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’ INTRODUCTION

Changes in volume play a significant but often under-empha-
sized role in governing the stability of proteins in the cell.1!6

When proteins fold from extended unfolded state to a compact
or folded native state, there is a concomitant decrease in the
characteristic volume occupied by the protein as probed by
osmolyte particles, and thus an increase in the volume available
to osmolytes or crowding particles. In such processes that involve
changes in polymer density concomitant with collapse, the
effective size of the polymer is of interest. Accurate measures
of the size of a self-avoiding walk, which can approximate
configurations in the unfolded ensemble of a protein, have a
long history.7!9 Early on, it was recognized by Kuhn using
probability arguments for ideal chains,10 that ideal chains had
inherent anisotropy. The configurations of polymer chains are
better represented by generalizing quantities such as the end to
end distance or radius of gyration, which are amenable to analytic

formulation11!13 to tensor quantities such as the radius of
gyration tensor S (defined in 5 below), first studied by !Solc
and Stockmayer14,15 for on-lattice ideal chains.

Invariant polynomials constructed from the components of
the radius of gyration tensor S allowed the anisotropy of polymer
configurations to be treated analytically by field theoretical
methods such as ε = 4 ! d expansions16 or 1/d expansions.17,18

One such anisotropy parameter is the asphericityΔ (0eΔe 1),
defined through ratios of the trace (tr) of the radius of gyration
tensor:

Δ ¼ 3
2

tr Ŝ
2

ðtr SÞ2
¼ 1! 3

λ1λ2 þ λ1λ3 þ λ2λ3
ðλ1 þ λ2 þ λ3Þ2

ð1Þ
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ABSTRACT: We have generated off-lattice self-avoiding ran-
dom walks (SAWs) by both Lal’s pivot algorithm and by
discontinuous molecular dynamics (DMD) simulations. We
chose several volume measures to analyze and compare the
shapes characterizing ensembles of SAWs. These included the
Flory volume defined through the end-to-end distance, the
volume corresponding to the radius of gyration of the polymer,
the volume of a sphere drawn from the center of polymer mass
that encloses or embeds all the monomers in the polymer, the
corresponding ellipsoid describing the radius of gyration tensor,
the volume of the smallest Cartesian box oriented in a fixed “lab” frame which encloses all polymer monomers, and the volume of the
smallest box oriented along the principal axes of the radius of gyration tensor that encloses all polymer monomers. The tensor
ellipsoid and principal box correlate well with each other but not with the other measures. There is a substantial amount of polymer
that is excluded from the radius of gyration sphere or ellipsoid (approximately 42% and 44% respectively on average), which casts
doubt on the utility of these measures in quantitatively characterizing the volume spanned by a polymer configuration. The principal
box volume led to the most well-defined length distribution for the SAW in terms of the ratio of standard deviation to the mean,
while the end-to-end distribution was the most broadly distributed. In the principal box analysis, polymer configurations are highly
anisotropic, with stronger cubic to square prism symmetry breaking than square prism to rectangular cuboid. We introduce the
acubicity in analogy with the asphericity and find its distribution, along with a generalization of acubicity that better discriminates
polymer anisotropy. We analyze the role of the above volume measures in determining the packing fraction which enters into the
“randommixing”mean-field theory for the energy of an isolated homopolymer. Here we find from both pivot andDMD simulations
that no particular volume measure reproduces the mean-field scaling exponent (of unity) for the energy as a function of the
reciprocal polymer volume. Instead, anomalous exponents are observed which are less than that of mean-field theory, ranging from
0.2 to 0.5 depending on the contact cutoff length. An energy function with such an anomalous scaling may be used in a simple
phenomenological theory of coil!globule collapse. We find in particular that the Flory volume does not accurately describe the
energy in a mean-field theory. Possible reasons for such anomalous exponents are discussed.
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where Ŝ is the traceless tensor S!(1/3)1trS, and the λi are the
eigenvalues of S. One general difficulty with theoretical ap-
proaches is that the thermodynamically averaged asphericity
involves the average of a quotient of fields and so has proved
too difficult to readily calculate, though Diehl and Eisenriegler
have proposed a solution to this problem.19

Numerical analyses have also added significant insight into the
relaxation of polymer anisotropy,20 the most distant monomers
along various axes of a polymer configuration,21,22 the thermo-
dynamically averaged density distribution function of a poly-
mer,23 the distribution functions of invariants such as the
asphericity above,24 the asymmetry and collapse of polymers in
porous media,25 and the scaling and shape anisotropy of knotted
and ring polymers.26!30 The distribution of the scalar radius of
gyration for an unfolded protein ensemble,31,32 has been general-
ized to investigate the asphericity of such an ensemble by Pappu
and co-workers,33,34 and the analysis of asphericity, probability
density, as well as intra- and intermolecular entanglements has
been performed for polymers in the maximally random jammed
state.35,36

In the presence of osmolytes or steric crowders, the process of
collapse of a homopolymer, or the collapse and/or folding of a
protein, can quantified through the increase in polymer density,
or alternatively the packing fraction. The packing fraction is
defined as the total volume of monomers constituting the
polymer as probed by a zero-radius particle, divided by the “total
volume of the system”. Defining the total volume of the system
requires some care however. For example, a box that contains all
of the monomers but is either too large or improperly aligned
would underestimate the packing fraction, whereas a sphere with
diameter equal to the end-to-end distance of the polymer would
for many conformations be too small (or may even have volume
near zero), resulting in severe overestimation of the polymer
density for those conformations. The same concern may be
raised for the radius of gyration Rgy, which also does not always
accurately represent the volume occupied by a polymer or
protein. For example, an expanded rod-like conformation of a
N residue polymer has Rgy = l (N ! 1)/(12)1/2≈0.3l N as
the linear size of the chain instead of the contour length L =
l (N ! 1). In this case, the end to end distance Rete is a more
accurate measure of the linear size of the extended polymer,
however in this example the volume of the chain would then be
poorly described by Rete

3 = L3 because of the anisotropy of the
configuration. Moreover as mentioned above, for many confor-
mations, Rete underestimates the volume occupied by the poly-
mer; for example there are numerous chain conformations with
Rete ≈ 0 (though this becomes increasingly improbable in the
thermodynamic limit), whereas even in a collapsed state a
polymer cannot have size smaller than Rgy ! N1/3.

Accurate measures of polymer size are important because the
effective volume spanned by a protein changes dramatically
during folding or collapse. Such improved measures of volume
facilitate an accurate statistical mechanical description of poly-
mer!osmolyte or protein!osmolyte mixtures for example. The
statistical likelihood of close approaches between parts of the
polymer nonlocal in sequence depends on the effective polymer
density or packing fraction, so a mean-field theory of the energy
in the polymer is affected by the volume-measure used. In this
paper we propose various measures to accurately represent the
volume enclosing or, more accurately, characterizing a disor-
dered polymer, and we apply these volume measures to modified
mean-field theories of homopolymer energy.

In the next section, we investigate the scaling exponents for a
self-avoiding off-lattice random walk, and show that a set of des
Cloizeaux exponents different than those valid for the N f ¥
limit more accurately describe the end-to-end distribution for
chain lengths consistent with small globular proteins. After
confirming the pivot-algorithm generated ensembles with dis-
crete molecular dynamics generated ensembles, we introduce
several candidate measures of volume characterizing the instan-
taneous conformations of a polymer. We transform the radius of
gyration tensor to an effective ellipsoidal volume that reduces to
the scalar radius of gyration volume in the isotropic limit. We
then show that the volumes defined by the radius of gyration and
radius of gyration ellipsoid generally exclude significant amounts
of the polymer. We show that the various volume measures
(except for the radius of gyration tensor ellipsoid) poorly
correlate with a measure we analyze here which we call the
principal box volume [Only in the late stages of the preparation
of this manuscript had we discovered that our principal box
volume, (re)introduced here as an accurate measure of the
effective volume of a polymer, was in fact previously introduced
long ago by Rubin and Mazur22 in the context of “spans” of on-
lattice ideal and self-avoiding walks. Similar box-volume mea-
sures (but distinct from the principal box) have also been
introduced by Rawdon, Millett, Stasiak, and colleagues.37,29]
and for protein-like sizes have substantial width compared to
their mean. We then studied anisotropic symmetry breaking for
the principal box distribution of polymer conformations, from
both cubic to square prism and square prism to rectangular
cuboid symmetry. We show that the distribution of principal box
volumes itself obeys a semiempirical des Cloizeaux functional
form, but with modified exponents. Corrections due to nonzero
collapsed principal box volume are negligible. Lastly, we inves-
tigate the thermodynamics of a self-attractive homopolymer
using various volume measures to define the packing fraction.
We find that the scaling of thermal energy with volume does not
obey mean-field behavior for any volume measure used. Using
the nonmean-field scaling of energy with volume, along with the
des Cloizeaux distribution for the principal volume as an entropy
measure, we construct a free energy function that allows an
analytical investigation of polymer collapse.

