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1 Calculating Circularly Polarized Spin and Angle Resolved Photoemission Spectroscopy

In conventional ARPES measurements, experimentalists are conscious of the so-called ’matrix element

effects’ which modulate the spectral intensity, resulting in deviation from the pure one-electron removal

spectral function understood to be the underlying object of measurement in photoemission spectroscopy1.

More explicitly stated, this modulation can be understood easily as originating from the dipole matrix ele-

ment (valid for spatially homogeneous electromagnetic fields) which is central to the intensity as described

by Fermi’s golden rule:

I(~k, ω) ∝
∑
i

| 〈ψf |∆ |ψi〉 |2|Ai(~k, ω)|2 (1)

where |ψi〉 and |ψf〉 represent the initial and final state wavefunctions of the photoemitted electron. The

sum goes over all initial states, ∆ is the dipole operator and Ai(~k, ω) is the one-electron removal spectral



function. While convoluted with the details of the experimental configuration, the matrix element factor

is a rich source of information, dependent on not only the parity of the states being probed, but also

the relative phase within the Bloch wavefunction, itself taken to be a linear combination of orthonormal

atomic orbitals. It is this factor which makes it possible to probe spin-orbital coupling via CPS-ARPES.

By working in the Coulomb gauge and neglecting higher-order terms, we can approximate ∆ = ~A · ~p,

and on the basis that the initial and final states are eigenstates, we can employ the commutation relation

[H,~r] = ω~p
c

to recast equation (1) in terms of the position operator, such that ∆ ∝ ε̂ · ~r, with ε̂ here the

polarization unit vector of the incoming light. Following the well-known dipole selection rules, under the

dipole operator ∆l = ±1 and m′l = ml + µ with µ ∈ [−1, 1]. These rules are made more explicit by

expanding the dipole operator as written in terms of spherical harmonics:

∑
µ

(
εx + iεy√

2
δµ,−1 + εzδµ,0 +

−εx + iεy√
2

δµ,1

)
|~r|Y1,µ(θ, φ) (2)

where Yl,m(θ, φ) are the usual spherical harmonics. For circularly polarized light however, these rules

are further constrained, and this will form the basis of this experimental technique. In the simplest case,

light is considered incident normal to the sample surface, such that the polarization plane is spanned by

the vectors σ = [1, 0, 0] and π = [0, 1, 0]. Then for circularly polarized light, the polarization vectors are

C± = π± iσ. Substituting this vector into equation 2 we find that under C+, ∆ml
= 1 and C−, ∆ml

= −1.

As noted in the text, these strict rules are relaxed off normal incidence, and for the case here, where the

polarization vector basis is defined by σ = [1, 0, 0] and π = [0, 1√
2
,− 1√

2
], then the expansion in Equation

1 reduces instead to ∑
µ

(0.15 δµ,−1 − 0.5 δµ,0 + 0.85 δµ,1)|~r|Y1,µ(θ, φ) (3)

for C+ and ∑
µ

(0.85 δµ,−1 + 0.5 δµ,0 + 0.15 δµ,1)|~r|Y1,µ(θ, φ) (4)

for C−. While the effect is diminished, the raising nature of C+ and lowering of C− is largely intact, even

for such large angles of incidence.
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Figure 1 (a) Radial part of the initial state wave functions, taken as the pseudowavefunctions

from the Quantum ESPRESSO pseudopotentials for Fe and As. Representative lengthscales

for LiFeAs are illustrated with vertical lines showing the distance between nearest Fe-Fe, Fe-As,

As-As ions, and the interlayer separation. (b) Radial integrals as in Equation (6) for Fe 3d for

dipole transitions into the p and f channels. l and l′ reference the orbital angular momentum

number for initial and final states respectively. (c) Ratio of the radial integrals into p:f for Fe 3d

states. (d-e) same as (b-c) but for the As 4p state going into s and d channels.

This is verified by the simulated plots of Pi (Equation 1 of the main text) in Figure (3b) and (3c) of the

main text which show a clear change in sign between states of different spin-orbit coupling polarization,

albeit reduced in amplitude from what would be expected for normal incidence light.

In order to simulate ARPES intensity2, we begin by making the assumption of a free-electron plane

wave final state. We can rewrite the matrix element Mk =
〈
ei
~k·~r
∣∣∣ ε̂ · ~r ∣∣∣ψi〉 as

Mk = 4π
∑
l′,m′

Bn,l,l′(k)Gl′,m′

l,m Yl′,m′(θk, φk) (5)

where the radial integral is

Bn,l,l′(k) = (−i)l′
∫
drr3jl′(kr)Rn,l(r) (6)



and the angular integral

Gl′,m′

l,m =
∑
µ

(
εx + iεy√

2
δµ,−1 + εzδµ,0 +

−εx + iεy√
2

δµ,1

)∫
dΩYl,m(θ, φ)Y1,µ(θ, φ)Y ∗l′,m′(θ, φ) (7)

Here, primed and unprimed values are used to reference final and initial states, respectively. In

constructing the radial integrals, an important question which arises is what should be taken as the radial

part of the initial state? While hydrogenic orbitals are excessively localized, Slater-type orbitals lack

the radial nodes of real orbitals, and are therefore not necessarily well-founded. Given that Quantum

ESPRESSO has been used to generate the Hamiltonian, the electronic pseudowavefunctions from the

pseudopotential files has been chosen for the initial states. For the Fe and As atoms used in this paper, the

results are plotted in Figure (S1 a). It is instructive to note however that Slater-type orbitals are a good

alternative and can be used to similar results. The radial integrals may be calculated over a wide range of

photon energies, and the result is plotted in Figure (S1 b-e). This allows for calculation of the ratio with

which the electrons undergo transitions from the Fe 3d states to those of 3p and 3f character (Figure S1

c). From this we see that in the range of photon energies used here (25 - 50 eV), transitions into f-channel

and p-channel are of similar strength. Similar calculations can be done for the As states, which are not so

relevant to the calculations in the main text, however we may confirm that the range of photon energies

used are not associated with any dramatic changes in photoemission channels available to the As 4p states

(Figure S1 d-e).

