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ABSTRACT The minimal folding pathway or trajectory for a biopolymer can be defined as the transformation that minimizes
the total distance traveled between a folded and an unfolded structure. This involves generalizing the usual Euclidean distance
from points to one-dimensional objects such as a polymer. We apply this distance here to find minimal folding pathways for
several candidate protein fragments, including the helix, the b-hairpin, and a nonplanar structure where chain noncrossing is
important. Comparing the distances traveled with root mean-squared distance and mean root-squared distance, we show that
chain noncrossing can have large effects on the kinetic proximity of apparently similar conformations. Structures that are
aligned to the b-hairpin by minimizing mean root-squared distance, a quantity that closely approximates the true distance for
long chains, show globally different orientation than structures aligned by minimizing root mean-squared distance.

INTRODUCTION

The mechanism by which a biopolymer folds has been a

subject of long-standing interest. Some of the questions often

focus on identifying structural features of the transition state

or nucleus (1–11), which is in many formulations character-

ized through the commitment or splitting probability, probably

first introduced by Onsager in the context of ion-pair recom-

bination (12). Another related question ofmuch interest is how

to characterize coordinates that best represent progress in the

reaction (13–27). Questions often circulate around what pa-

rameter(s) or principle component-like motions might best

correlate with splitting probability or probability of folding

before unfolding. Finding the folding trajectories that are the

most energetically downhill is also of interest (28,29).

Useful order parameters have a simple geometric inter-

pretation. This has led, for example, to the common use of the

fraction of native contacts Q (3,20,22,30–33), which can be

locally or globally defined; root mean-square distance or

deviation (RMSD) between structures (34–37); structural

overlap parameter x (38–40); Debye-Waller factors (41,42);

or fraction of correct dihedral angles (33).

While the utility of simple order parameters is indisput-

able, it is easy to see that even for simple structures they can

lead to inaccurate measurements of native proximity. For

example, a b-hairpin that is only slightly expanded beyond

the range of its hydrogen bonds is essentially committed to

fold, but would have a Q value near zero. Comparing two

conformations of a piece of polymer chain that crosses either

over itself or under itself would give a x-parameter or RMSD

that could be quite small. The amount of motion the polymer

would have to undergo to transform from one conformation

to the other, however, respecting the noncrossing constraint,

would have to be comparably large.

Here we propose a new candidate for an order parameter to

capture the complexities of biomolecule folding. Specifi-

cally, we consider a generalization of the conventional notion

of distance to polymeric objects. This distance depends only

on the geometry of the initial and final configurations. In two

previous articles (43,44) we have introduced the formalism

for generalizing the standard variational definition of distance

to higher dimensional objects such as polymers or mem-

branes. Here we apply this formalism to fragments of coarse-

grained protein backbone structures.

To obtain a numerical solution for practical applications,

the polymer chain must be discretized. Then we are interested

in the cumulative distance that all beads on the chain must

travel to convert chain conformation A characterized by frAig
with i ¼ 1, 2. . .N, to conformation B characterized by frBig.
Wemodel the chains as havingN – 1 links of lengthDswhich
are incompressible and inextensible, so that (ri11 – ri)

2 ¼
Ds2 [ 1. This requires that we introduce a Lagrange mul-

tiplier li,i11 for each link i, 1 # i # N – 1.

The transformation from A to Bmay be written in terms of

an artificial time parameter t as fri(t)g, with boundary con-

ditions, or in keeping with the language of time, in both initial

and final conditions:

frið0Þg ¼ frAig and friðTÞg ¼ frBig: (1)

The distance D traveled in such a transformation can be

written as a functional D½friðtÞg; f _riðtÞg�; or D½ri; _ri� for
short (43,44)

D½ri; _ri� ¼
Z T

0

dt Lðri; _riÞ; ð2Þ

where the integrand L can be thought of as an effective

Lagrangian:

Lðri; _riÞ ¼ +
N

i¼1

ffiffiffiffi
_r2i

q
� li;i11

2
ððri11 � riÞ2 � 1Þ

� �
: (3)

Equations 2 and 3 are simply a way to write the distance

traveled by all the beads as a variational problem. We can
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then minimize this functional to find the variational minimum

distance transformation between two biopolymer fragments.

Numerically, the distance D in Eq. 2 is in units of link-

length-squared, i.e., it is one-dimension-of-length higher than

the boundary conditions, just as the distance between points

has dimension 1.

The minimal distance transformation between an initial

polymer conformationA and the folded or native conformation

N can be thought of as an optimal folding pathway that is the

most direct route fromA toN. Of course, the actual trajectory is
a stochastic one. It is interesting to ask whether the typical or

average dynamical trajectory resembles the minimal one after

suitable averaging, but we do not answer this question here.