’MEASURES AND STATISTICS OF POLYMER SIZE

Self-Avoiding Random Walk. The end-to-end distance Rete
or radius of gyration Rgy of a self-avoiding polymer chain scales
with the lengthN of the chain as∼Nν,7,8 where ν depends of the
dimensionality of the system and solvent quality. For a polymer
in a good solvent in three dimensions, Flory mean-field theory
gives ν ≈ 0.6, and for a polymer in bad solvent, ν ≈ 1/3.
Renormalization calculations12 along with large scale simula-
tions38,39 have refined the good solvent exponent to approxi-
mately 0.5874.
The end to end distance probability distribution, P(Rete), of a

freely jointed ideal chain converges to a Gaussian even for chains
as small as 10 residues.7,40 However for polymer chains under-
going random walks in dimensions less than 4 the end-to-end
distance probability distribution of a chain is no longer Gaussian
when excluded volume effects are present.41!44 The statistics of a
polymer is then often approximated by that of a self-avoiding
random walk (SAW) on a hypercubic lattice. The functional
form of P(Rete) for an excluded volume chain has been investi-
gated using both Monte Carlo simulations45!47 and analytical
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approaches.11,48,49 Here the results from Monte Carlo simula-
tions and Lagrangian theory approaches are in excellent agree-
ment for two and three-dimensional chains. A scaling law for the
distribution P(Rete) has been derived by des Cloizeaux for an on-
lattice SAW11

PðRete,NÞ ¼ 1

ξd
CFθe!AFδ ð2Þ

where F = Rete/ξ, ξ
2 = ÆRete2æ/(2d) where d is dimension. The

mean-squared end-to-end distance is given by ÆRete2æ = B2l 2N2ν

where l is the bond length (taken to be unity), the exponent ν =
0.5874 as given above and the prefactor B ≈ 1.1 is a number of
order unity that is nevertheless important for quantifying return
probabilities. We found that best-fit values for B varied from
about 1.08 and 1.11 for both on- and off-lattice walks. This value
is comparable to that obtained (B = 1.2) from end-to-end
distance data in Monte Carlo simulations of off-lattice self-
avoiding chains of various lengths.50 The normalization constant
C is a nonuniversal number of order that varied from 2 to 10 for
off-lattice walks and 4 to 20 for on-lattice walks, asN varied from
50 to 200. Literature values for on-lattice SAWs are given in
Table 1. For an ideal random walk, ν = 0.5 and B = 1.0; values of
A, θ, and δ are also given in Table 1 for comparison.
For off-lattice walks, we found that the parameters A and

exponents θ and δ converged to the universal well-known on-
lattice values in 3-dimensions for large N. However for the finite
sizes in the range of typical protein chain lengths (N≈ 100), the
end-to-end distribution was better fit by different exponents,
which are given in Table 1. These exponents are obtained by best
fit to off-lattice end-to-end distribution functions forN = 50, 100,
and 200.
The configurations of real polymers are better described by

off-lattice self-avoiding random walks rather than on-lattice
models, which allow the angle between three consecutive mono-
mers to have any value consistent with steric volume constraints.
We have written a Cþþ algorithm to generate off-lattice SAW
conformations by the well-known pivot algorithm, which has
been shown to deal effectively with the attrition problem for
SAWs.38,51 Other generating algorithms which solve the attrition
problem are also widely used,52,53 The attrition problem corre-
sponds to the fact that for a polymer to avoid a sterically excluded
region, the appropriate boundary condition corresponds to that
of an absorbing boundary. Any generated conformation which
penetrates into the boundary must then be removed from the
statistics. Thus, in growing a conformation of a self-avoiding
polymer, any added monomer that by chance wanders into the
sterically excluded region corresponding to the previously

generated monomer positions must be eliminated, and the walk
must be either reinitiated or appropriately reweighted.54 Walks
that survive this process become exponentially rare as the chain
length increases.
The pivot algorithm is implemented for off-lattice SAWs by

first generating a straight-lineN-step walk, with residues placed at
a distance l apart. New conformations are then obtained by
performing random symmetry operations at random positions i
along the chain. For off-lattice walks these symmetry operations
include rotations around the pivot point with arbitrary Euler
angles. If the distance riþ1,j for any j < i is less than 2σ, where σ is
the monomer radius taken here to be σ = l /2, the walk is
canceled and a new pivot operation is attempted until a viable
SAW of N steps is obtained. Because the pivot algorithm
generates radically different conformations, after ∼N0.19 moves
a globally different conformation is achieved.38 The initial
straight-line configuration was “equilibrated” typically for 50
pivot operations before sampling chain configurations.
A plot of the autocorrelation function for the root mean

squared deviation (rmsd) between conformations as a function
of pivot step t is given in the inset of Figure 2a, for a polymer with
N = 100. The rmsd has decorrelated (such that the correlation
function reaches 1/e) after about 3 successful steps. The correla-
tion function is not fit well by a simple exponential decay. The
best fit was given by a stretched exponential C(t) = exp (!Rtβ)
with R = 0.62 and β = 0.70.
To see the effects of a self-avoiding vs a reflecting boundary

condition on SAW statistics, we have also generated random
walks using a naive growth algorithm that corresponds to a
reflecting boundary condition as follows. Walks are generated as
above, with the i þ 1th residue placed a distance l from the ith
residue at random angle; but now if the distance riþ1,j for any j < i
is less than 2σ, only the last step is canceled and a new step is
attempted, until a walk of N steps is generated. The process is
then repeated from the first step to generate a new conformation.
In a study by Dayantis and Sturm,55 reflecting or absorbing
boundary conditions on a spherical confining boundary resulted
in significantly different concentration profiles as a function of
radius, as well as different scaling laws for the entropy cost of
confinement as a function of sphere radius.
Using the above generating methods, we have found that the

end-to-end distribution for an off-lattice SAW has the same
functional form as the on-lattice SAW in (eq 2), however in the
range of protein chain lengths the universal exponentsA, θ, and δ
had significant finite-size corrections. The resulting values are
given in Table 1.
Figure 1 compares the end to end probability distribution of

an on-lattice SAW and an off-lattice SAW for a 200-mer. The

Table 1. Values of Parameter A, and Exponents θ and δ, for (a) End to End Probability Distribution of an Ideal (Ghost Chain)
RandomWalk, (b) End to End Probability Distribution of anOn-Lattice SAW,47 (c) End to End Probability Distribution of anOff-
Lattice, Finite N (50 < N < 200) SAW Using the Pivot Algorithm, (d) End to End Probability Distribution of an Off-Lattice SAW
Using the Naive (Reflecting) Growth Algorithm, (e) Volume Probability Distribution of the Polymer from eq 10, Using Pivot
Algorithm Simulations, (f) Volume Probability Distribution in the Absence of the Collapsed Globule Correction, by Using eq 10)
without the Factor of Vo to Best Fit the Simulation Data

(a) ideal RW

(Rete)

(b) on-lattice SAW

(Rete)

(c) off-lattice finite

N SAW (Rete)

(d) reflecting off-latt

SAW (Rete)

(e) principal box

volume (Vpb)

(f) principal box

volume (Vpb)

A 1.5 0.144 0.057( 0.002 0.46( 0.01 8.45 10.53

θ 0.0 2.269 2.40( 0.01 2.1( 0.01 10.44 14.67

δ 2.0 2.43 2.85( 0.05 1.7( 0.02 0.688 0.687



6185 dx.doi.org/10.1021/ma200454e |Macromolecules 2011, 44, 6182–6197

Macromolecules ARTICLE

on-lattice constraints tend to contract the polymer relative to the
off-lattice walk. On-lattice SAWs that we generated using the
pivot-algorithm recovered the same set of universal parameters
for an on-lattice SAW as derived in previous studies.11

