4 A quantu.m mechapical system is described by the Hamiltonian H,, and
i1s the set of eigenfunctions {lg)}. It is subjected to a perturbation of the form

V(p) = p,e iertine 4 vy etiei—ine 4 v,e i@tine v} e tiwaminy
?

hich we may write in the form

2

V() = E Z v (o)e e

o=+, ~ j=|
lere Ui(+) = vy, v)(~) = v, etc.

Calcylate the expectation value (0] correct through terms second order
V(»), i.e., extend (A.23) in Appendix A to the second order of perturbation
sory.

)This result can be used as the basis for microscopic calculation of
w(kiwy; kz(.uz) after the appropriate choices are made for the operators O, Uy,
» etc. Notice your expression contains resonant denominators that are sin-

i

4. Basic Principles of Nonlinear Wave

Interactions: Second Harmonic Generation
and Four Wave Mixing

We now turn from our discussion of the nature of a material’s linear and non-
linear response to an external electric field, to the consequences of the latter.
We have seen that we can decompose the electric dipole moment per unit vol-
ume into a linear portion, and a nonlinear portion, as in (1.7 a). When we
Fourier transform all quantities with respect to time by writing

+0

ar yvhen = Wno, W2 = wpo, and the output frequency o, +0;w; = w,y, where
n0 1S an excitation energy of the system

.

dw ~iwt
E(r,t) = E;Eu(r, w)e ", 4.1

then introduce the frequency dependent dielectric tensor, (1.3 a,b) become

V-le(w): E(r, w)] = —47V - P"D(r, ) (4.22)
and
VE(r, w) — V(V - E(r, w))
2 2
+ '—"; &) Er,0) = ~- 4”—:" P, w) . (4.2b)
C C

We shall ignore the influence of the wave vector dependence of the dielectric
tensor in what follows.

Quite clearly, the nonlinear polarization present at the frequency  can be
viewed as a source of electromagnetic radiation at that frequency. We shall
focus our attention on the theory of second harmonic generation, treated first
within a perturbation theoretic framework. We shall then turn to a nonpertur-
bative analysis of the process which, as we shall come to appreciate, is required
in certain circumstances.

4.1 Perturbation Theoretic Analysis
of Second-Harmonic Generation

Suppose the material is illuminated with a laser beam, here taken to be a simple
plane wave, of frequency w, and wave vector k;. If we assume the intensity




of the second harmonic radiation is very weak, then we can ignore the depletion
of the primary wave due to a conversion of a portion of its energy into second
harmonic. We may then calculate P™“(r, ) by simply inserting the expression
for the amplitude of the initial wave into the appropriate terms in the power
series expansion of the dipole moment per unit volume in powers of electric
field. Let the incident field be given by

E@z, D) = 8E(w)e™ e ™" + 8E*(w,)e Hetien 4.3)

where we orient the z axis along the propagation direction of the beam. The
components of the dipole moment with the frequency 2w, are

POV = EXw)) D x3,806,6%7% > + c.c. . 4.4
By

If we suppose the dielectric is a simple isotropic dielectric, or if we suppose
the propagation direction of the incident wave is aligned with a principal axis
of the dielectric tensor in the more general case, the electric field of the incident
wave will lie in the xy plane. The incident wave is then transverse. However,
in general, even in such a simple case the nonlinear polarization in (4.4) may
have a component parallel to the z axis, as well as in the xy plane, because of
the tensor character of x5, It is convenient to break P™" into two pieces, one
parallel to 2 and one in the xy plane:

PV = 2P 4+ POV, (4.5)

The amplitude of the second harmonic field will have amplitude dependent
on only z, for an incident wave of plane wave character. We write, for the
second harmonic field at the frequency w, = 2w,

EQz, 0) = 2E((z, w)) + E (z, ;) . “.6)

One may show rather easily that V’E — V(V - E) = 3’E /62*. Furthermore, it
will simplify our discussion to assume the z direction is a principal axis, and
in fact that the dielectric material is isotropic in its response to electric fields
in the xy plane. The discussion would then be applicable to second harmonic
generation in a crystal such as quartz, for the case where the incident beam
propagates parallel to the optic axis.

We combine the decompositions described above with the model, (4.2 a)
and (4.2 b) become

9 €, (w 47wl
SEt w? *iz Vg + 21*"”

2 4
+ [a)2€||(wz) E + W3 Pﬁm“)]z =0 (4.6a)
C C

and
9 y
S [e(w)E; + 417P|1'"“] =0, (4.6b)

where £, and g describe the dielectric response perpendicular and parallel to
the optic axis, respectively.
Satisfaction of (4.6 a) requires the two conditions:

Efwy,2) = — P, 2) 4.7a)

gy(wy)

and
) Arw?
(Q + k%)El(wz. 2= ———::" 2 PO, 7) . (4.7b)

Note that satisfaction of (4.7 a) insures that (4.6 b) is obeyed. We have intro-
duced

w ' 2w
ky = —c—z Ve, (wy) = —(_;— Ve, Qw) (4.8)

which is the wave vector of a wave of frequency w, = 2w,, as it propagates
freely in the medium.

The component of the second harmonic wave parallel to the optic axis, and
to the direction of propagation of the second harmonic wave, is glven by the
simple expression in (4.7 a).