Interaction energies in the system will certainly modify the

weights of reactive trajectories, making some trajectories

preferred over others. On the other hand, much of the folding

mechanism is thought to be insensitive to specific sequence

details (45), and depends more on the geometry of the native

structure and its resultant topology of interactions (46).

A direct application of minimal folding path to a full

protein is an important future goal. In this article, we take a

more bottom-up, modular approach, and apply the minimal

distance transformation to various representative protein

fragments. In particular, we investigate the minimal folding

pathways for a b-sheet, an a-helix, and an overpass-under-

pass problem, where chain noncrossing is important.

METHODS

Optimal pathways

We refer to the transformation between structures A andN that minimizes the

distance functional in Eq. 2 as the minimal transformation or optimal folding

pathway. This transformation is found by extremizing D:

dD½riðtÞ; _riðtÞ� ¼ 0: (4)

The solutions to Eq. 4 are a set of differential equations for fri(t)g. Defining
_x[ dx=dt; ri/j[ ri – rj, and v̂i as the unit velocity vector vi/jvij, the solutions
to Eq. 4 are written as

_̂v1 1 l12 r2=1 ¼ 0; (5a)

_̂v2 � l12 r2=1 1 l23 r3=2 ¼ 0; (5b)

..

.

_̂vN � lN�1;N rN=ðN�1Þ ¼ 0: (5c)

In practice, piecewise extremal solutions are observed consisting of sequen-

tial rotations and translations (44). This leads to so-called corner conditions at

the interface between two pieces of the extremal solution. At the interface,

the corner conditions demand that

lim
e/0

v̂iðt � eÞ ¼ lim
e/0

v̂iðt1 eÞ (6)

at the interface between piecewise solutions to Eqs. 5a–5c, for the trajectory

of bead i to be extremal. This simply means that the trajectory of bead i

cannot suddenly change direction. If it did, the resulting trajectory with cusp

could always be shortened by truncating the cusp, or cutting the corner. One

possible exception to this rule is if at some part of the extremal trajectory the

velocity of bead i is zero (the point is at rest). Then its direction v̂ is

undefined, and can, in principle, change at a later time. Another possible

exceptional case is when there are external forces on the link, which can be

induced for example by noncrossing constraints, discussed below.

FromEq. 5a, there are three solutions for the end bead of the chain r1, with
analogous solutions for rN in Eq. 5c.

1. If l12 ¼ 0, _̂v1 ¼ 0; and straight-line motion of the end point results.

2. If l 6¼ 0, the velocity of the end point is orthogonal to the link, which

we can see by taking the dot product of Eq. 5a with v1, i.e., v1 � r2/1 ¼ 0.

The result is pure rotational motion of the bead.

3. The end point can remain at rest while other parts of the chain move.

This can be seen by writing out the time-derivative in Eq. 5a,

v2

1
_v1 � ðv1 � _v1Þv1 ¼ �l12jv1j3r2=1;

which has the trivial solution v1 ¼ 0.

By piecing together rotations and subsequent translations, we can find

extremal solutions for the transformation from structure A to N. It was shown

in Mohazab and Plotkin (44) that these solutions are also minimal. The in-

termediate conformations have solitonic kinks that propagate along the chain.

Representative protein fragments

For a protein domain to which we apply our methods, we choose residues

99–153 in regulatory chain B of Aspartate Carbamoyltransferase (47) (PDB

code 1AT1, see Fig. 1). From this domain, we select three fragments for

investigation, as representatives of some commonly found secondary and

tertiary structures:

1. The b-hairpin containing b-strands 2 and 3, residues 126–137.

2. The C-terminal a-helix, residues 147–151.

3. The b-strand 1-turn-strand 2 tertiary motif, residues 101–130.

FIGURE 1 Residues 99–153 in regulatory chain B of Aspartate Carba-

moyltransferase (47) (PDB code 1AT1) are chosen for analysis. From this

domain we select three fragments for investigation. Two are outlined in

dashed boxes: b-hairpin residues 126–137, and a-helix residues 147–151.

The strand 1-turn-strand-2 tertiary motif, residues 101–130, is also used

investigate the importance of noncrossing.
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We investigate an overpass/underpass problem for a simplified version of

segment 3 for which chain noncrossing is important.

The polymer fragments are coarse-grained by taking the Ca atom to

represent each residue. The Ca�Ca distances in our fragments are sharply

peaked: jri11/ij ¼ (3.816 0.04) Å. We do not change the numbers present in

the PDB structure: they are held fixed during the transformation.

We investigate the minimal distance transformations between extended

states of polymer and the above secondary structures. Extended states are

constructed as follows. For the b-hairpin, we rotate the chain about the po-

sitions of Ca(132) and Ca(133) so that the initial state is an extended linear

strand (Fig. 2 b). For the a-helix, we take the simplified case of a straight line

for the initial condition.