Off-Lattice SAWs from Discontinuous Molecular Dynamics
Simulations. Discontinuous molecular dynamics (DMD) is an
efficient method that has been used to study protein folding and
ab initio protein thermodynamics and kinetics,6,56!59 structure
prediction,60 protein aggregation,61,62 and the effects of osmolyte!
protein interactions.6 A brief description of the DMDmethod
for freely jointed polymer chains is presented here (more
complete descriptions of DMD methods for polymers and

proteins are contained in the above references). We used DMD
simulations for the purpose of generating polymer configurations.
In our model the polymer is a freely jointed chain of N beads or
monomers and N ! 1 joints, wherein each monomer is repre-
sented as a hard sphere. Two bonded beads i and j are constrained
to be within 10% of an average distance, l , by an infinite square-
well potential:

ubondi, i þ 1 ¼
¥, r e 0:9l
0, 0:9l < r e 1:1l
¥, 1:1l < r

8
>><

>>:
ð3Þ

where l = 1. Two nonbonded atoms i,j may interact by hard-
sphere potential (purely repulsive) with a hard-core radius

unon ! bond
ij ¼

¥, r e σHS

0, σHS < r

(

ð4Þ

where σHS is the hard-sphere diameter of a monomer. In this work
we set σHS = l .
Using these parameters, we have performed DMD simulations

on homopolymers of lengths 50, 100, and 200 with the above
potentials, as a confirmation of SAW statistics generated by the
pivot algorithm mentioned above. The system is simulated at a
finite temperature (in practice this was T = 10 K; however, since
there is no interaction energy-scale for a purely self-avoiding
polymer, any finite temperature will generate the same equilib-
rium ensemble). Temperature equilibration is achieved by ghost
particle methods. Moves are generated by integrating Newton’s
equations and conserving momentum and energy for interpar-
ticle collisions. Statistics such as the probability distribution of
the end-to-end distance are calculated by sampling 1 000 000
conformations for each polymer chain length.
The autocorrelation function for the root mean squared

deviation (rmsd) between conformations as a function of
DMD simulation time-step t is plotted in Figure 2a, for a poly-
mer with N = 100. The autocorrelation function reaches 1/e
after about 31 steps. The function is not fit well by a simple

Figure 2. (a) Autocorrelation function of the rootmean squared deviation rmsd(t) = ((1/N)∑i(r(t)! r(0))2)1/2 as a function of time step t in the DMD
simulations, or number of successful moves t for the pivot algorithm. The pivot algorithm decorrelates over much fewer moves than the DMD
simulations. Stretched exponentials were needed to fit both correlation functions, with exponenets given in the figure legends. (b) End to end probability
distribution of a continuum SAWwithN = 200 using a naive growth algorithm corresponding to a reflecting boundary condition (open black diamonds),
the pivot algorithm (blue circles) and DMD simulations (red filled diamonds). The naive chain growth algorithm with effective reflecting boundary
condition when dead-ends are encountered does not provide the correct end-to-end statistics of a SAW. The effective absorbing boundary condition of a
self-avoiding walk shifts the distribution to larger values of end-to-end distance. The pivot algorithm and DMD simulations show the same statistics
within sampling error.

Figure 1. Comparison of the end to end probability distribution of an
on-lattice SAWofN = 200, as generated by the on-lattice pivot algorithm
described in the text (black filled squares), and an off-lattice SAW
generated by the pivot algorithm (open circles). The curves passing
through each set of data are fits using the des Cloizeaux functional form
in (eq 2). For the on-lattice data the well-known exponents in Table 1
column 2 are used, and for the off-lattice data the exponents in Table 1
column 3 are used. Inset shows the root-mean-square deviation of the
residuals in the best fit to the simulation data using the on-lattice des
Cloizeaux parameters (dashed line), and the finite-size parameters
obtained from best fit to the simulation data for sizes N = 50,
N = 100, and N = 200.
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exponential decay. The best fit was given by a stretched expo-
nential C(t) = exp(!Rtβ) with R = 0.20 and β = 0.47.
A plot of the end-to-end distribution for a walk of length N

= 200, as generated by the pivot algorithm, naive growth
algorithm, and DMD simulations, is shown in Figure 2b. As
expected, the DMD simulations reproduce the same statistics
as those of the pivot algorithm for a continuum SAW.
However this distribution is significantly expanded relative
to that generated by the naive growth algorithm with reflecting
boundary conditions.
Measures of Polymer Volume and Their Properties. To

determine an accurate measure of the volume occupied by
a polymer, we considered six different ways to characterize
a specific conformation of polymer. Figure 3 depicts the six
different models:
(a) The end-to-end distance model, which approximates

polymer size by a sphere centered at the center of mass
of the polymer, having radius equal to the end-to-end
distance Rete over 2. This volume is also called the Flory
volume.

(b) The volume of gyration model, where the volume mea-
sure is given by a sphere having radius equal to the radius
of gyration Rgy of the polymer, defined through 6 below.

(c) A tensorial generalization of the radius of gyration where
the radius of gyration tensor is defined analogously to the
moments of inertia, then diagonalized to obtain radii a, b,
and c along the principal axes.14!20,22,23,64!68 Such a
measure of polymer size has formed the basis of char-
acterizing anisotropy through the asphericity.

(d) The embedding sphere model, which consists of a sphere
with center located at the center of mass of the polymer,
and radius R = |rBf ! rBcom| where rBf is the position of the
farthest monomer from center of mass; This measure is

closely related to the miniball,29,69 which is the smallest
sphere containing all the residues in the polymer (and
need not be centered at the center of mass).

(e) The Cartesian box model, which is a box oriented in a
fixed Cartesian frame of reference, with volume v given by
|xmax ! xmin| & |ymax ! ymin| & |zmax ! zmin| where xmin
and xmax are the x-components of the position vector of
the monomers with smallest and largest components
along the x-axis correspondingly (the same definition
applies in y and z directions). This measure was first
introduced by Rubin and Mazur.21

(f) The principal box model, which determines polymer
volume using a box aligned along the principal axes of
the polymer in each conformation, having volume v =
|r1max ! r1min| & |r2max ! r2min| & |r3max ! r3min| where
r1min and r1max are the components of the position vector
of the monomers with smallest and largest components
along the first principal axis respectively (the same defini-
tion applies in second and third principal axis directions).
This is a kind of “giftbox” of nearly minimal size that
encloses the polymer. It was first introduced by Rubin and
Mazur,22 who also studied minimal spanning boxes con-
structed from a projection recipe by taking successive pairs
of maximal distances. The projection recipe was also
applied to knotted polymers by Millett and Rawdon,29,37

where it is referred to as the “standard box”. A more
efficient construction of what is likely the minimal volume
rectangular cuboid enclosing the residues is the so-called
skinny box construction of Rawdon et al.,29 which involves
projections onto successive pairs of parallel orthogonal
planes separated by minimal distance.

A scatter plot of the end-to-end radius Rete, defined as the end-
to-end distance over 2 (method (a) above), and the radius Rsphere
of the smallest sphere which circumscribes the polymer config-
uration (method (d) above) is given in the Supporting materials.
Rsphere is always larger than Rete, since the distance between any
pair of residues must always be less than the embedding sphere’s
diameter.
The radius of gyration tensor S is constructed from the dyadic

of the position column vector ri = (xi,yi,zi)
T in the center of mass

system (where ∑1
Nri = 0) as

S ¼ 1
N ∑

N

i¼ 1
rirTi ¼ 1

N

∑xi2 ∑xiyi ∑xizi
∑xiyi ∑yi2 ∑yizi
∑xizi ∑yizi ∑zi2

2

664

3

775 ð5Þ

Transforming to the principal axis diagonalizes S to
(1/N)diag(∑xi0

2,∑yi0
2,zi0

2), with eigenvalues corresponding to
the variances of the coordinates along the principal axes direc-
tions.
The moment of inertia tensor I is directly related to the radius

of gyration tensor S by I ¼ trðSÞ1! S, where 1 is the unit
tensor, and trS is the trace of the radius of gyration tensor giving
the sum of the eigenvalues. Thus, both I and S are diagonal in the
same principal axis system, and tr I ¼ 2tr S. The trace of S is a
scalar invariant that is independent of the coordinate basis
chosen; this scalar invariant is defined as the radius of gyration
squared of the polymer configuration:

trðSÞ ¼ 1
N ∑

N

i¼ 1
ðxi02 þ yi02 þ zi02Þ ¼ Rgy

2 ð6Þ

Figure 3. Comparison between different ways of measuring the size of a
chain: (a) the end to end distance model, (b) the radius of gyration
model, (c) radius of gyration tensor, (d) embedding sphere model,
(e) Cartesian box model, and (f) principal box model. Schematic
polymer figures are adapted from ref 63.
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Written in terms of average values Rgy
2 ¼ x2 þ y2 þ z2 . If the

system were isotropic, the radius of the effective sphere deter-
mining the characteristic volume of the polymer conformation is
Rgy = (3)1/2Δx, where Δx is the standard deviation along the
coordinate x. Thus, if the system is anisotropic, the measure
of the effective radius along each principal axis is (a,b,c) =
(31/2Δx,31/2Δy,31/2Δz) respectively. The volume of the effec-
tive ellipsoid characterizing the polymer configuration is then

Vell ¼
4
3
πabc ¼ 4

3
π33=2ΔxΔyΔz ¼ 4π

ffiffiffi
3

p Y3

i¼ 1

ffiffiffiffi
λi

p
ð7Þ

where λi are the eigenvalues of the radius of gyration tensor. The
effective radius of a sphere with the same volume as eq 7 is given
by the geometrical mean of the individual radii: Rgy

eff = (abc)1/3 =
(3)1/2Πi=1

3 λi
1/6. This is to be compared with the volume of the

effective sphere defined by (4/3)πRgy
3, with Rgy = (∑i=1

3 λi)
1/2.

