep Ar=2-10 fs depending on
the degree of collapse in the system. To avoid the well-
known singularities associated with Euler angles, a quater-
nion representation is used to describe the orientation of the
ellipsoids.39 Since we represent the DNA in implicit solvent,
we employ a Langevin thermostat to maintain constant tem-
perature. The thermostat adds forces F“) and torques 7 to
the deterministic forces and torques arising from the interac-
tion potentials. In the principal (body-centered) basis, these
stochastic forces and torques are given by

FP = ", + &, (7a)

= - £+ €% (7b)

Here v; and w; denote the Cartesian components of transla-
tional and angular velocities, £ and £ are the eigenvalue
coefficients of the translational and rotational friction tensors
and &" and £°" are components of white noise whose ampli-
tudes are related to the friction coefficients through the fluc-
tuation dissipation theorem.

In the body frame of the ellipsoid, the friction tensor
is diagonal so that Egs. (7a) and (7b) for the torques can be
evaluated directly. The Langevin forces on the translational
degrees of freedom in the fixed laboratory frame, however,
depend on the orientation of the ellipsoid relative to the di-
rection of motion. On time scales shorter than a typical ro-
tation time, the diffusion of an ellipsoid is anisotropic but
crosses over to an effective isotropic diffusion at longer
times.*” We found it easiest in calculating these forces to first
project the velocity vector into the body frame of the ellip-
soid (where the friction tensor is diagonal), evaluate Egs.
(7a) and (7b) in the body frame, and lastly rotate the result-

HETgg ,s = CAGGATTAATGGCGCCTACCTTACC,
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ing force vector F'¥¢ back into the frame of the simulation
cell. The same basis transformation was performed in calcu-
lating torques in Egs. (7a) and (7b).

The values of the translational and rotational friction co-
efficients in Egs. (7a) and (7b) are taken directly from all-
atom simulations of the diffusion of a single base solvated in
a (20 A)? box of water with 200 mM KCI. Separate 10 ns
simulations are performed for each base. From these results,
the effective radii of the ellipsoid representing the base can
be found by comparing the observed friction coefficients
with that predicted from continuum hydrodynamic theory. It
is encouraging that these radii are comparable to the ener-
getic equipotential radii at 10kgT (Fig. 17). However it is
worth noting that the radii extracted from continuum hydro-
dynamics tend to be smaller than the energetic radii most
likely due to a breakdown of the no-slip condition at the
interface between bases and water.

I. Energy scale for the effective simulation temperature

We express temperature in units of a natural energy scale
€ in the system. We construct this energy scale by taking the
minima of the RE? potential between identical bases given as
Vimin in Table SII and averaging this value over all bases A,
C, G, and T and orientations X, y, and z (an average of the 12
energetic values in Table SII). This results in a value of €
=1.45 kcal/mol.

J. Sequence definitions

Sequences used in our simulations will be referred to
with the following convention. We will use Cy-Gy to mean a
strand of poly(C) of length N, which is hydrogen bonded to
its complementary poly(G) strand of the same length. Ay-Ty
is similarly defined. HET denotes several heterogeneous se-
quences defined in the 5" — 3’ direction as

HETgs 30 = CATCCTCGACAATCGGAACCAGGAAGCGCC,

HETjg gy=HETgg 3--CCGCAACTCTGCCGCGATCGGTGTTCGCCT.

Finally, HETpg v is a strand of HETgg y that is hydrogen
bonded to its complementary strand.

lll. RESULTS
A. Persistence length of ssDNA and dsDNA

The persistence length €, is a measure of the rigidity of
a polymer and is given by the decay constant of the back-
bone unit tangent vector £(s) as a function of base index or
position s along the strand: ({(s,) - t(s))=¢~"%, where (--+) is
a thermal average. For single-stranded DNA (ssDNA), the
tangent t was calculated by taking the vector from the sugar
(C1’) residue on base i to the sugar on base i+1 and nor-

malizing to unity. For double-stranded DNA (dsDNA), the
tangent t was calculated by taking the vector from the mid-
point of the sugar residues of hydrogen bonded base pairs at
i to the midpoint of sugar residues of base pairs at i+5 and
then normalizing to unity. The persistence length €, was then
obtained by exponential fits of the data to the above correla-
tion function. We found that for dsDNA, if the local principal
axis tangent to the contour length of DNA (see Sec. III B) is
used instead of the above recipe, the same persistence length
is obtained to within 2%.

Without the stabilizing structure of the double helix,
single-stranded DNA at ionic concentrations of 0.04M has a
persistence length on the order 1 nm, which corresponds to
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FIG. 4. (a) Persistence length vs ionic concentration of a random 25bp
ssDNA sequence (HETgg »5) at a temperature of 0.42¢ simulated for 300 ns.
Also shown are simulation results for ssDNA with the RE? potential turned
off (blue triangles). The remaining data sets are from various experiments:
Murphy et al. (Ref. 41), Smith er al. (Ref. 42), Kuznetsov et al. (Ref. 43),
and Tinland er al. (Ref. 44). (b) Persistence length vs ionic concentration of
a 60 bp dsDNA sequence (HET g ¢0) at a temperature of 0.10€ simulated for
600 ns. Results for the RE? potential scaled to 1/4 strength are also shown
(blue X’s). Dashed lines in both panels show the theoretical model of
Nguyen et al. (Ref. 45) for the persistence length of a polyelectrolyte, whose
functional form consists of an intrinsic persistence length plus a term in-
versely proportional to ionic concentration. Insets show representative snap-
shots taken from the simulations [rendering with BIOVEC (Ref. 46)].

two to three bases (the distance between successive base
pairs is approximately 0.4 nm). €, is chiefly governed by the
repulsive Coulomb interaction, which tends to straighten out
the strand to maximize the distance between phosphate resi-
dues. As the interaction becomes more screened by the pres-
ence of ions in solution, € » will tend to decrease, as shown in
Fig. 4. The functional dependence on concentration is cap-
tured by a constant bare persistence length added to a term
inversely proportional to concentration.*

The values for €, found in our simulations are generally
less than those observed experimentally, but it is worth not-
ing that the experimental measurements themselves are
highly variable. This can be understood from the persistence
length being highly sensitive to other factors such as base
sequence ' and the experimental setup used to measure the
persistence length, for example, fluorescence spectroscopy,“
laser tweezers, hairpin loops,43 and gel electrophoresis.44

Figure 4(a) also shows that without the RE? potential,
the stiffness of the single-stranded DNA increases. This oc-
curs because the RE? potential is an attractive interaction,
which tends to collapse the strand. At the temperatures in our
simulation for Fig. 4(a), the stacking and hydrogen bonds are
of the same order as kg7. This temperature is above the
dehybridization temperature in our model and also above the
unstacking temperature for ssDNA described in more detail
below. The consequence of this here is that base-base inter-
actions tend to be nonlocal, involving nonconsecutive bases

J. Chem. Phys. 132, 035105 (2010)
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FIG. 5. Persistence length of ssDNA for poly(A) and poly(T) as a function
of the number of bases in the polymer chain. Simulations were conducted at
temperatures of (a) 0.03€ and (b) 0.42€ at an ionic concentration of 40 mM
for 240 ns. At these temperatures and ionic concentrations the distance be-
tween stacked bases is about 4 A. Note that the temperature in (b) is above
the hybridization temperature for dsDNA.

in sequence, as can be seen from the snapshot in Fig. 4(a).
Thus, removing base-base interactions [by setting the first
term in Eq. (1) to zero] tends to stiffen the strand. On the
other hand, at lower temperatures the opposite behavior is
observed: stiffness does increase with increasing stacking in-
teractions. We study this effect in detail below.