We demonstrate here now that the central result of the main text is not qualitatively impacted by the

relative strength between transitions into f or p channels. At normal emission and incidence, Y2,1(θ, φ)

can only photoemit under C+ into the Y3,2(θ, φ) state. However, a node along the normal direction for this

harmonic suppresses photoemission via C+.
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Figure 2 (a) Schematic photoemission amplitude for different initial states and their possible

final states under circularly polarized light excitation at normal incidence. The tables indicate the

final state spherical harmonics, and their contribution to Mk in the sum of Equation (5). A node

in the spherical harmonics Y3,2(θ, φ) and Y3,−2(θ, φ) precludes photoemission along the normal

direction into these states. (b) Simulated EDCs for the two spin-orbit split states at k|| = 0Å

under normal incident light. The spectral peak is simulated by a Lorentzian of width 5 meV. The

electronic temperature is taken as 20 K, as in the experiment. Resolution effects are neglected

for sake of clarity. (c) The resulting polarization asymmetry. (d-e) Same as (b-c) but for 45o

incident light. Tails in the Lorentzians illustrate the small photoemission intensity from the other

state, even for a large angle of incidence.

Consequently, this state can only photoemit via C− excitation, regardless of relative cross sections

for photoemission into p or f final states. Similar arguments can be made for Y2,−1(θ, φ) and C−. As a

result, the photoemission at normal emission for these states will constitute a combination of intensity

in both the f and p channels. While the quantitative details of the spectra will be dependent on the ratio

between these two channels, there is no substantive qualitative impact on the mechanism described within

the region of interest, as shown by the smooth variation of B3,2,3 : B3,2,1 in Figure (S1 b).

In Figure (S2 b) this argument is made more explicit using simulated EDCs, where Lorentzians with



a linewidth of 5 meV and peaks proportional to the matrix elements as summarized by the rules in Figure

(S2 a). The relevant spin-polarization asymmetry P is then shown below. In Figure (S2 d-e), the same is

done but with the normal incidence condition relaxed, accounting for the true 45o angle of incidence in the

experiment. Evidently, the polarization asymmetry is still pronounced, and the concept is not only valid

for normal incidence. Only a small additional intensity from the peak we do not intend to address with a

given light polarization is observed, manifest by the small tail in the EDCs of Figure (S2d).

Regarding the form of Pi defined in the main text3, Equation (1) is a particularly robust measure

of spin-orbit coupling polarization asymmetry as the effects of both circular dichroism and detector ef-

ficiency imbalance are eliminated from consideration. If we take the measured intensity I
↑(↓)
+(−),meas =

D±E↑(↓)I
↑(↓)
+(−),true, we note then that each term in the numerator and denominator will have D+D−E↑E↓

where D± and E↑(↓) refer to circular dichroism and detector efficiency respectively. In evaluation of Pi

then by Equation (1) of the main text, these factors cancel from the overall expression.

It is instructive to note that the amplitude of the P signal (calculated using Equation (1) of the main

text) is much higher than the simulations or measurements in the main text. This is due to both the absence

of an incoherent background with no well-defined spin direction, and more importantly resolution effects

which leads to much greater overlap of the spectral features than in this schematic model. Furthermore,

due to the Sherman function associated with the VLEED detector, the absolute maximum amplitude of the

P signal is ±0.3. This is an empirical estimate of the fidelity of the spin-target, i.e. the degree to which

the target effectively extinguishes the spin-minority photoelectrons diffraction.



2 In-Plane Spin-Polarization Asymmetry

Figure 3 (a)In plane measurements of Pz for LiFeAs (b) ARPES of corresponding region of

Brillouin zone studied. A small negative value is observed away from k|| = 0.

As described in the main text, we measured the in-plane spin projection which is oriented along the

axis of the analyzer entrance slit in the experimental configuration. For a crystal oriented with the ΓM

direction parallel to the slit, we acquired spin-EDCs which were used to then generate the spin-polarization

asymmetry curves illustrated in Figure (S4). The emission angles for the relevant curves are the same as

those for the out of plane measurements in the main text. While the signal is smaller than for the out of

plane projection, it would seem that away from normal emission, the spin vectors tilt away from the ẑ

direction for states near EF , and no sign of a switch in the sign of P is observed, suggesting P of the same

sign on both states for in-plane projection.



3 LiFeAs: Electron Pockets at the Zone Corner

Figure 4 (a) Spin-polarization asymmetry at the zone corner for LiFeAs, as calculated from

measured spin-resolved EDCs. (b) Corresponding ARPES spectra at 26 eV for the relevant

region of the Brillouin zone. Vertical line indicates the emission angle for the measurements of

Pi.

In addition to measurements on the hole pockets at the zone centre, we measured the Pi on the

electron pockets at the zone corner for LiFeAs. Both in and out of plane components of spin were measured

and Pi calculated, giving the result in Figure (S5 a). The ARPES spectra in Figure (S5 b) indicates the

emission angle, which corresponds to the M point of the Brillouin zone. The plot of Pi indicates that as in

the case of FeSe, the states at the zone corner do not reflect any substantial coupling of the spin and orbital

angular momentum vectors.
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