A scatter plot of the radii determined by both of the above
measures is shown in the Supporting Material. The radius of
gyration Rgy is always larger than the effective radius Rgy

eff.
Both of the above measures result in spheres or ellipsoids that

do not encompass all of the polymer, and so result generally in
different packing fraction than would be obtained from a box
which encloses the whole polymer. We propose using the
principal box method in order to calculate polymer packing
fraction. This method characterizes polymer shape through three
scalars representing the edge lengths of the principal box, and so
it accounts for the anisotropy which may be present in a given
conformation. Anisotropy cannot be captured in measures
characterizing polymer size by a single scalar. The principal
box also contains all the monomers in the polymer by definition.
In the limit of a long polymer, only a small error is introduced by
neglecting the finite size of the monomers in the definition of the
principal box. We thus use the geometric centers of the mono-
mers in defining the boundaries of the principal box.

Figure 4 shows histograms of the fraction of residues outside of
the volumes defined by the radius of gyration, and the radius of
gyration tensor. The radius of gyration tensor generally excludes
slightly more residues (44.1% on average for a 100mer) than the
radius of gyration sphere, which excludes 42.5% on average. This
is essentially due to the much larger volume of the radius of
gyration sphere than the radius of gyration tensor ellipsoid
(about 2.8 times larger on average for SAWs of a 100-mer).
Figure 5 shows scatter plots of various volume measures of a

N = 100 polymer, for about 2& 104 conformations. All volumes
in the analysis are given in units of the volume of a cube with edge
length equal to the link length (i.e., the monomer!monomer
separation). Figure 5a shows the principal box volume Vpb
(method e above), vs the Flory volume Vete of the polymer
(method a above). The two measures differ significantly and do
not correlate well: correlations between all quantities considered
are given in Table 2 for this data set. A particular outlying
conformation for which Vete overestimates the volume is shown
in the inset. For such anisotropic conformations, Vpb (shown for
this configuration) or the radius of gyration tensor ellipsoid
volume Vell are necessary to quantify the volume. Likewise Vpb
does not show a strong correlation with the scalar volume of
gyration Vgy (method b above) (Figure 5b and Table 2).
Figure 5c shows that both Vpb and Vell capture the anisotropy
inherent in the ensemble of SAWs. The two measures correlate
well, but as discussed above in the context of Figure 4, the radius
of gyration tensor ellipsoid does not enclose a significant fraction
of the monomers, thus the slope of the curve in Figure 5c is not
unity, but≈2.1. Figure 5e shows that alignment of the bounding
box significantly alters the volume and is so important for
quantifying the polymer density. Perhaps not surprisingly, the
unaligned bounding box volume Vbox, the Flory volume Vete and
the volume of gyration Vgy all correlate reasonably well with each
other (Table 2).
The steric molecular volume is calculated using the mol_vo-

lume program,70 which enumerates the number of vertices in a
dense cubic lattice grid that are less than a probe radius in
distance from all of a molecule’s atoms. For this computation
a probe with radius equal to the monomer radius of was used
(here l /2). The molecular volume is smaller than the polymer
volume by any of the above metrics for essentially all configura-
tions. As expected, none of the volume measures correlate
particularly well with the molecular volume of the polymer,
indicating that conformational volume has only an indirect
connection with solvent-excluded volume. This can be seen in
Figure 5f, where most points in the distribution lie in the
northwest half of a rectangle, above the imaginary diagonal. If a
configuration has largeVpb, the system then tends to be expanded
with minimal overlap between solvent-excluded regions and thus
have large molecular volume. Conversely if the system has small
molecular volume with significant overlap between solvent-
excluded zones, the principal box volume tends to be small.
However, one cannot say that a small principal box volume
guarantees a small molecular volume, as can be seen for the
configuration in the inset of Figure 5a. The inset to Figure 5f
shows the configuration with smallest solvent-excluded volume
for this sampling. It is not particularly remarkable, except for
having a higher than usual number of local contacts.
Figure 6 compares the effective diameter probability distribu-

tions using the various models of the size of a 100-mer. Employ-
ing the letter notation above describing the six volume measures,
the effective linear size of the polymer is given by (a) Rete,

Figure 4. Fraction of the total residues of SAWs that lie outside of the
volume of the radius of gyration ellipsoid defined in eq 7 (red
histogram), and the fraction of excluded residues for a sphere with
radius equal to the radius of gyration (blue curve). Volumes are centered
at the center of mass. Histograms are generated for a 100-mer. Insets
show two configurations taken from the right side tail of the distribution,
with large amounts of polymer excluded from the corresponding
volume. Inset a shows a configuration with 63 residues outside the
radius of gyration sphere, and 48 outside of the radius of gyration tensor
ellipsoid (sphere and ellipsoid are also shown). Inset b shows a
configuration with 43 residues outside of the radius of gyration sphere,
and 60 outside of the radius of gyration tensor ellipsoid (tensor ellipsoid
is shown, along with the principal box as defined in the text).
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(b) dgy = 2& Rgy, (c) dell = (6Vell/π)
1/3, (d) dsphere = 2& Rsphere,

(e) dbox = Vbox
1/3, and (f) dpb = Vpb

1/3.
For many conformations the end to end distance description

does not accurately represent the size statistics of a polymer. It is

the most broadly distributed quantity in Figure 6. It can be
anomalously large, or can be zero, whereas even in the most
collapsed conformation the real size of a polymer cannot be
smaller than≈l N1/3. Using the size distribution of principal box
as a benchmark, the embedding sphere largely overestimates the
size of the polymer, as well as does the unaligned Cartesian box
model. The diameter of gyration also overestimates the size of
the polymer, which is somewhat surprising given the amount of
polymer excluded by the radius of gyration sphere (Figure 4). For
this reason we analyze the amount of anisotropy present in the
polymer distribution below. As illustrated in Figure 4, the radius
of gyration tensor ellipsoid underestimates the size of the
polymer by excluding a significant fraction of monomers. Also
plotted in Figure 6 is Lhuillier’s functional form13,32,71,72 for
P(dgy) = P(dgy*)e

!B(4F!15/4/5þ6F5/2/5!2), where F = dgy/dgy*,
P(dgy*) is the peak value of the distribution which occurs at
dgy = dgy*, and B = 1.26 is obtained by best fit to the pivot
simulation data.

Figure 5. Scatter plots showing the relationship between the principal volume and other quantities characterizing the size of a polymer, for a SAWwith
N = 100. Correlation coefficients between all quantities are given in Table 2. (a) Principal box volume vs the Flory volume Vete = (4/3)π(Rete/2)

3.
(b) Principal box volume vs the volume determined by the radius of gyration Vgy = (4/3)πRgy

3. (c) Principal box volume vs the volume of the radius of
gyration tensor ellipsoid Vell in eq 7. (d) Principal box volume vs the embedding sphere volume Vsphere. (e) Principal box volume vs the unaligned box
volume Vbox. (f) Steric molecular volume vs the principal box volume. All volumes are given in units of the link length cubed (l 3).