The double helix is inherently more stable to thermal
fluctuations than a single strand, as two backbones wound
around each other provide larger elastic modulus. As can be
seen from Fig. 4(b), the persistence length of the double
strand has the same functional dependence on ionic concen-
tration as sSDNA but is roughly 55 times stiffer at 0.02M, 25
times stiffer at 0.04M and 52 times stiffer at 0.13M. The
stiffness ratio from experimental measurements is ~66.
Weakening the RE? potential has little effect on the persis-
tence length. That is, due to the extra stability provided by
double-stranded hybridization, the double helix shows no
collapse on the scale of ~100 bp (see inset snapshots) so
that weakening base-base interactions only modestly reduces
the stiffness due to stacking. The effect can also be seen
more evidently from the radius of gyration (Fig. S7).

The present model predicts a larger persistence length
for a homogeneous single-strand of adenine (as large as ~50
bases or more) than the corresponding homogeneous strand
of thymine bases (£,~2 bases) at low temperatures, as seen
in Fig. 5(a). These results are consistent with the conclusions
of Goddard et al.,47 who found larger enthalpic costs for
hairpin formation in poly(A) than in poly(T). However, at
high temperatures the situation is reversed, and ss-poly(A)
has a smaller €, (=1.5 bases) than ss-poly(T) (£, ~4 bases)
[see Fig. 5(b)]. Adenine, being a purine, has a stronger RE?
stacking interaction (see the z-minima in Table SII); however
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FIG. 6. Persistence length and radius of gyration vs temperature for ssDNA
sequence HETgg »5 at ionic concentration 0.04 mol/l. Simulations were run
for 240 ns.

all A-A and A-P interactions are generally stronger than 7-T
and T-P interactions, and at high temperature this induces a
greater degree of collapse due to non-local self interactions
of the DNA strand. The persistence length shows an increas-
ing trend with the length of the strand at the temperatures
and ionic concentrations studied in Fig. 5. This is due to the
exaggeration of end effects on shorter strands. The persis-
tence length converged to its infinite length value for stands
longer than about 7€, at high temperature.

At moderate to high temperatures, we observe collapse
of a heterogeneous strand as we lower the temperature, as
seen in Fig. 6. We used the radius of gyration R, to monitor
the overall degree of collapse of the DNA, which is given by

N

1
2
r,—r s
N/Z( k avg)

R;=
where ravg=N'1ZkN=,rk and the angle brackets represent the
thermal average. Small values of R, correspond to collapsed
states. The general increase in persistence length and radius
of gyration in the model with temperature contrasts with the
temperature dependence of a wormlike chain (€,~ ). At
higher temperatures thermodynamic states with larger en-
tropy have larger weight, the polymer expands, and the self-
interactions that reduce the persistence length become less
important. The collapse temperature where the radius of gy-
ration suddenly increases is =0.4€ (see Fig. 6). A similar
trend toward collapsed states with increasing ionic concen-
tration can be seen in Fig. S7.

The temperature dependence of persistence length and
radius of gyration is not a simple monotonic function. Its
complexity is seen by comparing Figs. 5 and 7. The RE?
interaction in the adenine bases is strong enough to cause a
well stacked configuration at low temperatures, whereas for
thymine bases, the stacking interaction is too weak [Fig.
7(a)]. At higher temperatures, Fig. 7(b) shows that the stron-
ger RE? interaction causes collapse, a fact confirmed in Fig.
4(a).

A slightly stronger or weaker van der Waals potential
between bases results in DNA that is either collapsed or ex-
panded, respectively. Our parametrized DNA is poised be-
tween an expanded and collapsed state (see Fig. 19), so the
actual state of DNA would be highly sensitive to conditions
affecting base-base interactions. In vivo mechanisms for
modulating base-base interactions include DNA methylation

J. Chem. Phys. 132, 035105 (2010)
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FIG. 7. Radius of gyration of ssDNA for poly(a) and poly(t) as a function of
the number of bases obtained from the same set of simulations shown in Fig.
5 [i.e., c=40 mM, (a) T=0.03€ and (b) T=0.42¢]. R, exhibits a power law
scaling with the number of bases with exponents of (a) 0.54+0.08 for
poly(t) and 0.84*0.01 for poly(a), and (b) 0.80+0.02 for poly(t) and
0.45+0.07 for poly(a), respectively. Insets show representative snapshots
taken from the simulations (Ref. 46).

or potentially nucleosome post-translational modifications
utilized for gene regulation such as histone phosphorylation,
acetylation, or methylation.48

B. Twist and stacking of dsDNA

The twist is defined as the average angle that the back-
bone of the double helix rotates about the helical axis for
each successive base pair. Figure 8(a) visualizes the calcula-
tion of the local twist at position i along the DNA. To obtain
the helical axis at a given position along the double helix, we
take the positions of the two sugars opposite the hydrogen-
bonded bases at that position, as well as the sugar pairs up to
three bases above and below that position. From the sugar
coordinates, we compute the principal moments of inertia

e "
Principal axes of
enclosed: sugars

FIG. 8. (a) Calculation of local helical axis and twist (see text). (b) Calcu-
lation of the degree of stacking or stacking fraction. Principal axes are found
for each ellipse, and a plane normal to the z axis is taken through the center
of the base as shown in the bottom figure. This defines an ellipse for each
base. The stacking is defined by projecting ellipse i+1 onto ellipse i and
vice versa and measuring the overlap (see text). The top of (b) shows a
visualization of this projection.
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FIG. 9. Time averaged stacking fractions of homogeneous strands in a helix with their complementary strand. (a) and (b) are obtained from simulations of 60
base dsDNA consisting of a homogeneous strand of poly(A) hydrogen bonded to a similar strand of poly(T). The figures show the stacking of the adenine
bases with themselves and the thymine bases with themselves, respectively. (c) and (d) are obtained similarly as in (a) and (b), except with guanine and
cytosine bases. All simulations were conducted at 7=0.07€ and an ionic concentration of 0.04 mol/l. The total simulation time is 800 ns. The average stacking
fraction for each of these simulations is 0.1889 = 0.0185 for adenine, 0.3178 =0.0343 for thymine, 0.3065 %= 0.0099 for guanine, and 0.1593 +0.0271 for

cytosine.

and take the moment of least rotational inertia to be the he-
lical axis. This method fails if the double helix persistence
length drops to be on the order of three base pairs or if the
helix dehybridizes. However, neither of these scenarios oc-
curs for simulation parameters giving a stable double helix.
The sugar-sugar vector rotates around the helical axis as one
proceeds along the bases; the angle between the ith and
(i+1)th sugar-sugar vectors is the local twist. This quantity
is then averaged along the strand as well as over time. Snap-
shots during the simulation give the average twist reported in
the figures below. We can similarly define the pitch of the
DNA as pitch=2/twist, i.e., the number of base pairs one
must traverse for a full revolution of the helix. Note that the
observed crystal structure value for the pitch of B-DNA is
10,% giving an expected twist of 36°.