For the over/under problem we imagine a scenario where the b-sheet in

Fig. 3 a is unformed, and the polymer chain involved in the turn has crossed

under rather than over b-stand 2. The two configurations have the opposite

sense, in that the chain must cross over itself (or go over the top or the bottom

of the structure) to form the correct tertiary structure (Fig. 3 b). Alternatively,

b-strands 2 and 3 in Fig. 1 may cross over b-strand 1 to solve the underpass-

overpass problem, but this would involve larger-scale motion, that is, a larger

distance traveled.

A stereo view of initial and final states for such a scenario is shown in Fig.

3 b. We ask: What is the minimal distance pathway for conversion between

these two structures? To make the problem more amenable to analysis, we

simplify the structures in the spirit of lattice models, as shown in Fig. 3 c. The

initial and final conditions are regular and symmetric, but intermediate con-

figurations can be anywhere so long as they are consistent with the con-

straints of constant link length and noncrossing (i.e., they can be off-lattice).

Construction of minimal pathways

Minimal folding trajectories are constructed by the recipe described in

Mohazab and Plotkin (44) (Fig. 4). The basic recipe is as follows. First we

take the coordinate of one Ca residue, say r(Cai) in the unfolded confor-

mation, then we imagine rotating r(Cai) about rðCaði�1ÞÞ: The protein

backbone is treated approximately as a freely jointed chain to carry out this

procedure. All possible rotations of Cai about Ca(i�1) form a sphere of radius

jrðCaiÞ � rðCaði�1ÞÞj: A cone is drawn from the final position of Cai, i.e.,

rFOLDED(Cai) in the folded structure, to be tangent to this sphere. In general,

one particular direction will have the minimal amount of rotation before

proceeding in a straight line to rFOLDED(Cai). The arc of the great circle along

this direction is then chosen as part of the minimal trajectory for residue i.

RMSD and MRSD

In the limit of long polymer chains and in the absence of noncrossing, the

distance accumulated by rotation of each link before translating gives a

negligible contribution to the total distance, and the total distance traveled

converges to the chain length L times the mean root-square distance

(MRSD), i.e., for two structures A and B,

lim
N/N

D ¼ L3
1

N
+
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrBi � rAiÞ2

q
¼ L3 ðMRSDÞ: (7)

It can be shown that the MRSD is always less than the RMSD defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1+

i
ðrAi � rBiÞ2

q
; and often used for structural comparison. Which of

these quantities providesmore accuracy for structural alignment is still an open

question, although the MRSD may be less sensitive to large fluctuations of a

subset of points. To investigate the sensitivity of MRSD versus RMSD, note

that the change in RMSDwith respect to moving one residue an amount drAi is�����
dðRMSDÞ

drAi

����� �
1

N

jrAi � rBij
RMSD

;

while the change in MRSD with respect to moving one residue an amount

drAi is �����
dðMRSDÞ

drAi

����� �
1

N
:

So if residue i has a structural discrepancy larger than the average as

measured by RMSD, changes in RMSD with respect to this residue’s

position will be larger than those for MRSD.

Unfolded conformations were aligned to folded structures by minimizing

MRSD and RMSD, and minimal transformations constructed for these

conformation pairs. For the b-hairpin, the conformation pairs were observed

to be globally different depending on whether the alignment cost function

was MRSD or RMSD.

RESULTS

b-hairpin

We coarse-grain the fragment containing residues 126–137

by considering only the Ca atoms (see Fig. 2 a). We consider

folding to this structure from an extended state. The extended

state is obtained by two rotations about residues 132 and 133,

which extend the hairpin out to a quasilinear strand (the ex-

tended state in Fig. 2 b). This initial extended state is aligned
to the final structure in four different ways:

1. One strand of the hairpin is directly aligned to the cor-

responding residues of the extended state (Fig. 5, a and b),
2. The center links of the hairpin and extended state are

directly aligned to each other (Fig. 5 c),
3. The initial position/orientation of the extended state is

found by minimizing the MRSD between the two coarse-

grained Ca structures (hairpin and extended state) in Fig.

2, a and b (Fig. 5 d, blue extended strand), and
4. The initial position/orientation of the extended state is

found by minimizing the RMSD between the two coarse-

grained Ca structures (hairpin and extended state) in Fig. 2,

a and b (Fig. 5 d, teal extended strand).

From these initial states, we have found minimal fold-

ing trajectories consisting of rotations and subsequent trans-

lations of the residues (or vice versa) as described in Methods.