Table 2. Matrix of Correlation Coefficients for the Various
Volume Measures shown in Figure 3 and Figure 5,a

Vete Vgy Vell Vsphere Vbox VPB Vmolvol

Vete 1 0.813 0.308 0.860 0.703 0.379 0.254

Vgy 0.813 1 0.508 0.864 0.800 0.477 0.319

Vell 0.308 0.508 1 0.380 0.564 0.891 0.398

Vsphere 0.860 0.864 0.380 1 0.750 0.446 0.295

Vbox 0.703 0.800 0.564 0.750 1 0.571 0.371

VPB 0.379 0.477 0.891 0.446 0.571 1 0.391

Vmolvol 0.254 0.319 0.398 0.295 0.371 0.391 1
aAll correlations are statistically significant (p < 10 !278).
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It is observed in Figure 6 that the principal box size distribution
is the sharpest peaked of the distributions relative to the mean.
Table 3 compares the means and standard deviations for the
volume (rather than size) distributions of the various measures.
Also given is the “relative error” of associating the mean value of
the distribution with any conformation. By this measure the
principal box volume best characterizes the volume of the
polymer. The improvement of principal box over the tensor
ellipsoid volume is a 10% effect, however it is statistically
significant, and only increases with larger N.73

For the rest of this work, we use the principal box volume Vpb
as the representative volume of the polymer, and use Vpb or V
interchangeably.
Anisotropy and Acubicity. As discussed in the introduction,

there has been substantial interest historically in the anisotropy of
polymer walks. The degree of anisotropy of polymer conforma-
tions can be quantified for the principal box measure by taking
the edges of the principal box a > b > c, and forming the ratios
f = b/a and c/a. Ratios f less than unity indicate anisotropy. A ratio
of b/a (or c/a) less than unity breaks cubic symmetry (Oh(*432))
to a square prism with Dh(*422) symmetry. A ratio of c/b less
than unity breaks Dh(*422) symmetry to a rectangular cuboid
with symmetry D2h(*222). The probability distributions of these
ratios for the SAW ensemble of a 100mer are plotted in Figure 7a.
We also plot the aggregate distribution with b/a and c/a grouped
together.
The distribution indicates substantial “square prism” anisot-

ropy, with the aggregate f distribution broadly peaked at around

f = 0.34. The “cuboid” anisotropy is somewhat milder, peaking
around f = 0.6. Ensemble average values of the ratios of principal
box edge lengths as well as standard deviations are given in
Table 4.
As mentioned in the Introduction, the asphericity as given by

eq 1 has been used as a measure of polymer asymmetry by many
authors. Although the corresponding quantity for the principal
box may not be (as) amenable to analytical approaches, it is
instructive to define an analogous quantity to the asphericity in
terms of the principal box edge lengths, rather than the eigen-
values of the radius of gyration tensor. We refer to this as the
“acubicity” Δc:

Δc ¼
3
2

∑
3

i¼ 1
ðL2i ! L2Þ2

ð3L2Þ2
ð8Þ

Here Li are the principal box edge lengths of a configuration, and
L2 is the average of their squares. The distribution ofΔc is shown
in Figure 7b. It is broadly distributed over much of its possible
range (0 <Δc < 1), with an average of ÆΔcæ = 0.348 and standard
deviation 0.172 as given in Table 4. By this measure the acubicity
gives larger anisotropy than the asphericity (see e.g. Bishop and
Saltiel74 or Goldbart and co-workers24 who have reported ÆΔæ =
0.46, and 0.447, respectively).
From the definition in eq 8 it is clear that a more “reduced”

measure of anisotropy can be made that involves the linear
dimensions of the principal box rather than its dimensions
squared:

Δ0
c ¼

3
2

∑
3

i¼ 1
ðLi ! LÞ2

ð3LÞ2
ð9Þ

This measure also satisfies 0 < Δc
0
< 1, however its distribution is

substantially more sharply peaked thanΔc, as shown in Figure 7b,
and the value ofΔc

0
where it peaks is smaller than the correspond-

ing distribution for Δc. The average ÆΔc
0
æ = 0.113 and standard

deviation 0.065 are also given in Table 4. For these reasons it is
apparent that Δc

0
is a more sensitive measure of anisotropy than

Δc.
Principal Box Volume Distribution Function. As described

above, the effective volume of the polymer is taken to be the
volume of a box aligned with the polymer’s principal axes that
contains all the monomers. Using both the pivot algorithm and

Figure 6. Probability distributions of various size measures of the
polymer, for a 100mer SAW distribution obtained from the pivot
algorithm. Magenta: the end-to-end distance probability distribution.
Cyan squares: Probability distribution of 2 times the radius of gyration
(i.e., the diameter of gyration). Cyan solid line: Plot of Lhuillier’s
functional form for the probability distribution of the diameter of
gyration13,32,71,72 (dgy = 2Rgy). Green: Probability distribution of the
mean diameter of the radius of gyration tensor ellipsoid, defined by dell'
(6Vell/π)

1/3. Blue: Probability distribution of the embedding sphere
diameter (the smallest sphere enclosing the polymer). Red: Probability
distribution of themean edge length d of the unaligned box enclosing the
polymer, defined by dbox' Vbox

1/3. Black: Probability distribution of the
mean edge length dpb ' Vpb

1/3 of the box enclosing the polymer, after
the principal axes of the radius of gyration tensor for the polymer have
been aligned to the axes of the box.

Table 3. Mean values of the volume measures shown in
Figure 3 and Figure 5, standard deviations, and standard
deviation over the mean, which gives an estimate as to how
well the mean value accurately represents the conformational
ensemble

mean volume

(103l 3)
std deviation

(103l 3)
relative

deviation

Vete 4.30 4.24 0.99

Vgy 1.92 1.13 0.59

Vell 0.689 0.240 0.35

Vsphere 9.73 6.22 0.64

Vbox 3.07 1.40 0.46

VPB 1.80 0.562 0.31

Vmolvol 0.272 0.0041 0.015
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DMD simulations of homopolymers, we have calculated the
volume of the polymer in each conformation. Figure 8 displays
the volume probability distributions of a 50-mer, 100-mer, and
200-mer. We have found that a semiempirical extension of the
des Cloizeaux functional form

PðV ,NÞ ¼ C
δV

V ! Vo

δV

" #θ0

e!A0ððV ! VoÞ=dVÞδ0

( C
δV

ðV=δVÞθ
0
e!A0ðV=δVÞδ

0

ð10Þ

also applies well to the principal box volume of the polymer. In
eq 10, δV is the standard deviation of the principal box volumes,
and Vo is the approximate volume of a collapsed globule, taken to
be equal to bl 3N with b an adjustable parameter. Subtraction of
the quantity Vo accounts for the fact that the volume cannot be
smaller than that of the collapsed globule. Consideration of a
term such as Vo is appropriate for a metric accounting for
polymer volume (as opposed to say end-to-end distance which
can in principle be zero). Curve fitting to the pivot algorithm data
for N = 100 gives the scaling exponents in Table 1 from the best
fit solution. Several solutions were found, however, with varia-
tions in the exponents of approximately (ΔA0/A0, Δθ0/θ0, Δδ0/
δ0) = (0.06, 0.1, 0.004). The proportionality constant b in the
collapsed globule volume was always of order unity, and for the

best fit b = 2.43. The normalization constant C for the best fit
solution was 240, and varied by about 5%.
Typical polymer configurations have substantially larger vo-

lumes than the collapsed globule, however, so we tested the
importance of including the term Vo in eq 10. Removing the term
Vo and finding best fit exponents gives the values in Table 1.
Again several solutions were found however now with smaller
variations (ΔA0/A0, Δθ0/θ0, Δδ0/δ0) = (0.005, 0.003, 0.002).
The best fits for both recipes are plotted in Figure 8b. The
distributions have quite similar residuals with the distribution
including the factor Vo having marginally better fit. An
Ansari!Bradley test was used to find the statistical significance
of the improvement in fit due to the additional parameter Vo, by
choosing samples from the two different distributions and asking
what the probability was that they would be obtained from the
same distribution (the p-value). For a large enough sample
size, any two nonidentical distributions eventually become
distinguishable. The inset to Figure 8b plots the p-value as a
function of sample size. The distributions are only statistically
distinguishable once 5 & 106 or more polymer conformations
are sampled. We thus conclude from these studies that the
parameter Vo is not essential for characterizing the distribu-
tion, unless very high accuracy for large sample sizes is
required.
Figure 8a shows both pivot and DMD results for the distribu-

tion of Vpb for a 50-mer. To test whether the same exponents as
found for the 100-mer and given in the best fit solution of 10 to
the distribution obtained from the DMD data, by either fixing A,
θ, and δ to the 100-mer values, or allowing the values to be
variable. In either case both the normalization constantC and the
prefactor to the collapsed globule volume b were allowed to vary.
Both methods fit the data very well, as shown in Figure 8a.
The values of the exponents varied by the relative amounts
(ΔA0/A0, Δθ0/θ0, Δδ0/δ0) = (0.1, 0.05, 0.06) between the two
methods. The constant b remained of order unity (b = 1.847).
An Ansari!Bradley test on samples chosen from the two
distributions finds them indistinguishable up to 2 & 106

conformations.
The 200-mer shows the same robustness in the exponents.