We also develop an order parameter to define how well a
given base is stacked to its neighbors. Taking the dot product
of z principal axes of the ellipsoids has translational symme-
try in the x-y plane of either ellipsoid and so does not capture
the concept of stacking. The method we employ instead uses
area projections depicted in Fig. 8(b). For each ellipsoid, we
take the cross-section of the ellipsoid in the x-y plane of the
own principal axes, which is an ellipse. To calculate the
stacking fraction between bases i and i+ 1, we project cross-
section i+1 down onto cross-section i. We then take the av-
erage of this value with the equivalent projection of i onto
i+1 so that our definition of stacking is symmetric. We di-
vide the projected area by the area that would be obtained
from the B-DNA crystal structure (a stacking fraction of 0.6)
to properly normalize. Because of twist, bases are not per-
fectly stacked in the crystal structure, so it is possible to see

stacking fractions greater than unity. This definition of stack-
ing mathematically represents the intuitive notion of stacking
very well, namely, the degree to which the flat parts of the
two objects overlap their areas. The stacking fraction is a
geometrical order parameter but correlates strongly with the
RE? energies between neighboring bases on either of the two
strands of the DNA (see Fig. S8). Thus stacking fraction
accurately captures the base-base van der Waals stacking en-
ergies in addition to quantifying the structural features of
DNA.

We found base stacking to be very heterogeneous, with
traces of periodicity along the strand having a period of
roughly four to five bases (see Fig. 9). Bases seem to stack
well in small groups at the expense of poorer stacking in
bases nearby along the strand. This results in kinks in the
stacking structure of the strand, with the distance between
kinks being only a few base pairs. An interesting trend is that
the purines, the larger bases with greater stacking interac-
tions, fluctuate far less and show more consistent stacking.
On the other hand pyrimidines show larger extremes in their
decimated stacking pattern, stacking intermittently more
strongly than purines and completely unstacking. The stron-
ger stacking interactions of the purines apparently induce
convergence to the average value. The decimation pattern
that we observe for the bases is due to frustration between
stacking interactions and the other potentials (bond, angle,
and dihedral), and reducing these other potentials resulted in
less fluctuation and a larger average stacking (see Fig. 10).
This situation is reminiscent of a Frenkel-Kontorova model
where a competition between two incommensurate length
scales corresponding to the equilibrium separation of a 1D
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FIG. 10. Time averaged stacking fraction of the bases along a strand for
both the all-atom parameterized potentials and another simulation with
weakened parameters. Here the bond potentials were weakened by a factor
of 0.5 and the angle potentials by 0.1, and the dihedral potentials were
disabled. This indicates that the decimated stacking pattern we observe for
bases is due to frustration between stacking interactions and the other po-
tentials in the model (bond, angle, and dihedral). These simulations were
done with HETpyg 3 at an ionic concentration of 0.04 mol/l and a tempera-
ture of 0.07e.

chain of oscillators and a periodic underlying potential re-
sults in frustration-induced domains of oscillators.*

To understand which parts of the Hamiltonian control
the large scale properties of twist and stacking of dSDNA, we
applied global multiplicative scaling factors to the energies
of individual potential classes, such as REZ2, bond, angles,
dihedrals, and hydrogen bonds. Our simulations show that
the potential most sensitively affecting the structure of the
double helix is the base-base RE? interaction. Increasing the
base-base RE? potential reduces the contour length of the
helix (see Fig. S9), increases the stacking fraction, and tight-
ens the twist over a large range of interaction strength.

Perhaps surprisingly, we found that the base-base attrac-
tion also appears to induce twist of the double helix. A pic-
ture that has emerged from computational models of DNA
structure™ is that twist results from the competition between
electrostatic repulsion of phosphate groups and favorable
base-stacking interactions, with stronger stacking interac-
tions favoring alignment of the bases and thus putatively
tending to straighten the helix. Indeed, the van-der-Waals-
like RE? potential is minimized when the relative twist be-
tween stacked bases is zero. Figure 11(a) plots the helical
twist as a function of RE? interaction strength, which modu-
lates stacking interactions. This clearly shows an increase in
twist with stacking interaction strength over a large range of
the RE? interaction. These results were obtained by a zero
temperature energy minimization starting from the expected
crystal structure of B-DNA. Finite temperature reduces the
overall values but does not change the trend. During the
simulations, the helical twist relaxed to a degree determined
by the overall strength of the RE? potentials. At the all-atom
parameterized values the twist was 21.2°, whereas in the
crystal structure it is 36.0°. Despite this quantitative discrep-
ancy we did find that the potential function [Eq. (1)] repro-
duced a double-stranded structure with major and minor
grooves (Fig. 12). The ratio of the sizes of the grooves minor
to major in the coarse-grained model was 0.64, as compared
to the experimental number of 0.54. Major and minor
grooves persist so long as the twist of the DNA is =10°.

The ladder conformation is preferred when the RE? po-
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FIG. 11. Effect of scaling the RE? energies on (a) twist and (b) stacking of
double-stranded DNA for a random sequence (HETpg 30) at zero temperature
and 40 mM ionic concentration. Simulations were started from the standard
model (B,10;,0.338)-DNA structure (Ref. 33) and allowed to equilibrate by
energy minimization to structures having the values shown at 7=0. The
equilibration time was about 80 ns, implying shallow energetic gradients of
collective modes. Insets show representative snapshots taken from the simu-
lations (Ref. 46).

tential is scaled down to zero, where Coulombic interactions
are competing solely with local bond, angle, and dihedral
potentials and hydrogen bonds. The twisted conformations of
the helix bring the phosphate residues closer together rather
than farther apart (see Fig. 20). The direct compression of a
ladder configuration would also increase the Coulomb en-
ergy in inverse proportion to the contour length, as well as
frustrating local potentials such as angular potentials (see
Fig. 13 and description below). To avoid this energetic cost
as DNA is compressed, the system can lower its energy by
structurally relaxing into a helical conformation. Upon helix
formation, the potential energy of terms such as angles and
Coulomb lower more than the RE? potential energy raises
due to shearing the stacking pattern. Put another way, the
stacking interactions do not favor the twisted conformation;
they favor proximity of the bases: the total RE? energy in a
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FIG. 12. The size of the major and minor grooves as a function of position
along the double helix. This is a finite temperature simulation (7=0.10¢) at
ionic concentration 0.04 mol/l. The errors are of the order of the symbol
size. The double helix makes about two turns over the length of the strand.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



035105-11  Systematically coarse-grained model for DNA
180 T b Id T T T T T
ona —&—
— 160 angle o~ i
g 140 - dihedral b
= 420 b coulomb f2l
8 H-bond ---=---
<100 | &
.“5:) 80 | ) /3/,0 7_
> 60 o i
E 40 + [ o ,4 B
4] 20 P g @ —
P 7 e W - =&
Op o8& —g—a " gll ° 1 IB ]
0 5 10 15 20 25 30 35 40

Twist (degrees)
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helical B-DNA conformation of HETpg 3, is about —205
kcal/mol, while if the twist is set to zero from this confor-
mation by forcing a ladder initial condition, the RE? energy
is —270 kcal/mol before relaxation. However, the other po-
tentials favor helix formation more so than maintaining the
ladder and so break translational symmetry along the DNA
contour when forced into proximity by the RE? potential.
The correlation between RE? energy and stacking geometry
(see Fig. S8) along with the competition between potentials
in the system together imply that as the strength of the RE?
interaction continues to increase, the system must eventually
favor ladder-like configurations as bases are more properly
stacked. This can be seen in Figs. 11(a) and 11(b) in the
range of multiplicative RE? factor from 5 to 10. The twist
begins to decrease (albeit with large scatter in the equilibra-
tion data) as the stacking fraction continues to monotonically
increase above values present in the crystal structure.