To gain intuition for the transformations from the MRSD and

RMSD aligned structures, we also considered minimal trans-

FIGURE 2 (a) b-hairpin fragment, with all-atom and coarse-grained Ca

representations superposed. (b) The extended initial state.
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formations from an idealized straight-line structure to an ideal-

izedb-hairpin,whose initial and final states are shown in Fig. 5 e.
The distances for all the b-hairpin transformations, along

with numbers for the RMSD and MRSD for the same

transformations, are given in Table 1.

The resulting transformations for the above boundary

conditions are shown in Fig. 5, a–c, and f–i. As described in

Methods, the minimal folding pathways proceed by forming

kinks or solitonic-like waves that propagate along the back-

bone. The soliton-like object consists of a rotation of a bead

until the link containing that bead reaches a critical angle. The

bead subsequently translates until it reaches its final position.

For the idealized straight-line to b-hairpin transformation,

theMRSD and RMSD aligned structures are globally different

(Fig. 5 e). The MRSD between the two aligned straight-line

structures is 15.39 Å, larger than the MRSD of either structure

to the folded hairpin state (Table 1). The transformation from

the RMSD-aligned line involves predominantly straight-line

motion from the line to the hairpin (Fig. 5 f). Only ;0.1% of

the distance corresponds to rotational motion. The transfor-

mation from the MRSD-aligned line involves both rotations

and translations, as shown in Fig. 5 g. This gives the MRSD-

aligned pair a distance onlymarginally smaller (0.4%) than the

RMSD-aligned pair (Table 1), even though the transforma-

tions have different initial states and very different character.

For the real b-hairpin and extended state, the transforma-

tions are reminiscent of the ideal case. The MRSD and

RMSD aligned structures are globally different, as shown in

Fig. 5 d. The MRSD between the two aligned extended

structures is 9.83 Å, which is again larger than the MRSD of

either structure to the folded hairpin state (Table 1). The

MRSD-aligned pair has a distance 17% different than the

ideal case and the RMSD-aligned pair has a distance 23%

different than the ideal case. Fig. 5, h and i, depict the trans-
formations for RMSD- andMRSD-aligned pairs, respectively.

For the real b-hairpin, the RMSD-aligned extended state has a

smaller distance than the MRSD-aligned extended state by

;5%, i.e., the scenario present in the idealized case is re-

versed, somewhat surprisingly. This indicates that the aligned

structures obtained by minimizing the actual distance need not

resemble those structures obtained by either the RMSD or

MRSD alignments. An alignment algorithm for general

structures using distance D as a cost function is a nontrivial

problem that we reserve for future work.

We note that the above transformations will not all have

the same energy gain as they fold. Transformations in Fig. 5,

a and c, are similar in the main to the energetically driven

zippering and assembly mechanisms of conformational

search proposed by Ozkan et al. (48). A folding pathway

similar to the transformation in Fig. 5 b would not have con-

FIGURE 3 (a) Residues 101–130 of Aspartate Carbamoyltransferase can be taken as an example of an overpass/underpass problemwhere chain noncrossing

is important. (b) Conformation of the segment in panel a with the b-sheet unformed. Both initial and final structures (with opposite over/under sense) are

superposed in this stereo view. (c) A simplified model to capture the essence of the underpass-overpass problem. Both initial and final states are shown as

viewed from above. Residues 1–8 must transform to residues 19�89, but cannot pass through the obstacle marked with a circled X, representing a long piece of

polymer normal to the plane of the figure.

FIGURE 4 Illustration of the general recipe for obtaining minimal path-

ways (see Methods).
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current energy gain and so would be less likely thermody-

namically. To implement the transformation shown in Fig. 5 c,
the construction described in Methods above and shown in

the figure is only approximately correct, to ;1%. To find an

exact minimal solution involves generalizing the methodol-

ogy to allow for concurrent rotations of two links about a

central axis, as described in more detail in Sections 4 and 5 of

Mohazab and Plotkin (44).

FIGURE 5 Minimal transformations to the b-hairpin. Distances are given in Table 1. (a) Folding pathway in which one strand of the hairpin can be thought

of as peeling away by rotations of the links to various critical angles, which are then followed by subsequent translations into their final positions. (b) A minimal

pathway that can be thought of as involving kink propagation or peeling away from the extended strand, followed by translation of the links into their final

positions in the b-hairpin. (c) A zippering mechanism, in which we have aligned the middle link of the hairpin and sought the minimal distance transformation.