Figure 8c shows best fits to the pivot algorithm data using eq 10

Figure 7. (a) Probability distribution of the anisotropy factors for the principal box enclosing 100mer polymer configurations, defined by taking the
ratio of the smaller edge lengths to the largest edge length. Smaller values indicate higher anisotropy: a cubic box would have an anisotropy ratio f = 1.
Cuboid edge lengths of the principal box are defined such that a > b > c. Ratio (black) of the second largest edge length to the largest edge length (b/a),
(blue) ratio of the smallest to largest edge lengths (c/a), (green) ratio of the second smallest to smallest edge lengths (c/b), (dashed cyan) aggregate
distribution of the ratios of either of the smaller edge lengths to the largest edge length. Symmetry groups corresponding to these anisotropies are
indicated in the legend. (b) Distributions of acubicity measures, defined analogously to the asphericity in eq 1. The acubicityΔ0 defined through a linear
scaling with edge lengths is much more sharply peaked than the traditionally defined acubicity Δ. Both distributions show significant anisotropy.

Table 4. Mean Values and Standard Deviations of Various
Anisotropy Measures of the Principal Box, Whose Distribu-
tions Are Shown in Figure 7, Parts a and ba

(N = 100) mean std. deviation

b/a 0.557 0.168

c/a 0.349 0.114

c/b 0.643 0.159

(b,c)/a 0.453 0.178

Δc 0.348 0.172

Δc
0 0.113 0.065

a Included are the ratios of the edge lengths of the principal box, and the
acubicity measures described in the text.
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with fixed and variable exponents as described above for the
50-mer. The values of the exponents varied by the relative
amounts (ΔA0/A0,Δθ0/θ0,Δδ0/δ0) = (0.02, 0.06, 0.01) between
the two methods. The parameter b varied from 3.3 (variable
exponents) to 3.5 (fixed exponents). An Ansari!Bradley test on
samples chosen from the two distributions gives p-values of 90%
for 105 samples and 72% for 106 samples, i.e., the distributions are
indistinguishable at least up to millions of conformations. We
thus conclude that the exponents A, θ, δ do not show significant
N-dependence over the range of chain lengths characterizing
typical proteins.

’THERMODYNAMICS OF A MODEL POLYMER

Entropic considerations are very important in investigating the
effects of the solvent on protein folding and polymer collapse.
The folding or collapse dynamics involve a conformational
search, guided by energetic bias, of all allowed states. The
conformational entropy as a function of the polymer volume

V is given by

SðV jNÞ ¼ So þ kB lnðPðV jNÞÞ ¼

So þ kB ln
Z

dΔxdΔydΔz δ ðΔxΔyΔz! VÞPðΔx,Δy,ΔzjNÞ

ð11Þ

where So is the total polymer entropy and kB is Boltzmann’s
constant. In eq 11, specifying volume V implies an integration
over all possible boxes consistent with the constraint of a given
volume. Now consider a polymer in sufficiently “poor” solvent
such that the monomers have attractive interactions. Two
nonbonded (nonconsecutive) monomers within a cutoff dis-
tance are given contact energy ! ε, i.e. monomers i and j are in
contact if |i ! j| g 3 and |rBi ! rBj| < rc where rc is an interaction
cutoff distance.

The packing fraction for a polymer is defined by the number
of monomers contained within its characteristic volume, times

Figure 8. Probability distributions of the principal box volume Vpb, for a (a) 50-mer, (b) 100-mer, and (c) 200-mer. Both pivot data and DMD
simulation results are shown. Panel (b) Also shows fits to the pivot algorithm data including (solid) and not including (dashed) the factor of Vo in eq 10.
The statistical significance of the difference between these two very similar distributions is discussed in the text. Panel a also shows a fit to the DMD data
with eq 10 using the parameters A, θ, δ derived from the 100-mer fit (solid line), to test the independence of these exponents on the chain lengthN. The
dashed line shows the best fit allowing these parameters to vary. Likewise, in panel c, fits to the pivot algorithm data with fixed (100-mer) exponents
(solid line) and variable exponents (dashed line) are shown. The results of the fitting do not depend significantly on whether the exponents are fixed or
vary, so the exponents in eq 10 can be treated as essentially N-independent for the range of N used in this study.
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the volume per monomer vm, divided by the characteristic
volume, i.e.

ηðVÞ ¼ Nvm=V ð12Þ

The packing fraction depends on which measure is used for the
protein volume; we take this volume to be the principal box
volume as found previously.

In a random-mixing approximation,7,75!81 the number of
contacts n of an N-mer with volume V is given by

ÆnðVÞæ ¼ zNηðVÞ ð13Þ

where the constant z is the coordination number in a fully
collapsed compact configuration (with η = 1). So the mean
number of pairwise contacts in a polymer depends on the packing
fraction η, which is itself determined by the volume that the
polymer takes up.

In the mean-field approximation, the internal thermal energy
of the polymer is determined by the average number of contacts
in eq 13, and so is given by:

EðVÞ ¼ ! εÆ ∑
N

i < j
δðj rBi ! rBjj < rcÞæ ¼ ! εzNηðVÞ

¼ ! εzN2vm=V ð14Þ

The validity of a volume measure can thus be tested for a given
chain from plots of the mean number of pairwise contacts vs the
reciprocal of the volume measure.

The inset of Figure 9a shows a scatter plot of (minus) the
number of contacts in an ensemble of conformations of the
100mer, as a function of the reciprocal of the volume for that
conformation as defined by the principal box metric. The large
scatter indicates fluctuations from the mean trend conformation

to conformation; the mean-field equation should be interpreted
through the average over conformations with a given value of
Vpb

!1. Figure 9a thus plots (minus) the averaged number of
contacts for configurations within a bin of 1/40th the width of the
total distribution. Like the scatter plot, this plot is shown on a
log!log scale. The black vertical bars represent the standard
deviation of the distribution of points within each bin, and the red
error bars represent the statistical error in the average values due
to the finite size of the data set.

Intriguingly, the slope of the best fit line to the ln(ÆEæ) vs
ln(V!1) curve is not unity, but rather the unusual exponent of
0.37. One possible reason for this is that in the principal box
formulation, a given conformation with small volume can either
be semicollapsed, or can be largely extended and highly aniso-
tropic. These two scenarios have very different numbers of
contacts. However, parts a and b of Figure 10, which plot the
slope of the energy vs reciprocal volume best-fit line for variable
cutoff distance rc, show that all volume measures lead to scalings
which deviate from the predictions of mean-field theory. The
deviations from mean field theory for the principal box volume
and Rgy tensor ellipsoid volume are, in fact, the smallest.

The data (with error bars) in Figure 9a is taken from the pivot
algorithm conformational sample, so it does not account for
Boltzmann reweighting of the ensemble by the contact energies
themselves. The mean number of contacts in the ensemble
accounting for contact energies is

Ænæε ¼
∑
i
nie!βðEo þ EiðnÞÞ

∑
i
e!βðEo þ EiðnÞÞ

¼ Æne!βEðnÞæo
Æe!βEðnÞæo

ð15Þ

where β = 1/kBT, ni is the number of contacts in configuration i,
Eo is the hard-wall potential accounting for self-avoidance, E(n) =

Figure 9. (a, Inset) Scatter plot on a log!log scale, of the energy defined through (minus) the number of contacts in an ensemble of 20 000
conformations of the 100mer, as a function of the reciprocal of the volume Vpb

!1 for that conformation. The cutoff distance rc used for this plot is 2.5&
the link-length. There is a significant correlation of about 0.6 between the number of contacts and Vpb

!1, however scatter indicates fluctuations
conformation to conformation. (a) Log!log plot of the averaged number of contacts for configurations within a bin of 1/40th the width of the total
distribution. Black vertical bars indicate the standard deviation of the distribution of points within each bin, while red error bars represent true statistical
error of the mean values of energy within each bin. The linear fit to this data does not have an exponent of unity, but an anomalous exponent 0.37. (Blue
squares) Boltzmann reweighted distribution of the number of contacts from eq 15 at a temperature such that βε =! 0.2. A linear fit to this data has slope
0.25 (green line). A linear fit to the first 2/3 of the data (red-dashed line) yields a slope of 0.35 which is still substantially less than unity. (b) Log!log plot
of the mean energy vs reciprocal volume V!1, for conformations resulting from DMD simulations of a self-interacting polymer with βε =! 0.2.
Conformations are again sorted in bins having 1/40th the width of the total distribution of V!1. The linear fit to this data has an anomalous exponent of
0.2, roughly consistent with the shallower values of slope observed in the reweighted pivot simulations for configurations having smaller values of volume.
(b, Inset) Representative polymer configuration with values of energy and V!1 near the mean of the distribution (figure generated using VMD82).
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! n|ε| is the added energy of a conformation when n (attractive)
contacts are accounted for, Æ 3 3 3 æε indicates an average over the
ensemble accounting for contact energetics, and Æ 3 3 3 æo indicates
an average over the unperturbed SAW ensemble, as sampled by
the pivot algorithm for example.