The dominant interaction governing the stacking fraction
is also the strength of the base-base RE? potential. There was
significant relaxation of the B-DNA model structure at the
all-atom parameterization values. The twist and stacking
fraction obtain their B-DNA model values only when base-
base interactions are magnified by a factor of 5, as can be
seen from Fig. 11(b). This may indicate that cooperative
many-body effects beyond the superposition of pairwise LJ
interactions are governing the stacking interactions between
bases. It is worth noting that large dynamical fluctuations in
the DNA structure are also observed in all-atom
simulations.”"

Increasing the stacking energy (via the RE? potential)
increases the twist, and this effect frustrates nearly all other
interaction energies in the system. Figure 13 plots the other
five contributions to the energy as a function of the induced
helical twist due to increasing the RE? energy. The values of
the twist were taken from the relationship in Fig. 11(a). We
found RE? energy to be the optimal parameter to vary the
helicity in the subsequent simulations. The increased twist of
the double helix frustrates the Coulomb and angle potentials
most significantly. As the twist of the helix increases, the
energy of the angle potentials increases, indicating that the
all-atom parameterized angle potentials favor a ladder-like
configuration. Thus the base-base-stacking interactions, not
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FIG. 14. Behavior of twist and stacking vs temperature. This is a simulation
of sequences Ggy-Cgp, Ago-Tsp, and HET g ¢ simulated at an ionic concen-
tration of 0.04 mol/l for 800 ns. Insets show representative snapshots taken
from the simulations.

the angle potentials, govern the tendency to helix formation,
a result in agreement with previous coarse-grained studies."

C. Increasing temperature reduces twist and stacking
in dsDNA in a sequence-dependent fashion

Figure 14(b) shows the twist as a function of tempera-
ture. The sequence Ggy-Cgqy maintains a twist of approxi-
mately 29° until 7=0.05€ at which point it drops sharply in a
manner suggestive of a phase transition, accompanied by
large fluctuations manifested by a sudden increase in the sta-
tistical error at 7=0.05€. The helicity is approximately zero
for higher temperatures. The stacking fraction for Ggy-Cg
shows similar behavior to the twist [Fig. 14(b)], with a phase
transition around 7=0.05€. This transition involves a reduc-
tion in order within the double-stranded structure and is dis-
tinct from dehybridization (the HETpg gy double strand was
observed to dehybridize at a temperature around 0.31€ and
took about 330 ns to dehybridize completely). Above the
“untwisting” transition temperature, the stacking is still ap-
preciable, although the twist does not appear to be signifi-
cant. We found that Ag)-Tg, maintains very little twist in our
simulations. At zero temperature it has a weak twist of 12°.
This sequence likewise showed the least stacking order
among the sequences we studied. The sequence HET g ¢ has
much smoother behavior with changing temperature. At zero
temperature, it has a twist of 26°, slightly less than homoge-
neous G-C DNA, and intermediate stacking fraction between
G-C and A-T. The phase transition behavior present in
Ggo-Cgp 1s smoothed out for the heterogeneous sequence, yet
it curiously maintains helicity until a higher temperature.
Stacking is intermediate to G-C and A-T sequences at all
temperatures and also has a broadened transition.
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FIG. 15. Twist and stacking of double-stranded DNA vs ionic concentration.
Thermal averages at finite 7" are taken from a 600 ns simulation of HETg ¢
at 7=0.10€e. Zero temperature data are taken from an 80 ns simulation of
HETpg 60, and data from the equilibrated state are shown.

D. Coulomb interactions oppose both twist and
stacking in dsDNA

Figure 15 shows the twist and stacking of the HETpg g0
sequence as a function of ionic concentration. Increasing
ionic concentration reduces the repulsive Coulomb energy by
decreasing the Debye length in Eq. (4). As phosphate back-
bone charges are more effectively screened in stronger ionic
solution, the RE? potential starts to dominate over the Cou-
lomb potential, which reduces the contour length. To mini-
mize frustration of the other potentials upon this compres-
sion, the helix twists to compensate. Thus an increase in
ionic concentration increases the helical twist in an indirect
way [see Fig. 15(a)]. The effect saturates as the ionic con-
centration is increased, whereupon other potentials such as
angle and dihedral eventually dominate over the Coulomb
potential.

Figure 15(b) shows that the stacking fraction increases
with ionic concentration. This can be understood from the
interpretation of Fig. 13, where it is seen that the Coulomb
energy opposes stacking so that ameliorating it by increasing
ionic concentration would increase stacking propensity. As
ionic strength is increased, the DNA strand compresses due
to the weakening of Coulomb repulsion. Thermal motion is
less effective at eliminating stacking in this more compressed
state due to the steric constraints manifested in the RE? po-
tential. Finite and zero temperature simulations in Fig. 15
obey the same trend.

E. The model shows chiral preference for the
right-handed helix

To address the question of whether the present physico-
chemical based model exhibits chirality, we performed finite
temperature simulations of HETpg 39 DNA starting from two
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FIG. 16. Difference in the thermal average potential energy between right-
handed and left-handed forms of dsDNA (sequence HET s 30), as a function
of dihedral strength. Thermal averages are taken from 160 ns simulations at
T=0.03€ and ionic concentration 40 mM. Inset images show representative
snapshots from the simulations at dihedral multiplicative factor unity.

different initial conditions: one from the (right-handed)
B-DNA standard structure and another from a structure with
the azimuthal angle between successive base pairs reversed
from +36° to —36°. The latter gives an “anti-B-form” DNA
with left-handed helix as the initial condition. Each configu-
ration was observed to relax to a metastable equilibrium con-
formation for the duration of the simulation, analogous to
either B-form or Z-form DNA.

The difference in the thermal average potential energy
[Eq. (1)] between the right-handed and left-handed forms of
DNA is plotted in Fig. 16 as a function of the strength of the
dihedral potential. The strengths of the dihedral potentials
are all simultaneously varied by adjusting an overall multi-
plicative factor. We chose to vary the dihedral potential be-
cause it is an obvious chiral term in the model’s potential
function. Specifically, the following dihedral potentials show
bias toward the right-handed (B-DNA) helix (with the
strength of the bias given in brackets in units of kcal/mol):
Ss:Ps:SP3 (0.25), Ps5:SP5:S3: (0.06), Ss:Ps5:SA (0.40),
S5:Ps,SC (0.18), and Ss5/P5:SG (0.62). The potential
S5/ P5,ST biases toward a left-handed (Z-DNA) helix but at a
strength of only 0.03 kcal/mol. The remaining potentials are
chiral symmetric.

The model shows an energetic bias toward the right-
handed B-form of DNA, which at the temperature of the
simulation was about 0.67 kcal/(mol-bp) for values of the
dihedral potential obtained from all-atom parameterization.
Interestingly, the chiral bias toward right-handed DNA was
found to be maximal at this value of dihedral strength. Figure
16 also apparently shows a chiral preference even in the
absence of dihedral potentials. This may be evidence that the
origin of handedness in the model results from a coupling
between potentials that individually are achiral, but collec-
tively these potentials result in chiral constituents that when
coupled together (e.g., by stacking interactions) yield a pref-
erence for the right-handed helix. We elaborate on this fur-
ther in the discussion section, but note for now that the struc-
ture of the phosphate-sugar-base moieties, which constitute
the building blocks of DNA, are themselves achiral objects
by virtue of their absence of a center of inversion or mirror
plane. We also note that at the parameterized values, most of
the chiral bias does come from dihedral potentials.
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Experimental measurements of the preference of B-DNA
over Z-DNA give a free energetic difference of about
0.33 kcal/mol-bp.”*> The above energetic difference of
0.67 kcal/mol-bp in the computational model does not ac-
count for entropic differences between the B and Z forms. If
one takes the magnitude of the value in the model seriously,
it would imply that the Z form has larger entropy than the B
form.

