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Figure 1: A) Ground-state native structure of the all-atom Go model of the Trp-cage protein; B) Denatured (unfolded) Trp-
cage in denaturing solution; C) Folded Trp-cage in osmolyte solution.

1. Simulation model and method

A brief description of the discrete molecular dynamics (DMD) simulation method is presented here;
more details are contained in references (1-7) below. The initial heavy-atom positions were obtained
from the NMR structure (structure 1 of PDB 1L2Y(8)) and the missing polar hydrogen molecules are
constructed as in reference(2). The resulting structure is comprised of 189 heavy atoms and polar
hydrogen atoms (non-polar hydrogen atoms are not represented), which in the discontinuous model are



represented as hard spheres. Two bonded atoms i and j, as well any 1,3 angle-constrained pair and 1,4
aromatic pair, are constrained to be within £10% of their distance in the NMR structure by an infinite
square-well potential:

oo, r< 0.96,.,
J=10, 090, <r<l.lo, (1.1)
oo, r>l.1o,,

where o, is the separation distance of the bonded j,j pair in the NMR structure. The model also

includes a discontinuous improper dihedral potential, to maintain chirality about tetrahedral heavy
atoms (e.g. Ca, CB,C, N ), and planar moieties such as tryptophan rings.

oo, w<a,—-20°
u""" =50, @,-20° <<, +20 (1.2)
oo, o>, +20°.

Here @ represents the dihedral angles of the constrained atoms, which are restricted to values near

@, =35.26439° for tetrahedral heavy atoms, and @, = 0" for planar atoms.

As well, two non-bonded atoms i,j may interact by square-well potential with a hard-core radius:

oo, r< O.SO'UV.dW
non—bond __ _ vdW vdW
4 =1¢,, =B, 080, <r<l.3o; (1.3)
vdW
0, r> 1.26ij ,

where O';dW is the sum of the van der Waals (vdW) radii 7, +7r for each atom, as given by the CHARMM

potential set 19 (9) and Bl.], and €, are Go interaction strength parameters giving the depth of the
square well potential, which may depend on the identities of atoms i and j . Using these parameters
we performed a short DMD simulation with fixed native contacts to remove interactions violating
equations (1.1)-(1.3) from the initial experimental structure, to produce an equilibrium structure of the
model Trp-cage consistent with the above potentials. The ground state native structure is shown in
Figure 1A. The Go model potential (10) is implemented by setting the non-bonded square-well depth
£,, to =€, (Bij = —1) for all non-bonded ij pairs in the equilibrated structure with van der Waals

vdW

overlap r < 1.20'1.]. .This gives 1267 non-bonded atomic contacts in the native state. For all other non-

bonded ij pairs, the square-well depth is set to 0 (Bl.j =0), so that these atom pairs are purely repulsive.

As in previous DMD studies(2, 11), the energy scale is set by the Go contact energy; thus simulations are



performed with the Go contact energy 8;1) set to —8;0 =—1, and all energies and temperatures are

scaled in units of &, (E" = E/¢gg, and T = k,T | €,). Areduced time unit t = 1€, /mC)'L2 is also

used (m can be taken to be the average atomic mass of the atoms comprising the protein and o, = 1 A).

The Go6 model protein in explicit solvent is implemented by placing the Trp-cage protein in a 40A X 404 X
40A box, along with a variable number of spherical solvent molecules randomly inserted without

hardcore overlaps. A typical simulation consisted of 1000 spherical solvent particles of radius 1.54 (the
approximate radius of water). This is about half the number of water molecules in a 55M solution for a
(40A)® box. We employ such a dilute concentration for computational convenience; physical
concentrations have collision times sufficiently short as to make such simulations prohibitively slow.
Diluting the concentration weakens the effects that would be observed by varying solvent qualities from
those at 55M, i.e. this simplification effectively places lower bounds on any trends that we predict would
be observed. For this reason we find the approximation acceptable as it only strengthens the
conclusions of this study. Standard periodic boundary conditions are implemented.

Solvent molecules interact with both protein moieties and with each other by a square-well potential
plus hard core radii, having the form:

. oo, r<0.80;°
8L: £,/ =€, 080, <r<l2c; (1.4)
Go 0, r>120;".