The contact data sampled directly from the pivot algorithm
thus corresponds to the ensemble at T = ¥. Lowering the
temperature so that kBT/ε = 5 gives the bin-averaged data in
Figure 9a indicated by blue-squares. Directly fitting this data
gives an even shallower slope of 0.25. The data also do not follow
a simple linear trend. Picking a subset of the ensemble with the
largest 2/3 of the volume gives an exponent of 0.35 (dashed red
line in Figure 9a); no particular range of volume shows an
exponent near unity. As well, the data at smallest volume do not
show the largest difference in energy between the T = ¥ and
finite-T ensembles, which might be expected if these configura-
tions had the largest number of contacts. As mentioned above,
this is likely due to the large anisotropy present in small-volume
conformations using the principal box metric. However, the data
sets at the smallest values of volume do show the largest
deviations from the mean field theory slope, and these ensembles
will contain the most collapsed configurations, so they may most
accurately represent the configurations and corresponding scal-
ing relation that result when attractive energies are actually
present in the conformational sampling.

To directly test the resulting scaling when contact energies
are present, we simulated anN = 100 polymer chain with explicit
self-interactions using the DMD method described above.
Nonbonded monomers i and j with |i ! j| g 3 and within

rc = 2.5& the link length are given an attractive energy such that
βε =! 0.2. The mean energy as a function of V !1 is given in
Figure 9b. Like the infinite temperature ensemble above, the
ensemble with mean energy at βε =!0.2 also shows anomalous
scaling E! V !RwithR = 0.2. However the volumes sampled are
smaller than those in the SAW: the polymer is semicollapsed, as
indicated by the representative polymer configuration shown
in the inset of Figure 9b. The range of energies and volumes
sampled is correspondingly reduced. The scaling exponent is
comparable to the slope in the small-volume regime of the pivot
algorithm simulations, and as was the case there, also indicates
significant deviations from mean field theory.

The above analysis was applied to a systemwith cutoff distance
rc = 2.5l (where l is the link length). Other values of rc give
different scaling exponents, as obtained from the slope of the best
fit line to the number of contacts vs V !1 in the pivot simulations
of Figure 9a. Figure 10a plots this slope for all of the volume
measures in Figure 3. The principal box volume (solid black
curve) and radius of gyration (solid blue curve) volumemeasures
have the largest values of the slope; the end-to-end distance
volume (solid red) has the smallest and is also the most weakly
correlated as described below. Interestingly the slope is non-
monotonic vs rc, with a minimum around rc = 2.5l . The general
trend is not significantly modified by the above-described recipe
of grouping states by volume and Boltzmann reweighting the
states by energy, as shown in Figure 10b.

As rc continues to increase past≈7l for the 100mer, more and
more configurations begin to have the maximal number of
contacts, (N ! Δij þ 1)(N ! Δij)/2, where Δij = |i ! j|min,

Figure 10. (a) Slope of the best fit line to the scatter data of the number of contacts vs the reciprocal volume V !1, for all volume measures in Figure 3.
The color code for panels a, b, and c is as follows: solid black, principal box volume; dashed black, unaligned box volume; solid blue, radius of gyration
tensor ellipsoid volume; dashed blue, radius of gyration scalar volume; solid green, embedding sphere volume; solid red, end-to-end distance (Flory)
volume. The principal volume and radius of gyration tensor ellipsoid have the largest scaling exponents, yet still show substantial deviation from mean-
field behavior. (b) Scaling exponent of mean Energy with volume, for the Boltzmann-reweighted ensemble. Note the scale on the ordinate is larger for
this panel: the scaling power law for the Flory volume and embedding sphere is reduced, but the scaling power law for the principal box and Rgy tensor
ellipsoid are not significantly changed. (c) Correlation coefficient between the mean energy and reciprocal volume as a function of contact cutoff-length
rc, for the β = 0 ensemble. As rc increases, the correlation indeed increases, however the scaling exponent never reaches mean-field theory (panels a, b).
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regardless of the volume of the configuration. This progressively
decreases the correlation, and begins to decrease the slope, so
that the slope never converges to unity for any rc.

On the other hand, as the cutoff distance between contacts
increases, more contacts are counted for a given configuration,
and themean-field approximation would be expected to improve.
Figure 10c plots the correlation coefficient between the energy
(number of contacts) and rc for the all of the volume measures in
Figure 3. Interestingly the end-to-end distance (red curve) shows
very little correlation between energy and volume, while the
embedding sphere (green curve) shows only modest correlation.
The radius of gyration (dashed blue) and unaligned Cartesian
box (dashed black) show stronger correlation, and the principal
box volume (black) and radius of gyration tensor ellipsoid
volume (blue) show the strongest correlation. One possible
reason that the tensor ellipsoid correlates better than the
principal box is that the contact density may be better repre-
sented inside the tensor ellipsoid than outside of it but still inside
of the principal box, because relative fluctuations in contact-
density configuration to configuration, are larger in the diffuse
“halo” outside of the tensor ellipsoid (see also Figure 4 inset b).

Analogous to the treatment of the free energy of a polymer as a
function of density or packing fraction, we can use the volume V
as an order parameter measuring degree of collapse. The mean-
field free energy F(V,T) of a homopolymer as a function of the
polymer volume V at a given temperature is given by E(V) !
TS(V), where the entropy S(V) is given in eq 11. In our model,
the internal energy of the polymer E(V) is given by the mean
number of contacts times the energy per contact, thus:

FðV ,TÞ ¼ ! εÆnðrc,VÞæ! TSðVÞ

¼ ! ε
C
VR ! kBT ln PðVÞ ! TSo ð16Þ

Here the quantity Æn(rc,V)æ is the average number of residue
pairs within a cutoff distance rc, given the polymer takes up a
volume V, which was plotted in Figure 9a. Even though there is
significant scatter between conformations, the mean energy
correlates well with V!R. The exponent R is dependent on rc.
We take rc≈ 2, which corresponds to R≈ 0.33 in the Boltzmann
reweighted pivot simulations in Figure 10b. Different exponents
do not change the qualitative picture of collapse but will affect the
collapse temperature. We let R be fixed with respect to contact

energy even though in principle it does vary. The constant C is
the hypothetical energy when the volume is extrapolated to unity,
which can be determined from the fits analogous to that in
Figure 9a for rc = 2, as C≈ 1320. This gives an energy of εC/Vo

R

≈ 215ε in the fully collapsed state.
Up to volume-independent constants, the free energy can then

be written using eq 10 as

FðV ,TÞ ¼ ! ε
C
VR þ kBT A0 V ! Vo

δV

" #δ0

! θ0 ln
V ! Vo

δV

" #2

4

3

5

ð17Þ

The probability distribution of volume V at temperature T is
then given by P∼exp(!βF(V,T)), with free energy given in
eq 17. Distributions for several temperatures are shown in
Figure 11. The distributions show a second-order-like transition
to a collapsed globule phase at low temperatures, consistent with
previous analyses.78,83!90 At high temperature, the distribution
converges to that shown in Figure 8b.

’DISCUSSION AND CONCLUSIONS

Motivated by the effects of crowding particles on the char-
acteristic volume of a polymer or protein, as well as the
opportunity to test mean-field theories by enumerating disor-
dered ensembles, we proposed several candidate measures of
polymer volume. We compared traditional measures of polymer
volume, such as the Flory volume, and volume corresponding to
the radius of gyration or radius of gyration tensor ellipsoid, to
other less-common measures. These measures included the
embedding sphere volume which is closely related to theminiball
volume,29,69 the Cartesian box volume21 which is that of a box
oriented in a fixed “lab” frame of reference that encloses all the
monomers in the polymer, and a principal box measure,22 which
is the volume of the smallest box oriented along the principal axes
of the polymer defined by the radius of gyration tensor, and
which encloses all the monomers in the polymer. The principal
box is closely related to minimal spanning boxes that enclose the
polymer.22,29,37

We generated off-lattice self-avoiding random walks (SAWs)
by using both Lal’s pivot algorithm38,51 and using discrete
molecular dynamics simulations. We first showed that the
exponents appearing in the des Cloizeaux functional form of
the end-to-end distance probability distribution for the off-lattice
SAW had significant finite-size modifications in the regime of
small globular protein chain lengths, but converged to the well-
known on-lattice exponents in the limit of large chain lengths, as
expected. However, chain lengths corresponding to several
hundred persistence lengths of a real polymer are needed to
see such a crossover.