As is evident from the snapshots in the inset of Fig. 16,
the stiffness of Z-DNA was seen to be softer than that of the
B-form, with persistence length €, reduced by about a factor
of 2 at the all-atom parameterized values. Electron micros-
copy measurements of chain flexibility in Z-DNA have
shown moderate increases in persistence length €, of about
30%;>® however these measurements were for poly(dG-dC)
that had been adsorbed onto a two-dimensional surface,
which could introduce new interactions modifying €,,. Since
a larger €, must correspond to stronger stabilizing interac-
tions whose effect would be to increase the bending modu-
lus, one would expect from energetic arguments that the ther-
modynamically less stable Z-form of DNA would have a
shorter persistence length, as we observed in our simulations.
On the other hand the increased number of base pairs per
turn in the crystal structures implies a larger stacking fraction
in Z-DNA; however only by about 10%. Moreover the rise
per base pair is almost 50% larger in Z-DNA, implying re-
duced base-stacking interactions, which would also reduce
the stiffness. Reconciling the computational and experimen-
tal observations of persistence length of Z-DNA is a topic for
future study.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have introduced a coarse-grained model
of DNA using rigid-body ellipsoids to model the stereochem-
istry of bases. This model captures the steric effects of base
stacking, the stability of base pairing hydrogen bonds,
screened Coulombic repulsion of the phosphate backbone,
and nonlocal interactions between base-base and base-
backbone, as well as backbone rigidity due to bond, angle,
and dihedral potentials. Local effective potentials along the
backbone are obtained from the statistics of all-atom simula-
tions in explicit solvent. Base-base and base-backbone inter-
actions are obtained from best fit between van der Waals
interactions in an all-atom model and an anisotropic potential
between effective ellipsoids.29 Hydrogen bonds are modeled
by adapting a functional form used in all-atom simulations to
ellipsoidal bases, and phosphate-phosphate interactions are
modeled through a mean-field screened Coulomb potential
with Debye length dependent on ionic concentration.

The radii along the principal axes of the bases as defined
by equipotentials of the anisotropic energy function correlate
well with the base radii as determined from hydrodynamic
diffusion measurements in all-atom simulations. The stiff-
ness constants in the bond and angle potentials correlate well
with those predicted by the phonon dispersion relation for a
1D chain of harmonic oscillators.

The model is physicochemistry-based and uses no struc-
tural information (i.e., no Go potentialsS4) to provide bias
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toward the DNA crystal structure. The potentials result in a
stable double-stranded helix with both major and minor
grooves and a persistence length for single- and double-
stranded DNA comparable to experimental values.

We have introduced quantitative recipes appropriate for
the dynamical trajectories in molecular dynamics to quantify
structural order parameters in the system such as degree of
stacking and amount of twist. We investigated these struc-
tural properties along with other quantities such as persis-
tence length, radius of gyration, and chirality for both single-
and double-stranded DNA where appropriate, as various en-
vironmental factors such as temperature and ionic concentra-
tion were varied. We also investigated structural order in
ssDNA and dsDNA as internal parameters such as number of
bases, base sequence, and stacking strength were varied.

We find that at lower temperatures in the model, ss
poly(A) stacks significantly more strongly than ss poly(T),
consistent with the conclusions from the Libchaber group.47
However, at higher temperatures another regime is reached
where nonlocal interactions between bases govern the persis-
tence length: poly(A) forms a collapsed globule with shorter
persistence length than poly(T), which forms a more ex-
panded globule. The scaling exponents for the radius of gy-
ration with chain length likewise show inverse behaviors in
these two temperature regimes. The persistence length of ss-
DNA initially decreases with increasing temperature in ac-
cord with the wormlike chain model; however at higher tem-
peratures where nonlocal interactions become important, the
persistence length shows an increasing trend over a large
range of temperature, while the radius of gyration of the
DNA globule expands through a collapse-transition tempera-
ture. In other words, below the crossover temperature, stack-
ing interactions stiffen the chain and increase the persistence
length, while above this temperature nonlocal base-base van
der Waals interactions (which are inseparable from stacking
interactions) soften the chain and decrease ¢ -

We also investigated the interplay of forces that results
in twist for dsSDNA. We find that under typical conditions,
base-stacking interactions are the dominant factor in driving
twist in spite of the fact that a ladder configuration would
minimize base-stacking energy. Increasing the putative base-
stacking strength frustrates all other interactions in the sys-
tem as twist increases, indicating no other interaction could
be responsible for inducing twist. However, the RE? potential
responsible for base stacking is achiral and energetically
minimized when bases are stacked directly on top of each
other. We thus infer that base stacking enhances the chiral
properties of the constituent components in DNA by bringing
them in close proximity, resulting in increased twist. More-
over, when base interactions are sufficiently strong (~5—10X
their putative value), bases eventually stack more directly on
top of each other at the expense of twist. This results in
nonmonotonic behavior of the twist as a function of stacking
strength. Both twist and stacking increase as Coulomb inter-
actions are more effectively screened. Even in the native,
thermodynamically-stable structure, DNA is under stress and
thus strained due to competition between the various poten-
tials.

In our model, the structure in hybridized poly(G)-
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poly(C) shows different temperature dependence than
poly(A)-poly(T), with Gg;-Cey showing much more order as
temperature is raised, along with a sudden first-order-like
drop in twist and stacking at a transition temperature below
the dehybridization temperature. The untwisting with tem-
perature is smoothed out for the heterogeneous sequence in a
similar manner to disorder-induced broadening of a phase
transition. It is notable how sensitive the qualitative behavior
is to the sequence: A-T bases differ only mildly from their
G-C counterparts in size and energy scales, yet these differ-
ences are enough to determine the presence or absence of
critical behavior with respect to the order parameters of he-
lical twist and base pair stacking. The effects of hydrogen
bond strength on stacking and twist is a topic for future
work.

Base stacking was analyzed at the level of resolution of
individual bases, where stacking was found to exhibit an
intermittent decimated pattern wherein roughly four to five
bases stack well in groups at the expense of poor stacking in
nearby bases. This quasiperiodic structure is reminiscent of
systems frustrated by incommensurate length scales such as
the Frenkel-Kontorova model. Consistent with this notion,
decreasing the putative strength of bond, angle, and dihedral
interactions in the model resulted in less stacking heteroge-
neity and an increase in the degree of stacking. The hetero-
geneous stacking pattern was observed over the total simu-
lation time of about 1 ws. One would anticipate that over
longer time scales the specific heterogeneous pattern would
shift to other metastable configurations.

Including anisotropic van der Waals interactions through
the RE? potential introduces a large number of parameters in
the model so that the reduction in total number of parameters
from that required in all-atom simulations is not dramatic.
For each of the 10 base-base interactions, there are six radii,
six well depths, an overall energy scale A,, and an atomic
length scale o, a total of 140 parameters. Base-backbone
potentials introduce another 80 parameters. Including
masses, bonds, angles, dihedrals, screened electrostatics,
Langevin coefficients, phosphate charge, and temperature
gives a total of 382 parameters. To simulate the same system
using all-atom potentials requires at least 600 parameters in-
cluding van der Waals parameters, bonds, angles, dihedrals,
and atomic properties such as mass, charge, and diffusion
coefficient (this number can increase to thousands if accurate
van der Waals potentials are sought).