In equation (1.4) x may be either a protein atom p or another solvent residue s . For solvent-solvent
interactions, 0 is the vdW diameter of the solvent, which we generally set to 0;’ =3.0 A: roughly the

size of a water molecule. S:S is the solvent-solvent square-well depth in units of the G6 contact energy

water

£, - For solvent-protein interactions, O',.j‘.” = (O'I.VdW +0, )/ 2 is the average vdW diameter of the

vdW

protein-solvent (i,j) pair, where o;“" is the CHARMM potential set 19 vdW diameter of the i™ atom of

water

the protein, and o, = 3.0A is the vdW diameter of thej"' water molecule. 8; is the protein-solvent

square-well depth in units of the Go contact energy €., . A plot of this potential for several values of

protein-solvent interaction energy is shown in Figure 2 below.
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Figure 2: lllustration of the functional form of the potential between solvent-residues and protein atoms given by equation

(1.4), for several values of interaction energy 8PS . The protein Go potential in equation (1.3) has the same functional form

with Spp = —1 for native interactions, Spp = () otherwise.

The DMD methodology benefits from substantial computational speedup over the traditional molecular
dynamics that would be required for other solvent models such as TIP3P; the simple functional form of
the potential eases the task of evaluating the energy for each time step, and also allows for the fact that
configurational updates need only be performed after each collision. On the other hand, features such
as the specific steric geometry of various solvents and osmolytes, long-range electrostatics, and angle-
dependent hydrogen bonding, are not captured by the present model. More specific stereochemistry as
well as angle-dependent hydrogen bonding could be included in more refined DMD solvent models.

1B. Free Energy, Energy, and Entropy Functionals

Free energy surfaces have long been used as a tool to analyze protein folding thermodynamics and
kinetics(12, 13). The free energy calculations used here are based on standard multiple-histogram
method (14, 15), which calculates thermodynamics quantities by approximating the density of states

g(e) (i.e. the number of states with energy € ) from simulation data. This gives the partition
function Z(x) = z *g (e,x,Ax)eXp (—ﬁe), where * indicates a summation over all energy states with

the order parameter constrained to values ranging from x to x + Ax, and g(&,x,Ax)is the density of

state of energy € with the order parameter range x to x + Ax . Thermodynamic quantities only

depend on the bin size Ax by an additive constant, so long as Ax is sufficiently small in the traditional

coarse-graining sense. The free energyF(x)z —k,TInZ (x): —k,T lnP(x)+F, where P(x) is the
probability the system is within the order parameter range x to x+ Ax, and F =—k,T In Z is the total

free energy. The internal energy is U(x)z <E (x)> = Zeg (S,x,Ax)eXp (—ﬁe)/Z (x), and the

entropy S(x)z (U (x)—F(x))/T .



In this work we use the non-local native fraction of contactsQ as an order parameter, defined by first
counting all atom pairs in the native structure that are within 1.2 times the sum of their hard-core radii,
and between residues i, j such that |i - ]| > 3. This gives 276 contacts in the native state. The value of
Qin a given (partly folded) configuration is the fraction of these contacts present, and varies from 0
(completely unfolded) to 1 (completely folded). A bin size AQ =0.02 was used. Unless stated
otherwise, the energy of the system includes intra-protein, protein-solvent, and solvent-solvent energy.

The computed energyu* (Q), free energyf* (Q), and entropy s (Q) functions are in units of the Go

contact energy &, .

2. Phase diagram in the temperature, protein-solvent interaction energy plane

The phase diagram in Figure 3 below illustrates that our protein in explicit solvent model reproduces
protein stabilization/destabilization by osmolyte/denaturant. The native state becomes more stable as

. . * . . .
the quality index €, increases (i.e. become more osmolytic).
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Figure 3. Solvent quality temperature ( T ) vs. solvent quality ( Sps ) phase diagram. N denotes region where the native

state is stable, and U, region where the unfolded state is stable. The phase boundary (solid line) is determined by folding
%

temperature Tf obtained from histogram analysis of the simulation data (figure 2A main text). The two symbols in the

figure indicate 2 systems with different solvent conditions: O, location in the phase diagram of the G model in implicit

solvent; and A, location in the phase diagram of the Go model in hard sphere solvent ( 8;5 = 8; =0).