The lack of correlation between the either the radius of
gyration tensor ellipsoid or the principal box and other measures
analyzed indicates the importance of anisotropy in characterizing
SAWs. Moreover, the radius of gyration tensor ellipsoid excludes
a significant fraction of polymer, approximately 44% for a 100mer
SAW. This might be expected based on the arguments made in
the introduction. One solution may be a simple rescaling of the
ellipsoid, but to systematically find the appropriate scale factor
might involve a best fit to the overall density profile. A simpler
rescaling was used for the radius of gyration scalar sphere to
determine the depth of ion-pairs in proteins,91 by taking the

Figure 11. Probability distributions defined through the free energy in
eq 17, for several temperatures as shown in the legend, for the 100-mer.
At low temperature the system is in a collapsed phase, while at very high
temperature the distribution converges to the conformational entropy
distribution function in Figure 8b.
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radius of the protein as that of a sphere with the same radius of
gyration, or (5/2)1/2rgy.

The probability distribution of the end-to-end distance was
much broader than all other volume measures considered, even
the embedding sphere diameter. The distribution of the mean
principal box edge length was the most sharply peaked, slightly
sharper than the mean diameter of the Rgy tensor ellipsoid. This
supports the notion that the principal box can be thought of as
giving “the characteristic volume” of a polymer without reference
to a specific conformation, although nearly any such measure of
the SAW ensemble must be distributed. As an accurate char-
acteristic volume, the principal box may be useful as an order
parameter governing coil to globule collapse as solvent condi-
tions are varied. For example the principal box volume should be
much more useful than say the radius of gyration or end-to-end
distance in capturing osmolyte or crowding induced collapse, or
folding in crowded milieu representing the interior of the cell.
Perhaps even more useful in this regard may be minimal convex
spanning hull measures that enclose the polymer such as qhull,92

which algorithmically constructs a spatial polyhedron that
“shrink-wraps” all of the monomers.

The radius of gyration tensor is however more amenable to
analytic treatment than the principal box, which has led histori-
cally to the analysis of asphericity to capture polymer aniso-
tropy.16!19 In spite of this, we can still introduce an analogous
measure to the asphericity for the principal box, which we called
the acubicity. The acubicity satisfies the same inequality relation-
ships as the asphericity, but shows higher anisotropy.We also saw
that the acubicity involves averages of box edge lengths squared,
which was not necessary to capture the anisotropy and in fact
reduces the sensitivity of acubicity as a measure to detect
anisotropy. Using a measure of acubicity that scaled linearly in
the box edge lengths enhanced the capability of the measure to
capture polymer anisotropy.

For energy functions that give larger Boltzmann weight to
anisotropic conformations, the anisotropic volume measures will
become increasingly important. As an example, a polyelectrolyte
that nevertheless folds (by counterion condensation) will have
unfolded configurations that are significantly elongated due to
charge!charge repulsion, as in the inset to Figure 5a, until the
system folds or condenses. For such polymers, isotropic volume
measures such as the radius of gyration could lead to large errors
in characterizing collapse.

It is nontrivial to find a distribution function for the
principal box volume analytically. Instead we found that the
distribution could be well-fit heuristically by a des Cloizeaux
function with modified exponents that were essentially N-in-
dependent over the range of polymer sizes used in this study. A
correction to the des Cloizeaux function that accounted for a
nonzero collapsed polymer volume was inconsequential for
the SAW ensemble, but it becomes relevant in describing coil
to globule collapse.

Random mixing approximations for the mean-field energy of
an isolated polymer utilize the packing fraction of polymer
configurations. However a problem with packing fraction is that
a characteristic volume must be defined to use it. Put another
way, in the mean-field approximation, the thermal energy per
volume of a self-interacting polymer will scale as the square of the
concentration of monomers. However the concentration of
monomers is itself determined by the effective volume character-
izing the polymer. Once a volume measure is introduced, the
mean-field approximation can then be directly tested from a

generated ensemble of conformations. Our tests showed that for
no measure of volume was the mean-field approximation satis-
fied. In particular, the energy showed essentially no correlation
with reciprocal volume when the Flory volume was used,
indicating that the Flory volume would be a poor order para-
meter to characterize mean energies in a polymer system.

Instead we found anomalous exponents for the scaling of
average energy with volume. The nonmean-field exponents were
further investigated using direct simulations of a self-attractive
homopolymer, which confirmed the anomalous scaling of energy
with volume. One possible reason for the anomalous scaling is
the nontrivial density distribution for SAWs in the principal axis
frame,22,23,90,93,94 so that a more accurate measure of the mean
energy would involve generalizing the packing fraction, which is
essentially the mean monomer density, to a local quantity η f
η(r) d3r. The mean energy would then be given by Nzε

R
d3r

η(r). However, one finding from studies of the density distribu-
tion is that the density profile is nearly flat along the major
principal axis for a SAW, which would seem to support the mean-
field approximation. Perhaps a more likely explanation for the
anomalous scaling involves correlations in the density distribu-
tion, at least at the pairwise level. Analysis of the pair correlation
function gn(r|ro), giving essentially the probability density for a
monomer to be at position r, given it is separated by n residues
along the chain from a residue at position ro, may allow for a
treatment of fluctuation-dominated energy density. The role of
density fluctuations in governing contact probabilities is an
interesting topic of future research.

The density isocontours may provide another way to define
effective polymer volume for a SAW ensemble through a density
isocontour. A similar strategy was used to derive the volume and
characterize the shape of small molecule candidate pharmaco-
phores through the electron density.95

The accuracy of terms in a free energy function that scale as
∼c2 is likely contingent on dilute monomer concentrations
and thus small packing fraction η , 1. The origins of the c2-
dependence in mean-field theories of polymer solutions dates
back to Flory!Huggins theory,7,75!77 which was itself based
on observations of corrections to ideal gas behavior of the
osmotic pressure in dilute solutions of whole polymers.96 The
extension of the mixing approximation from dilute polymer
solutions to effective monomer concentration in a single
isolated polymer, even for a density distribution as “dilute”
as a self-avoiding random walk, may simply never be quan-
titatively valid.
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Measures of polymer volume and their properties
As a consistency check on the volume measures described in the main text, Figure 1a shows a
scatter plot of the end-to-end radius Rete, defined as the end-to-end distance over 2, and the ra-
dius Rsphere of the smallest sphere which circumscribes the polymer configuration (the embedding
sphere). Rsphere is always larger than Rete, since the distance between any pair of residues must
always be less than the embedding sphere’s diameter.

As described in the main text, the volume of the effective ellipsoid Vell characterizing the poly-
mer configuration is given by 4π

√
3∏3

i=1
√

λi, where λi are the eigenvalues of the radius of gyra-
tion tensor. The effective radius of a sphere with the same volume as that of the ellipsoid (Vell) is
given by the geometrical mean of the individual radii: R

e f f

gy = (abc)1/3 =
√

3∏3
i=1 λ 1/6

i
. This is to

be compared with the volume of the effective sphere defined by (4/3)πR
3
gy, with Rgy =

�
∑3

i=1 λi.
A scatter plot of the radii determined by both of the above measures is shown in Figure 1b.
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Figure 1: (a) Scatter plot of the end-to-end radius, defined as the end-to-end distance Rete over
2, and the radius Rsphere of the smallest sphere which circumscribes the polymer configuration.
Rsphere is always larger than Rete/2, since the distance between any pair of residues must always
be less than the embedding sphere’s diameter: the thin blue line indicates y = x. (b) Scatter plot
of the radius of gyration Rgy for a 100mer given by the trace of the radius of gyration tensor, and
effective radius R

e f f

gy defined above through the volume of the radius of gyration tensor ellipsoid
Vell . The data correlate (r = 0.58) but with significant scatter. The radius of gyration is always
larger than the effective radius: the thin blue line indicates y = x. All distances are in units of the
link length on the polymer chain. Approximately 2×105 configurations are shown.
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