On the other hand, the number of degrees of freedom in
the coarse-grained model is substantially reduced. Each base-
sugar-phosphate residue has only nine degrees of freedom in
our model once rigid constraints are accounted for, whereas
the same residue has approximately 100 degrees of freedom
in the all-atom model if hydrogen atoms are treated as rigidly
bonded. Implicit solvent can be present in both coarse-
grained and all-atom scenarios. The tenfold reduction in the
number of degrees of freedom allows the coarse-grained
model to explore longer time scale phenomena than would
be practically obtainable with all-atom simulations.

Base-base interactions had to be strengthened to repro-
duce the properties of the crystal structure. Since the putative
strength of the base-base interactions resulted from direct
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all-atom parameterization, this implies that the functional
form of the RE? potentials may not fully capture the electron
correlations governing stacking interactions. These polariza-
tion effects likely induce a many-body cooperative compo-
nent to the stacking interaction for coarse-grained bases, re-
sulting in a much stiffer potential surface for local
fluctuations around the native structure. Similarly, many-
body interactions between coarse-grained residues in pro-
teins are necessary to effectively capture protein folding rates
and mechanisms.”

We found that the physicochemical based model showed
energetic bias toward a right-handed form of dsDNA helix
over a left-handed form. The more stable right-handed form
had longer persistence length. While the dihedral potentials
(as determined from the equilibrium sampling of a short
piece of ssDNA) yield potentials that break chiral symmetry
toward the right-handed helix, their role in determining
chirality is sufficiently coupled to other interactions in the
system that strengthening the dihedral potential alone does
not enhance chirality. The chiral energetic bias was largest
for the all-atom parameterized values of the dihedral
strength, i.e., while decreasing the overall strength of the
dihedral potentials diminished chiral preference in the
model, increasing dihedral strength also did not enhance
chirality but instead diminished it. This effect is likely due to
an interplay between stacking and dihedral interactions. It
appears that like twist, chirality is induced not so much by
the direct inherent energetic preferences of potentials but by
an indirect minimization of frustration induced by the forced
compression of the system due to base-base-stacking inter-
actions.

Put another way, preference for a right-handed helix over
the left-handed helix for dsDNA in our model may arise
predominantly from the stacking of chiral constituents: each
phosphate-sugar-base-phosphate constituent is a nonplanar
object that cannot be transformed by rotations and transla-
tions into its mirror image. Chirality is enforced by asymme-
tries in the equilibrium values of the bond and angle poten-
tials, which determine the minimum energy structure of these
molecular constituents, as well as chiral asymmetry in dihe-
dral potentials. Specifically, the molecular building block
P;,-S-base-Ps, has sugar residue at the chiral center, and
there is no center of inversion or mirror plane. The subse-
quent building block is constrained to have its P53, residue at
the position of the previous block’s Ps, residue and is
coupled to the previous building block through base-stacking
interactions. In this way, the handedness of DNA is induced
by coupling these chiral objects together through stacking
interactions, analogous to the mechanism behind the right-
handed preference of a-helices due to hydrogen-bond-
mediated coupling between chiral L-form amino acids.”®
Phospholipid-nucleoside conjugates have also been observed
to exhibit spontaneous right-handed helix formation, with no
helical preference present for the conjugate with nucleic acid
bases removed.’’ This again reinforces the idea that helicity
can be induced by coupling chiral constituents together
through an achiral force. Such spontaneous formation of
handed helical structures from chiral ingredients is also remi-
niscent of the mechanism by which chiral nematogens, inter-
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acting through simple LJ-like potentials, form a cholesteric
(twisted nematic) phase in a liquid crystal.”® Exploration of
the origins of DNA handedness including C-G sequence
preference and nucleotide pairing as in Z-DNA, as well as
more refined structural studies of the connection between
atomistic and coarse-grained models in the context of chiral-
ity, are topics for future work.
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APPENDIX: POTENTIALS, HYDRODYNAMICS, AND
FIGURES

1. The RE? potential between ellipsoids

The RE? potential, developed by Everaers and
Ejtehadi,28 is a generalization of the ubiquitous LJ interac-
tion to ellipsoidal particles. The extra rotational degrees of
freedom accounted for by the RE? potential come with a
greater computational burden: the RE? potential needs five
times the number of input parameters per interaction pair
(including the cutoff distance) as does the LJ potential.

The first six of these parameters come from the radii of
the two ellipsoids, expressed as the following shape tensor:

S, = diag(a'(’) a'(’) 0'(’)) (A1)

The anisotropic well depths are expressed as the relative
potential well depth tensor. Its entries are dimensionless and
are inversely proportional to the well depths in their respec-
tive directions,

E, = diag(e, e, &)

’V’

(A2)

Another input parameter with a dimension of distance is
the atomic interaction radius, o, which characterizes the dis-
tance scale for interactions between the atomic constituents
to be coarse-grained. The energy scale is given by the Ha-
maker constant, A;;. Finally, there is the necessary interaction
cutoff distance, R, as the computation time to compute all
O(N?) RE? interactions is too prohibitive and is unnecessary
because of how quickly the potential decays with separation.

The RE? potential between two ellipsoids, labeled as i
=1,2, can be conveniently written in terms of attractive and
repulsive components.zg In the expressions below, the tensor
A, is the rotation matrix from the laboratory frame to the
rotated principal axis frame of particle i,

2
ViT (AL Agrp) = -

@(1 43 &)
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The quantities 75, X112, and h;, in Egs. (A3) and (A4) are
defined by
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In LAMMPS, an RE2-like interaction between an ellipsoid
and a sphere may be specified by making the radii param-
eters of the sphere zero. The radius of the sphere is given by
o.. In this case, the RE? interaction between the objects is
calculated in the limit that S,—0 and A;,— > at a rate of
Ay, ~ 1/det(S,). The relevant energy parameter for this inter-

action we will call ;lzzAlz/po'z, where p is the number
density of the sphere. That is, %77 det(S,)p=1. The potential
may then be straightforwardly evaluated by substituting A,
=I and S,=0 into the RE? potential,
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A more complete discussion of the RE? potential includ-
ing its advantages over the alternative biaxial Gay—Berne
potential59 can be found in the literature.”’

2. Energetic and hydrodynamic comparison

For our Langevin simulations, we directly use the fric-
tion eigenvalues extracted from all-atom simulations. How-
ever, it is instructive to compare the effective size of the
bases both energetically and hydrodynamically.

The shape-dependent friction coefficients of ellipsoidal
bodies can be obtained from the low Reynolds number solu-
tion to the Navier—Stokes hydrodynamics equationsﬁo and
can be expressed in terms of the three radii r; in the principal
axes,

167y
(1) _ A7
g S+G, (A7a)
2, 2
{Er) _ 167 7(r; +17) ’ (ATb)

3(G;+Gy)

with the elliptical integrals

S= fx dN[(r7 + N) (5 + M) (5 + N) ]2
0

and

G, = r,?f AN+ M)+ N+ N+ )]
0

To verify that the continuum hydrodynamic expressions
for the friction tensor faithfully reproduce the diffusive mo-
tion of a base, we extracted diffusion coefficients from all-
atom simulations using the CHARMM?27 potential. The all-
atom simulations were performed using the NAMD
simulation package, with a single base solvated in a (20 A)3
box of water in a 0.2 mol/l neutral KClI solution. The simu-
lations were performed for 10 ns in the NPT ensemble. Four
such simulations were performed, one for each type of base.
Temperature was maintained at 310 K by Langevin dynam-
ics, and pressure was maintained at 1 atm.