3. Comments on the specific heat ol (T* )and folding cooperativity



The specific heat ol (T*) (in reduced units described in the text) is obtained from

. 2 .
<(E - <E >) >/T ’ . The energy here is generally the full system energy: protein-protein

interaction energy plus protein-solvent interaction energy plus solvent-solvent interaction energy.
For implicit solvent and hard-sphere solvent, this is equivalent to the protein-protein interaction
energy only. The protein-protein interaction energy corresponds to all 1267 atom-atom native non-

bonded contacts: 276 of these are non-local (between residues j and j with |i—j| >4) and show
significantly more change upon folding than the 991 local contacts. Scanning the temperature

results in a single peak of ol (T* ), corresponding to a first-order-like folding transition. The high

temperature baseline is generally observed to be lower than the low temperature baseline, a
feature that is specific to discontinuous potentials and has been observed previously by many
authors (1, 6, 7, 11, 16-18). This phenomenon is likely due to in part to the reduced energetic
fluctuations in the unfolded state as compared to continuum models. For example the heat
capacities of the angle and dihedral potentials, having no energy scale, are temperature-
independent; moreover the repulsive potentials between self-avoiding particles no longer have

temperature-dependent energetic fluctuations on the ~ r? part of the LJ potential, but have no
energetic fluctuations on the hard-wall potential. This phenomenon is generally seen in the
temperature-dependence of energetic fluctuations in models involving square-well interactions. For
example, square-well fluids, with pair potentials having the form of equation (1.3), have a heat
capacity which is a decreasing function of temperature (19-22), and as well show a heat capacity
drop across the liquid-gas transition (19), consistent with the liquid gas transition observed in
clusters and homopolymers with square-well interactions (23).

We compute the cooperativity of the folding transition in our model from the ratio of the van’t Hoff
to calorimetric enthalpy, employing the method of Kaya and Chan (24) which gives this ratio as

2T /kBCp (Tmax )/AHCQI . The protein’s internal energy is a nearly linear function of Qin the Go

model (see figure 5B in the text). We use internal energy as a way of accounting for baseline
subtraction by removing bath heat capacity. Moreover a scan of the heat capacity, as shown in

* * 2 *2
Figure 4 below, and calculated from fluctuationsin Q as C (T )= A<(Q— <Q>) >/T with 4 a

proportionality constant, gives approximately the same heat capacity as the usual enthalpic
definition (Figure 4). The quantity Q accounts only for protein-protein interactions, while the
internal energy in Figure 4 contains both protein-protein and protein-solvent interactions. This
accounts in part for the discrepancy between the two curves.
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Figure 4: Internal heat capacity scan using either the fluctuations in Q, or fluctuations in internal energy of protein-protein

*
plus protein-solvent interactions, for the system with € = —0.2 . One can see generally good agreement between the two
methods. The poorer statistics for Q is simply the result of less structural data being recorded compared to the energetic
data.

With Q as an energetic proxy, the above van’t Hoff ratio 27, . /kBCp (Tmx )/AHCG] becomes
25Q/(QF -0, ), i.e. twice the standard deviation of Q at the peak of the heat capacity, divided by

the difference in O between the folded and unfolded states, below and above the transition.
Thermodynamic perturbation theory was used when needed to obtain accurate values of the
temperature at the heat capacity peak. As mentioned in the text, the calorimetric Q values were
obtained from thermal averages well above and below the transition midpoint for each value of
solvent-protein interaction energy 8;, and these values did not vary significantly as 8; was varied.
Thermodynamic perturbation theory was again employed as needed to obtain low and high
temperature ensembles (though temperature differences were always less than 15%). We did not

apply base-line subtraction to the heat capacity curves (24), which would result in an overall
increase in cooperativity, but would not change the trend in figure 4. Statistical error bars were

obtained from the standard deviations of the respective quantities (R, or AH ,, /AHM, ) between

non-overlapping data sets.
4. Energy, entropy, and free energy surfaces

The energy and entropy surfaces can be plotted for the protein-protein and protein-solvent
interactions energy alone, yielding what the effective energies and entropies would be in an implicit
solvent model. These results, shown in Figure 5 below, corroborate the conclusions drawn from the
total system energy and entropy in Figure 6 in the main text.
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Figure 5: Energy and entropy surfaces for protein-protein + protein-solvent interactions, as a measure of the internal energy

* *
and entropy of the effective system. (a) Free energy vs. protein native fraction (Q) at T =4.8 for Sps =0 (solid line),

* * *
Sps = 0.4 (dashed line), and Sps = —0.2 (dotted line), with solvent-solvent contact energy fixed at gss =—1.(b)

Protein internal energy <E> vs. Q. (c) Entropy(S) vs. Q. (d) Change in entropy ( AS ) vs. Q, for osmolyte solvent
(8:75 = 0.4 ) compared to neutral solvent (S;S =0)ie. AS=S (8;S = 0.4)— S (8; = 0) (dashed line), and for

* * * *
denaturant(SpS = —(.2 ) solvent compare to neutral (Sps =0)solvent AS=S (Sps = —0.2)— S (Sps = O) One

can see almost no change in the internal entropy for the folded state, but significant changes in the unfolded ensemble. (e).