The distance here is somewhat larger than the distance for the transformations in panels a and b. (d) The extended strand is aligned to the b-hairpin by

minimizing RMSD (blue), or minimizing MRSD (teal). (e) Idealized version of the extended strand and b-hairpin. The extended strand is again aligned to the

b-hairpin by minimizing RMSD (blue), or minimizingMRSD (teal). (f) Transformation for the idealized b-hairpin, for RMSD-aligned structures. Initial state is

blue, final state is red, and intermediate state is in green. (g) Transformation for the idealized b-hairpin, for MRSD-aligned structures. (h) RMSD-aligned

transformation between the extended strand (blue) and b-hairpin (red). An intermediate state is shown in green. (i) MRSD-aligned transformation between the

extended strand (blue) and b-hairpin (red). An intermediate state is shown in green. The small arrow points to a link with an somewhat unconventional

transformation, which is discussed in the Appendix.
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a-helix

We coarse-grain the helical fragment containing residues

147–151 by considering only the Ca atoms (see Fig. 6 a).
We consider folding to this structure from an extended

state. The extended state is taken for simplicity to be a straight

line. Of course more realistic extended conformations could be

taken, but would give minor quantitative corrections to the

numbers we obtain.

We consider two different initial conditions for the straight

line, one where link 2 is exactly aligned with link 2 of the

a-helix (Fig. 6 c), and one where the straight line is aligned to
the helix by minimizing the MRSD. This initial condition is

such that the straight line threads the helix (Fig. 6 b). The
aligned unfolded structure obtained by minimizing RMSD is

similar in this case: the MRSD between the two aligned

structures is only 1.53 Å.

From these initial states, we found minimal folding tra-

jectories consisting of rotations and subsequent translations

from the straight-line conformation to the helix.

Fig. 6 b shows a minimal folding pathway to the a-helix.
An intermediate conformation (partway through the transi-

tion) is shown in green.

The distance traveled after minimizing MRSD is indeed

less than the distance after alignment of one link. For both of

these transformations, the distances traveled per residue are less

than the corresponding distance per residue for the b-hairpin
transformations.

Crossover structure

The fact that the polymer chain cannot cross itself is repre-

sented by inequality constraints in the equations of motion.

We introduce the methods for solution of variational prob-

lems with inequality constraints in the Appendix. The upshot

is that the minimal distance problem is a free problem until a

residue on the chain touches the obstacle. At that point the

residue is constrained to be on the surface of the obstacle and

the trajectory is defined accordingly. Eventually the particle

or residue leaves the surface, and the problem becomes a free

problem once again, as the particle moves to its final position.

The transformation is then piecewise, consisting of three pieces,

and at the interface between the pieces, the corner conditions

(Eq. 6) must hold.

The initial and final conditions of an idealized noncrossing

chain are shown in Fig. 3 c. In our problem of chain non-

crossing, the obstacle is an effectively infinite line, normal to

the plane of Fig. 3 c (marked by a circled X), so residues only
need to touch that point before proceeding to their final po-

sition. In this treatment residues are treated asymmetrically,

in that one part of the chain has steric hindrance along bonds,

while another only has steric hindrance for the masses or

beads at the termini of bonds. This approximation is assumed

to simplify the transition, and because the resulting distance

only differs by a small finite size-effect from the distance

obtained by employing links for all parts of the chain.

We found a solution that fully satisfies the Euler-Lagrange

(EL) equations Eqs. 5a–5c, and corner conditions satisfy

Eq. 6. According to our previous work (44), this class of

FIGURE 6 (a) Single a-helix of five residues 147–151

taken from PDB 1AT1. (b) Minimal pathway to fold the

a-helix (red), from a straight line initial state which has

been aligned by minimizingMRSD (shown in blue, see text

for description). A conformation partway though the tran-

sition is shown in green. (c) Minimal pathway to fold the

helix from a straight-line initial conformation with its

second link directly aligned to the second link of the helix.

Distances for both transformations are given in Table 1.

TABLE 1 Values of the distance for various protein backbone

fragments, as compared to other metrics

Backbone conformation Figure D/(N‘)* RMSD MRSD

b-Hairpin (half-aligned) 5 a 10.372 15.538 9.926

b-Hairpin (half-aligned) 5 b 10.372 15.538 9.926

b-Hairpin (zipper) 5 c 12.787 13.560 11.317

b-Hairpin (RMSD-aligned) 5 h 9.749 10.501 9.730

b-Hairpin (MRSD-aligned) 5 i 10.277 12.681 9.412

Ideal b-hairpin (RMSD-aligned) 5 fy 12.25 13.24 12.24

Ideal b-hairpin (MRSD-aligned) 5 gy 12.18 16.31 11.27

a-Helix (MRSD aligned) 6 b 3.595 3.954 3.577

a-Helix (1-link aligned) 6 c 4.675 5.805 4.233

Over/under (noncrossing) 7y 13.991 6.173 5.239

*Distance D is divided by N times the link length ‘, so that all quantities in

the table have units of Å.
yD is put in the same units as the above transformations, i.e., we take ‘ ¼
3.81 for the link length.