Hydrodynamic radii are found by best fit of Eq. (A7b) to
the observed effective friction coefficients for both rotation
and translation in all-atom simulations. Tabulated values of
friction coefficients and effective hydrodynamic radii are
shown in Table SVI. These hydrodynamic radii may then be
compared with energetic radii (for our Langevin simulations,
we directly use the friction eigenvalues extracted from all-
atom simulations rather than the parameters resulting from
the best fit to the hydrodynamics of an ellipsoid).

A plot of hydrodynamic radii versus energetic radii is
shown in Fig. 17. The two measures compare well; however
the hydrodynamic size tends to be smaller than the energetic
size. Either the parameterization scheme we employed re-
sulted in RE? potentials that overestimated the range of re-
pulsive forces or the smaller hydrodynamic values may be
the result of the breakdown of the no-slip condition at the
interface between bases and water, a reasonable scenario

J. Chem. Phys. 132, 035105 (2010)

3.5 T T T T T ™ x
g 3 4
g a2s5¢f -
Q
€ 2+ -
©
s
'8 1.5 F -
©
2ot .

R =0.9220
05 | | | | |

1 15 2 25 3 35 4 45

Equipotential radii — 10kT (A)

FIG. 17. Hydrodynamic vs energetic radii for effective ellipsoids. Hydrody-
namic radii are found by optimizing the measured friction coefficients ex-
tracted from all-atom simulations of isolated bases and fitting to Eqs. (A7a)
and (A7b) for the rotational and translational friction of an ellipsoid. The
values are strongly correlated; however hydrodynamically derived radii tend
to be smaller than energetically derived radii. For the thinnest axis, the
assumption of continuum hydrodynamics is expected to be least accurate,
and relative modifications due to hydration effects are expected to be largest
(Refs. 61-65).

given that the size scale of the bases (~/°%) tests the limits of
the macroscopic assumptions in continuum
hydrodynaxmics.m_65

3. Properties of DNA structure and bond potentials

Figure 18 illustrates properties of DNA bond potentials.
Figures 19 and 20 illustrate properties of DNA structure as
base-base interactions are varied (see discussion in text).
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FIG. 18. (a) Stiffness coefficient k, for bond potentials as a function of the
mean distance between the participating residues, along with the phonon
dispersion relation for a 1D chain of harmonic oscillators (Ref. 66), k. (\)
=k, sin’(ma/\), with wavelength N\ here taken to be the distance r. The
correlation coefficient is r=0.995 and chance probability p~4 X107, (b)
Stiffness coefficient k, for angle potentials as a function of the mean length
of the two bonds participating in the angle.
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concentration of 0.04 mol/l and temperature of 0.42¢ simulated for 240 ns.
Note that the parameters, resulting from fitting the RE? potential to all-atom
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representative snapshots taken from the simulations.
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FIG. 20. Mean distance between phosphate groups as a function of helical
twist. Data are taken from the same simulations as in Fig. 11.

'0. T. Avery, C. M. MacLeod, and M. McCarty, J. Exp. Med. 79, 137
(1944).

2T. E. Cheatham I11, Curr. Opin. Struct. Biol. 14, 360 (2004).

3X. Darzacq, Y. Shav-Tal, V. de Turris, Y. Brody, S. M. Shenoy, R. D.
Phair, and R. H. Singer, Nat. Struct. Mol. Biol. 14, 796 (2007).

‘H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles,
Science 270, 1653 (1995).

3S. I. Greive and P. H. von Hippel, Nat. Rev. Mol. Cell Biol. 6, 221
(2005).

°R.7J. Davenport, G. J. L. Wuite, R. Landick, and C. Bustamante, Science
287, 2497 (2000).

K. M. Herbert, A. La Porta, B. Wong, R. Mooney, K. Neuman, R. Land-
ick, and S. Block, Cell 125, 1083 (2006).

8s. Mangenot, M. Hochrein, J. Radler, and L. Letellier, Curr. Biol. 15,
430 (2005).

P, Grayson, L. Han, T. Winther, and R. Phillips, Proc. Natl. Acad. Sci.
U.S.A. 104, 14652 (2007).

'D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C.
Bustamante, Nature (London) 413, 748 (2001).

nga. Wagner, A. Bancaud, J.-P. Quivy, C. Clapier, G. Almouzni, and J.-L.
Viovy, Biophys. J. 89, 3647 (2005).

2E. Nalefski, E. Nebelitsky, J. Lloyd, and S. Gullans, Biochemistry 45,
13794 (2006).

BA. Meller, L. Nivon, E. Brandin, J. Golovchenko, and D. Branton, Proc.
Natl. Acad. Sci. U.S.A. 97, 1079 (2000).

43 F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).

15s. Matysiak, A. Montesi, M. Pasquali, A. B. Kolomeisky, and C. Clem-
enti, Phys. Rev. Lett. 96, 118103 (2006).

'®K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattacharya, J. Chem. Phys.
126, 145101 (2007).

J. Chem. Phys. 132, 035105 (2010)

'7E. Trovato and V. Tozzini, J. Phys. Chem. B 112, 13197 (2008).

M. Techera, L. L. Daemen, and E. W. Prohofsky, Phys. Rev. A 40, 6636
(1989).

H. L. Tepper and G. A. Voth, J. Chem. Phys. 122, 124906 (2005).

F. Zhang and M. A. Collins, Phys. Rev. E 52, 4217 (1995).

?'K. Drukker, G. Wu, and G. C. Schatz, J. Chem. Phys. 114, 579 (2001).

2T, A. Knotts IV, N. Rathore, D. C. Schwartz, and J. J. de Pablo, J. Chem.
Phys. 126, 084901 (2007).

Y. Ueda, H. Taketomi, and N. G&, Biopolymers 17, 1531 (1978).

%R, Luo, H. S. R. Gilson, M. J. Potter, and M. K. Gilson, Biophys. J. 80,
140 (2001).

Bp, Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii, Nucleic
Acids Res. 34, 564 (2006).

See supplementary material at http://dx.doi.org/10.1063/1.3269994 for
tables of parameters, plots of potentials, and supplementary figures.

7N, Foloppe, J. Alexander, and D. MacKerell, J. Comput. Chem. 21, 86
(2000).

%R, Everaers and M. R. Ejtehadi, Phys Rev. E 67, 041710 (2003).

PM. Babadi, R. Everaers, and M. R. Ejtehadi, J. Chem. Phys. 124, 174708
(2006).

*J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981).

313, H. Lii and N. L. Allinger, J. Am. Chem. Soc. 111, 8576 (1989).

2p.B. Gordon, S. A. Marshall, and S. L. Mayo, Curr. Opin. Struct. Biol.
9, 509 (1999).

B, Arnott, P. J. Campbell-Smith, and R. Chandrasekaran, in Atomic Co-
ordinates and Molecular Conformations for DNA-DNA, RNA-RNA, and
DNA-RNA Helices, Handbook of Biochemistry and Molecular Biology,
Vol. 2, 3rd ed., edited by G. D. Fasman (CRC, Cleveland, 1976), pp.
411-422.