* *
Changes in enthalpy between osmolyte and neutral solvent AE=F (Sps = 0.4)— E (Eps = O) (dashed line), and

* *
between denaturant solvent and neutral solvent AE = F (SPS = —0.2)— E (Eps = O) (dotted line).

5. The correspondence between explicit and implicit osmolyte models

As summarized in section 2C in the main text, a particular effective solvent system, characterized by

* 8* g*

three contact energies €, ,€ €,

can be shown to be equivalent to a given solution with explicit

solute, characterized by six parameters € p.€ i€ op€ 00 € 0s€ s - The above 6 interaction enthalpies,

corresponding to pair interactions between p, o, and s, along with the temperature T, are the
relevant energy scales in the problem. There are also 3 length scales in the problem corresponding

to the sizes of the various species: AN A corresponding to the monomer, solvent, and osmolyte

radius. The effects of the corresponding radii of the various constituents in the model, r,.T,t, ,are

manifested simply as different coordination numbers 9,99, for each of the species.

Given the six explicit-system (ES) parameters € 0 € pi€ op€ 00.€ o€ s WE seek the three implicit-

*

i S;that would give the same average interaction probabilities for

system (IS) parameters & 8:”,
the system. The mean number of interactions Nl.j between species iand j for the explicit system

can be found from the sum rules for the total number of nearest neighbours:

qup :2Npp+NpS+N0p
qN,=2N_ +NpS+N0S (1.5)
qONO = 2N00 + N(Jp + NOS

and the 3 quasichemical equations of mass balance for the reactions po+soz—= ps+ oo,

S0+S0T—=255+ 00, po+ poc—= pp + 00, which give equations of the form:

N N _ e
Np.sNoo —e ﬁ(“:ps‘*‘gou €po gsu) (16)
po” ' so

There are 3 independent rate equations, giving along with (1.5) a total of 6 equations for the 6 Nl.j .

Several approximations are made in the above heuristic approach. The different sizes of the particles are
only manifested in the different coordination numbers in (1.5). More accurate models would modify the
sum rules to more accurately account for the geometry of nearest neighbours, which would also result

in modified stoichiometric coefficients in the mass balance equations. The parameter £, should be

interpreted as a chemical potential, because the conformational entropy for protein monomers is
smaller than that for free osmolyte or solvent particles.



To map to the implicit system, first let the IS particle numbers be given by: N; = Np ,and

N: = N, + N, . Adding the solvent and solute equations in (1.5) gives a relation between the

coordination numbers and solvent particles which can be mapped to the implicit system:

q,N,+q,N,=2(N +N, +N,)+N, +N,

(1.7)
and ¢ N =2N., +NSP

Equating the numbers on the left hand side of (1.7) gives the coordination number q: for effective
solvent particles as ¢, x, +¢,x,, i.e. the solvent and osmolyte coordination numbers weighted by their

respective mol fractions x; . A pair of equations analogous to (1.7) holds for protein monomers.
Equating protein-protein, protein-bath, and bath-bath contacts in both models gives the

3k
correspondence between Ni/‘ and Nif :

NPI’ =NI717
N:s :Ns.§+Nuo+Nos (18)
N,,=N,+N,

The N; then determine the transfer energy in the IS model through:

N* N: —ﬁ(e;ersL—Za;A)
—+==e (1.9)
(V,.)

The other 2 equations determining the 3 energy scales in the IS model may be found from the
conservation of total energy between the two models:

N, g +N.g +N g =DNg, (1.10)

pp - pp §§ 88
i<j

And by the ansatz that the total bath interaction energy (or equivalently protein-bath interaction
energy) be the same in both models:

Ne =Ne +N & +N ¢ (1.12)

5888 5888 00~ 00 os —os

Equations (1.9)-(1.11) then determine e e 8 . For example, a system with

pp° = ps?

€, ,€ €, € €€, =—1.1,+0.25,+1.1,—1.25,-0.8,—0.4 in units of k,T , with

pp> = ps?~ op? ™~ 582 0s?

4,:9,59; = 8,6,4 and mol fractions X, X,, X, = 0.05,0.2,0.75 has effective energy scales

gpp,epé,e =—1,40.4,—1; a set of parameters that we often use in our simulations. We have thus



shown that for any explicit osmolyte-solvent system, there exists an effective solvent model that
captures the thermodynamics of protein contacts in the original system.