Minimal Folding Pathways 5501

Biophysical Journal 95(12) 5496–5507



solution is at least a local minimum. It involves the propa-

gation of a kink starting at the end of the chain, in which the

chain proceeds snakelike over the obstacle and then back

down to its final position, and so is intuitively reasonable.

The distance is given in Table 1, along with the RMSD and

MRSD. In cases where noncrossing is important, the distance

D will be significantly greater than either RMSD or MRSD.

The transformation starts by a rotation of link 7-8 about the

point 7, until a critical angle p/2 is reached. Residue 8 sub-

sequently translates to the crossover point O. Immediately as

it starts translating, link 6-7 rotates about point 6 (Fig. 7 a)
and residue 7 rotates to its critical angle of p/2. The process
repeats until link 5-6 rotates to an angle ofp/6, at which point
residue 8 touches the obstacle (Fig. 7 b).
At this point, residue 8, which is touching a non-

differentiable (nonsmooth) surface, may violate corner con-

ditions for the reasons discussed in the Appendix. Residue 8

moves horizontally to the left while residue 7 moves verti-

cally, so the end points of the link slide in orthogonal di-

rections (Fig. 7 c). After this part of the transformation is

complete, the chain is in the configuration shown in Fig. 7 d.
At this point, link 4-5 begins to rotate, and this sets up a

cascade of motions throughout the chain. Residue 8 slides

vertically downward, residue 7 slides horizontally to the left,

and residue 6 slides vertically upward (Fig. 7 e). Note that

residue 8 appears to violate corner conditions in the opposite

sense of residue 7. These violations are again due to the in-

fluence of the crossover constraint.

When link 4-5 has rotated to p/6, link 6-7 is horizontal and
link 7-8 is vertical (Fig. 7 f). As 4-5 continues to rotate,

residues 7 and 8 proceed vertically downward in Fig. 7 g,
while residue 6 moves left horizontally, until the conforma-

tion in Fig. 7 h is reached when link 4-5 has finished its ro-

tation to p/2.
At this point link 3-4 begins to rotate about position 3,

moving residue 4 to the noncrossing positionO, while the rest
of the chain shifts downward vertically in the Fig. 7, i and j.
Finally residue 3 rotates about position 2 while residue 4

translates in a straight line to its final position, and all other

residues translate downwards (Fig. 7, k and l).
This completes the transformation. Note again that the

distance in Table 1 is much larger than either the RMSD or

MRSD.A second transformation is obtained by time-reversing

the above solution, and swapping the right and left branches of

the structure that serve as initial and final conditions.

DISCUSSION AND CONCLUSIONS

In this article, we have applied the general theory of distance

between high dimensional objects to find the minimal folding

pathways for protein fragments. We consider this to be a first

step in building up ever-larger fragments to eventually look at

the distance as an order parameter for the folding of a whole

biomolecule.

We investigated the minimal folding pathway for a helix, a

b-hairpin, and a structure involving a crossover where the

integrity of the chain is essential in determining the minimal

transformation.

The noncrossing problem has the largest distance per

residue of all conformations considered. Not surprisingly, the

a-helix has the shortest. It is an interesting future question to
address the consequence of the distance from a random

structure to a folded structure on its folding rate.

We have made several approximations in our model. In our

analysis of minimal distance trajectories, we have not ac-

counted for the steric excluded volume of the side chain and

backbone degrees of freedom that have been coarse-grained

out. It is possible to account for this in principle by applying

the methods described in the Appendix. We take the trajec-

tories derived here as a first approximation to the more fully

constrained problem.

Another modification that must be considered is the range

of allowed angles between consecutive triples of Ca residues.

While sharp kinks in our transformations were the exception

rather than the rule, we have assumed in our analysis that the

full range of angles is allowable. The coarse-graining pro-

cedure does give greater flexibility for the resulting chain

because there are six backbone bonds per Ca triple; however,

a more thorough analysis would take into account a restricted

range of allowable angles.

The construction of an efficient alignment algorithm based

on the distance D as a cost function is an important future

goal, and could have important future implications for

structure prediction and biomolecular folding dynamics. For

our purposes here we chose the approximate metrics MRSD

and RMSD. For the b-hairpin, the best-aligned MRSD struc-

ture was globally different than the best-aligned RMSD

structure. The distance from a straight line to an idealized

b-hairpin structure was slightly less when the structures were
aligned by minimizing MRSD than for RMSD. However. the

situation was reversed for the real b-hairpin structure, with the
RMSD-aligned structures having a smaller distance by;5%.

The noncrossing transformation raises interesting questions

about the validity of structural comparison metrics when pol-

ymer noncrossing is important. The RMSD and MRSD were

both quite small for the conformations we considered, com-

parable to the a-helix distances. However, the actual distance
for a physically realizable transformation was large—

larger than the distances in b-sheet transformations.