** A. Fersht, Trends Biochem. Sci. 12, 301 (1987).

$s. s, Mallajosyula, A. Datta, and S. K. Pati, Proceedings of the Sixth
International Topical Conference on Optical Probes of Conjugated Poly-
mers and Biosystems, Bangalore, India, January 4-8, 2005 [ Synth. Met.
155, 398 (2005)].

%Y. Mo, J. Mol. Model. 12, 665 (2006).

5. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 26,
1781 (2005).

38S. Plimpton, J. Comput. Phys. 117, 1 (1995).

7. Kuipers, Quaternions and Rotation Sequences: A Primer with Applica-
tions to Orbits, Aerospace, and Virtual Reality (Princeton University,
Princeton, NJ, 1999).

Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G.
Yodh, Science 314, 626 (2006).

4w Murphy, I. Rasnik, W. Cheng, T. Lohman, and T. Ha, Biophys. J. 86,
2530 (2004).

*2S. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).

g, Kuznetsov, Y. Shen, A. Benight, and A. Ansari, Biophys. J. 81, 2864
(2001).

4B, Tinland, A. Pluen, J. Sturm, and G. Weill, Macromolecules 30, 5763
(1997).

T, T. Nguyen and B. I. Shklovskii, Phys. Rev. E 66, 021801 (2002).

“E. Abrahamsson and S. Plotkin, J. Mol. Graphics Modell. 28, 140
(2009).

YIN. L. Goddard, G. Bonnet, O. Krichevsky, and A. Libchaber, Phys. Rev.
Lett. 85, 2400 (2000).

*8S. Henikoff, Nat. Rev. Genet. 9, 15 (2008).

473, Aubry, Springer Ser. Solid-State Sci. 8, 246 (1978).

OB, Mergell, M. R. Ejtehadi, and R. Everaers, Phys. Rev. E 68, 021911
(2003).

*'M. Levitt, Cold Spring Harb Symp. Quant Biol. 47, 251 (1983).

1., J. Peck and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 80, 6206 (1983).

3B, Revet, J. Malinge, E. Delain, M. Bret, and M. Leng, Nucleic Acids
Res. 12, 8349 (1984).

My, Ueda, H. Taketomi, and N. Go, Int. J. Pept. Protein Res. 7, 445
(1975).

M. R. Ejtehadi, S. P. Avall, and S. S. Plotkin, Proc. Natl. Acad. Sci.
U.S.A. 101, 15088 (2004).

. Branden and J. Tooze, Introduction to Protein Structure (Garland,
New York, 1991).

IH. Yanagawa, Y. Ogawa, H. Furuta, and K. Tsuno, J. Am. Chem. Soc.
111, 4567 (1989).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1084/jem.79.2.137
http://dx.doi.org/10.1016/j.sbi.2004.05.001
http://dx.doi.org/10.1038/nsmb1280
http://dx.doi.org/10.1126/science.270.5242.1653
http://dx.doi.org/10.1038/nrm1588
http://dx.doi.org/10.1126/science.287.5462.2497
http://dx.doi.org/10.1016/j.cell.2006.04.032
http://dx.doi.org/10.1016/j.cub.2004.12.080
http://dx.doi.org/10.1073/pnas.0703274104
http://dx.doi.org/10.1073/pnas.0703274104
http://dx.doi.org/10.1038/35099581
http://dx.doi.org/10.1529/biophysj.105.062786
http://dx.doi.org/10.1021/bi0602011
http://dx.doi.org/10.1073/pnas.97.3.1079
http://dx.doi.org/10.1073/pnas.97.3.1079
http://dx.doi.org/10.1021/ma00130a008
http://dx.doi.org/10.1103/PhysRevLett.96.118103
http://dx.doi.org/10.1063/1.2719198
http://dx.doi.org/10.1021/jp807085d
http://dx.doi.org/10.1103/PhysRevA.40.6636
http://dx.doi.org/10.1063/1.1869417
http://dx.doi.org/10.1103/PhysRevE.52.4217
http://dx.doi.org/10.1063/1.1329137
http://dx.doi.org/10.1063/1.2431804
http://dx.doi.org/10.1063/1.2431804
http://dx.doi.org/10.1002/bip.1978.360170612
http://dx.doi.org/10.1016/S0006-3495(01)76001-8
http://dx.doi.org/10.1093/nar/gkj454
http://dx.doi.org/10.1093/nar/gkj454
http://dx.doi.org/10.1063/1.3269994
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
http://dx.doi.org/10.1103/PhysRevE.67.041710
http://dx.doi.org/10.1063/1.2179075
http://dx.doi.org/10.1063/1.441483
http://dx.doi.org/10.1021/ja00205a003
http://dx.doi.org/10.1016/S0959-440X(99)80072-4
http://dx.doi.org/10.1016/0968-0004(87)90146-0
http://dx.doi.org/10.1016/j.synthmet.2005.09.022
http://dx.doi.org/10.1007/s00894-005-0021-y
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1126/science.1130146
http://dx.doi.org/10.1016/S0006-3495(04)74308-8
http://dx.doi.org/10.1126/science.271.5250.795
http://dx.doi.org/10.1016/S0006-3495(01)75927-9
http://dx.doi.org/10.1021/ma970381+
http://dx.doi.org/10.1103/PhysRevE.66.021801
http://dx.doi.org/10.1016/j.jmgm.2009.05.001
http://dx.doi.org/10.1103/PhysRevLett.85.2400
http://dx.doi.org/10.1103/PhysRevLett.85.2400
http://dx.doi.org/10.1038/nrg2206
http://dx.doi.org/10.1103/PhysRevE.68.021911
http://dx.doi.org/10.1073/pnas.80.20.6206
http://dx.doi.org/10.1093/nar/12.22.8349
http://dx.doi.org/10.1093/nar/12.22.8349
http://dx.doi.org/10.1073/pnas.0403486101
http://dx.doi.org/10.1073/pnas.0403486101
http://dx.doi.org/10.1021/ja00195a006

035105-18  Morriss-Andrews, Rottler, and Plotkin

8P_G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed.

(Oxford University Press, New York, 1993).
%R. Berardi, C. Fava, and C. Zannoni, Chem. Phys. Lett. 297, 8 (1998).
H. Lamb, Hydrodynamics (Dover, New York, 1932).
1B, Schneider and H. M. Berman, Biophys. J. 69, 2661 (1995).
©2A. H. Elcock and J. A. McCammon, J. Am. Chem. Soc. 117, 10161
(1995).

J. Chem. Phys. 132, 035105 (2010)

%M. Feig and B. M. Pettitt, Biophys. J. 77, 1769 (1999).

%J. Garcia de la Torre, M. L. Huertas, and B. Carrasco, Biophys. J. 78, 719
(2000).

B. Halle and M. Davidovic, Proc. Natl. Acad. Sci. U.S.A. 100, 12135
(2003).

%N. W. Ashcroft and D. N. Mermin, Solid State Physics (Thomson Learn-
ing, Toronto, 1976).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1016/S0009-2614(98)01090-2
http://dx.doi.org/10.1016/S0006-3495(95)80136-0
http://dx.doi.org/10.1021/ja00145a047
http://dx.doi.org/10.1016/S0006-3495(99)77023-2
http://dx.doi.org/10.1016/S0006-3495(00)76630-6
http://dx.doi.org/10.1073/pnas.2033320100