6. Solvation barriers

Figure 6 and Figure 7 show histograms of the atomic distances for representative pairs of atoms
participating in native contacts, as a function of distance in A. The sampling is obtained for

simulations of the protein in a neutral solvent that is self-attractive (8; =—1) but has hard-sphere
interactions with the protein (8; =0). The temperature is set to the transition temperature Tf .

Histograms are obtained by binning the distances and dividing by the phase space factor of Amr*.

. . AW
The plots generally show a maximum near the van der Waals distance between atoms O'l; ,

indicated above each subplot panel. Also apparent for some of the contacts (e.g. 1, 2, 3, 7, 8, 51, 52)

is a shoulder indicating a preferential occupation at the solvent separated distance O';dW +O';V‘””.
For some contacts this preferential occupation appears as a secondary peak (contacts 48 and 49),
for others such as contacts 4-6, 9, 46,47,50,53,54 the effect of a solvent separated minimum in the
potential of mean force is manifested as a long tail in the distribution, or a shift in the peak of the

distribution.
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Figure 6: Histograms of atomic distances, for atoms participating in the first 9 native contacts (enumerated starting from the
N terminus). Under each subplot is the contact label k . Above each subplot are the atoms indices i, ] participating in the
contact, and the corresponding atomic identities are listed inside each panel. Also above each subplot is the van der Waals

. — vdW . _vdW
distance between atoms 7, . = O'ijv. , and the solvent separated distance ¥, = O'; + O']

water
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Figure 7: Histograms of atomic distances, for atoms participating in native contacts 46-54. Further description is given in the
text and in the caption to Figure 6. Note that contacts 48 and 49 show secondary maxima near the solvent-separated

distance, which implies strong solvation effects for these contacts.

The effects of solvent on the potentials of mean force (PMF) can be seen most clearly by investigating
the transfer of the system from implicit solvent, to explicit solvent. The difference in the PMF is given by

gHS(r) Pvac(r)
AW =W,.— W =-1 =2 =] — . 1.12
vac—HS HS vac Og gww (}") Og RL[S (I") ( )

Here g, (r)is the pair distribution function in each respective solvent and P, (r) is the probability
density a pair of atoms resides at position 7. The last equality arises because factors of V' and

47rr* cancel for the ratio inside the log. Here P, (r) is obtained at the respective transition temperature
Tf for each model solvent (at the same temperature the two systems explore completely different
ensembles). A similar procedure to the above was employed by Sobolewski et al to find solvent
contribution to the PMFs for nonpolar dimers in water (25).

Figure 8 and Figure 9 shows AW __ . . for several representative native contacts (28-45). A ubiquitous

feature of the transfer profiles for these and the other native contacts (data not shown) is the existence

of a desolvation barrier, which appears typically between the van der Waals distance G;dW and the



water

solvent separated distance O';dW +0,. Occasionally an additional bias appears indicating a stronger

native contact in the presence of explicit solvent (e.g. contacts 30, 34, 40, 41). At larger distances, the
probability is small for both HS and implicit solvent, so the data becomes statistically unreliable.
Nevertheless, there is also the ubiquitous feature of a bias favouring intermediate values of distance

separation in the presence of explicit solvent. This bias represents the increased sampling of

intermediate distances in HS solvent, which is itself a consequence of the induced collapse of the

unfolded state in the presence of HS solvent.
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Figure 8: Difference in PMFs in the transfer from implicit solvent to neutral solvent, for native contacts 28-36. Notation is the

same as in Figure 6.
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Figure 9: Difference in PMFs in the transfer from implicit solvent to neutral solvent, for native contacts 37-45.

The inset to figure 2A in the main text is reproduced below. It is obtained by taking an average over a

representative set of native contacts that had short-range desolvation barriers (less than ~ 8 A4 ). These
contacts were 1-8, 38-31, 34, 40, 41, 57-65, 70-72, 82-95, 226-239. This was then added to the square
well potential to obtain the new effective potential in the presence of HS solvent. The main features are

a slight elevation of the contact potential well, a desolvation barrier at around 5 A, and a broad

minimum centered around 9 A corresponding to the induced collapse of the unfolded state and

concurrent loss of cooperativity.
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Figure 10: Dashed line: Square well pair potential (taken for contact 1 between atoms C(12) and N(46)). Solid line: Modified

effective pair potential in the presence of explicit neutral solvent, obtained by adding the averaged transfer PMF described
above to the square well potential.
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