The solution we found for the case of noncrossing was

extremal and minimal, at least locally. However, there is no

guarantee that this is the globally minimal transformation—

some preliminary results for small numbers of links indicate

there can be shorter pathways in some instances (A. R.

Mohazab and S. S. Plotkin, unpublished data). However, the

difference in distances between ground-state and excited-

state transformations involves rotations of links and so is

nonextensive: in the limit of large numbers of links, the

discrepancies go to zero (43).
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FIGURE 7 Various steps in a minimal pathway obeying noncrossing. Two conformations are drawn for each step. By convention, we number residues in the

conformation that is leading in the transformation. (See text for a description of the transformation.)
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Noncrossing constraints introduce a mechanistic aspect to

the folding process. A foldingmechanism consists of a specific

sequence of events, or pathway. In the context of our problem

the chain had to cross over the obstacle before translating to its

final position. In practice the chain can go up and over the top

or bottom of the obstacle, or cross over it in different places

with varying likelihood, so strictly speaking there are many

pathways and we have just investigated the minimal distance

pathway here. Nevertheless, such constraints can further re-

strict the entropic bottleneck (49) governing folding rates.

The physics of noncrossing is certainly important for

knotted proteins, and the generalized distance may be useful

as an order parameter for these proteins, whereas other struc-

tural comparison parameters would be flawed. The non-

crossing constraints in a knotted protein slow its kinetics

(50,51), and lead to different molecular evolutionary pres-

sures for fast and reliable folding (52–54).

For a simple stochastic process such as the one-dimen-

sional diffusion of a point particle on a flat potential between

two absorbing barriers, the splitting or commitment proba-

bility pF ¼ D/DTOT, giving a correlation ÆDpFæ ¼ 1. The

presence of such a correlation between distance and com-

mitment probability for simple examples provides encour-

agement to investigate whether or not one would find a

significant correlation for the more complex problem of

protein folding, in particular when the presence of non-

crossing constraints for configurational diffusion has been

accounted for. In the above discussion, pF has tacitly been

written in terms ofD rather than the reverse. This underscores

the conceptual importance of geometric order parameters in

understanding the progress of a reaction.

An emergent simplicity in protein folding has been the

conclusion that native topology determines the major fea-

tures of the free energy landscape for a protein, and conse-

quently a protein’s folding rate and mechanism (46). The

distance D between disordered or partly disordered protein

structures and the native structure may capture the evolution

of topology during the folding process more accurately than

many other order parameters proposed to characterize the

folding kinetics and mechanisms of proteins: a full system-

atic comparison remains a problem for future research.

Useful order parameters have simple geometric interpre-

tations. Here we have shown that in principle one can com-

pute the distance that would have to be traveled to connect

two arbitrary biopolymer structures, a simple geometric

quantity that can include noncrossing constraints, as well as

properties such as restricted allowable angles or chain stiff-

ness. The problem of finding a minimal distance pathway for

a biomolecule is now an algorithmic problem rather than a

conceptual one. In the long run, it is feasible that the analysis

of chemical reactions involving large numbers of degrees of

freedom might benefit from order parameters similar to the

one we studied here, which are capable of accounting for the

structural complexities inherent in large molecules.

APPENDIX

Point particle

The extremal trajectories of beads or links subject to steric excluded volume

is a variational problem in the presence of an inequality constraint. A bead

can be outside a given region but not inside it, or must travel from point A to

point B while avoiding an intervening volume.

Variational problems subject to inequality constraints arose historically in

the theory of optimal control (55–58). In our context we illustrate the idea

with a simple example of a point particle moving from A to B but with the

constraint that the point and resulting trajectory must lie outside an infinite

cylinder of radius a, r $ a in Fig. 8.

The distance traveled by the point is written as

D½r� ¼
Z T

0

dt Fð _r; l; eÞ; (8a)

where

Fð _r; l; eÞ ¼
Z T

0

dt
ffiffiffiffi
_r2

p
1 lða� jrj1 e

2Þ
� �

: (8b)

The second term in the integrand embodies the inequality constraint a – jrj# 0.

The value l is the Lagrangemultiplier enforcing the constraint, and the quantity

e2 may be thought of as an ‘‘excess parameter’’ whose significance will soon

become clear.

Let a vector X ¼ (r, l, e) represent all the unknowns in the problem. The

Euler-Lagrange (EL) equations are then

d

dt
F _X ¼ FX; (9)

with the convention FX [ @F/@X. The EL equations are

a� r1 e
2 ¼ 0; (10a)

FIGURE 8 (a) Extremal trajectories for an

inequality constraint problem. In this case, a

path that is a minimal distance from point A at

(xA, yA) ¼ (�1.5, 0) to point B at (xB, yB) ¼
(11.5, 0) is sought subject to the constraint that

the path must remain outside a circle of unit

radius. Both positive and negative solutions are

shown. (b) Lagrange multiplier l and excess

parameter e for the above problem. If e 6¼ 0, l¼
0, and if e ¼ 0, l 6¼ 0.
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el ¼ 0; (10b)

_̂v ¼ �lr̂: (10c)

In addition to the EL equations, transversality or corner conditions must hold

for the trajectory to be extremal (59). These demand that

F _rðt�Þ ¼ F _rðt1 Þ (11a)

and

F� _r � F _rjt� ¼ F� _r � F _rjt1 ; (11b)

where t6 ¼ lime/0 ðt6eÞ: In this parameterization (r in terms of time),

Eq. 11b gives no new information, and Eq. 11a demands that

v̂ðt�Þ ¼ v̂ðt1 Þ: (12)

To solve these equations, first note that from Eq. 10a, if r . a, the excess

parameter is e2 . 0. Then from Eq. 10b, the Lagrange multiplier is l ¼ 0.

Then from Eq. 10c, _̂v ¼ 0 and the particle moves in a straight line. The

particle moves in a straight line until a point where it touches the cylinder.

Equation 12 demands that the straight line must be tangent to the cylinder,

otherwise we would have a corner at that point. Once on the cylinder, r ¼ a
and so e2 ¼ 0. The quantity _̂v is determined kinematically by the trajectory

which follows the boundary condition, here the surface of the cylinder at

r ¼ a. This then determines lðtÞ ¼ j _̂vj:
This gives the piecewise trajectory in Fig. 8 a. Both positive and negative

solutions are shown. For this extremal trajectory, the Lagrangemultiplier and

excess parameter can be found straightforwardly, for example as functions of

x (Fig. 8 b). In particular l ¼ 1/y(x) on the cylinder, zero otherwise.

If the obstructing object is no longer a cylinder of circular cross section,

but we compress the x axis of the cylinder so that it is an ellipsoid, then in the

limit that the minor axis (the x axis of the ellipsoid) / 0, the obstructing

object becomes a flat strip (or line in cross section). Then the extremal

trajectory consists of two straight-line pieces with an apparent corner

between them, due to the discontinuity at the surface of the excluded

boundary.

One link

The above solution can be generalized to the case of a single link undergoing

a transformation from one side of a sphere to the other side. For the initial

conditions in Fig. 9 a, the solution consists of one bead on the link moving in

straight-line motion, and the other following a piecewise trajectory consist-

ing of straight-line motion, a great circle geodesic, and finally straight-line

motion again.

When one axis of the sphere is compressed so that the sphere becomes a

disk, the minimal-distance solution acquires a discontinuity or cusp (Fig. 9 b).

This means that minimal-distance transformations can violate corner condi-

tions if the inequality constraints are themselves discontinuous or more

precisely nonsmooth. The extremal transformation of the link AB in Fig. 9 b

involves a straight-line translation of A to A1, while point B translates to BL.

Then point B rotates to point B1 on the surface of the disk, where it

experiences a corner as per the above discussion. It subsequently rotates again

to BR, then A1 and BR translate together in straight lines to points A9 and B9,
respectively.

As another example, consider the initial conditions in Fig. 9 c, which

involves the problem of one link transforming in the presence of an infinite

strip. This situation has applications to the problem of chain noncrossing

discussed in the text. The minimal transformation consists of two piecewise

rotations of B with a corner between them, at position Bc.

Regarding the MRSD-aligned transformation

Implementing the transformation for the MRSD-aligned structures of the

b-hairpin involves a somewhat subtle transformation for one of the links

(the link denoted by the small arrow in Fig. 5 i). A representation of the

transformation is shown in Fig. 10. This was the only instance of this kind of

transformation we had found for the various configurations that we studied.

FIGURE 9 (a) Extremal trajectory for a one-link transformation subject to

inequality constraints. The link moves from configuration AB to A9B9 in the

presence of an obstructing sphere. The link length AB is conserved during

this process. The distance traveled by the end-points A and B of the link is

minimized by the transformation shown, which involves straight-line motion

of A to A9, and straight-line motion of B along a trajectory tangent to the

sphere. Point B traces out a great circle on the surface of the sphere before

continuing to B9 on another trajectory tangent to the sphere. (b) When the

sphere in panel a is compressed to form a two-dimensional disk of the same

radius, the minimal transformation takes the form shown, with a discontinuity

in the trajectory of B at point B1. Moreover, the piecewise solution must still

retain rotations and is not purely piecewise straight lines. (c) Transformation

from AB to AB9, in the presence of an intervening infinite strip. The minimal

transformation consists of two piecewise rotations with a corner violation

between them: the link rotates from B to Bc, then from Bc to B9.
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