The analysis of E, will prove of more interest. While it is not a difficult
matter to solve (4.7 b) as it stands, in fact we can turn to an approximate
treatment based on a scheme used commonly in situations such as the present.
As one progresses along the propagation direction, the amplitude of the second
harmonic builds up very slowly, as a consequence of the smallness of x%3,.
The amplitude changes very little, if we move just one wavelength. Thus, for
the amplitude of the second harmonic wave, we write

EJ.(wZ’ Z) = E(wz, z)eik22 > (49)

where the spatial variation of exp(ik,z) is assumed rapid compared to that of
E(w;, z). Then we have

E, (sz oig, OE a’E) "
= — i —_—— | 22
87 2oz o

n

2 ., OE) 4
~| K — 2iky — el (4.10)
Z



When this is inserted into (4.7 b), and we write E = é€?E(w,, z) where & is
a unit vector parallel to P, we may write (4.7 b) in the form

0E(w,, 2) _ 27riw?
oz ck,

where

X? = 2 Xapy€Dégé, . @12

aBy

/\.,(2) E () )el®i—ka) , “4.11)

The scheme used to obtain (4.11) is called the slowly varying envelope ap-
proximation.

It is an elementary matter to integrate (4.11). We shall assume the surface
of the material is at z = 0. The second harmonic field vanishes there, and
builds in intensity as one moves into the material. We thus integrate (4.11)
subject to the boundary condition E(w,, 0) = 0. The result may be arranged to
read, with Ak = 2k, ~ k,,

4mriw) ¥PE (w,) gidkr2 Sin(4kz/2)
ck, Ak
The energy per unit area per unit time carried by the second harmonic is
found by evaluating the Poynting vector. In the slowly varying envelope ap-

proximation, we have for the magnitude S of the Poynting vector § =
czk2|E(w2, Z)|2/277w2, or

E(wy, 2) =

(4.13)

87wilx®? sin®(dkz/2)
S =—7= " |E 4 1
ok, |E(e))| a0 (4.14)

The crucial parameter which controls the intensity of the second harmonic
output is Ak. Recall that k; = o, Ve(w,)/c is the wave vector of the primary
wave of frequency w;, while k, = 2w,Ve(2w,)/c is that of a freely propagating
wave with frequency 2w,. If the dielectric constant were to be independent of
frequency, then £(2w,) = &(w,), and we have 4k = 0. Upon noting that

sin(dkz/2) z

AkTO Ak N (4.15)
in this limit the field envelope E, (w,, z) grows linearly with z, and the power
flow in the second harmonic increases as z°. Clearly, at large values of z our
perturbation theory which ignores depletion of the first harmonic, breaks down,
though it is quite clear that we wish to achieve the condition 4k = 0 to generate
an intense second harmonic wave. As we have seen earlier, the dielectric con-
stant of any medium depends on frequency, unfortunately. Thus, in general,
the condition 4k = 0 is not realized. We shall discuss shortly how one may
arrange to satisfy this condition.

A direct experimental test of the predictions of (4.14) can be found in the work
of Maker et al. [4.1]. For example, as the path length z is varied, one expects oscilla-

tions with distance of travel in the second harmonic output, for Ak s 0. In [4.1], the
path length is varied by using a thin film to generate the second harmonic, and rotating
the film. The path length in the medium is then d/ cos 6, where d is the film thickness
and @ the angle between the pump beam (in the crystal) and the normal to the film. In
Fig. 4.1, we show the comparison between theory (solid line) and experiment (dots),
taken from [4.1].

When the condition 4k = 0 is obeyed, the interaction which leads to second
harmonic generation is said to be phase matched. Physically, the reason why
a phase matched interaction leads to intense output is the following: The non-
linear dipole moment exhibits the spatial variation exp(i2k,z), as we have seen.
If we consider two small regions of space separated by the distance d, the phase
difference between the dipoles in each responsible for generating the second
harmonic radiation is thus 2k,d. The radiation emitted by each set of dipoles
has the frequency w, = 2w,, and will propagate through the medium with the
wave vector k,. If k; = 2k, the radiation field emitted from the set of dipoles
in the first volume is exactly in phase with that emitted by the dipoles in the
second. The fields reinforce coherently. If we add up the fields radiated by all
the dipoles in the strip which lies between 0 and z, since all the dipole fields
reinforce coherently, the amplitude of the second harmonic is linear with z, and its
intensity varies as z2.

If Ak # 0, the length €. = 1/|Ak| has the following interpretation: A strip
of “second harmonic” dipoles with width €. radiate second harmonic fields
which reinforce constructively. Thus, for z < £, the second harmonic fields
grow linearly with z. As z increases beyond €., we encounter destructive in-
terference, the field no longer grows monotonically, and in fact the combined
effects of constructive and destructive interference lead to the oscillatory be-
havior for the field envelope displayed in (4.13). The length €. is called the
coherence length of the nonlinear interaction. .

Some comments follow from the above remarks. First notice that if th
process of second harmonic generation is phase matched, then no matter how
small ¥ is, our perturbation theoretic treatment of the phenomenon breaks
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down if the optical path length in the medium is sufficiently long. Validity of

the perturbation treatment requires the path length L be shorter than L, =

*ka/[2nw}| X P E (@), a criterion which follows upon comparing the intensity of

the second harmonic wave with that of the first harmonic, if L 2 L., the intensity

of the second harmonic is comparable to that of the pump beam, even though i@

is small, and PV js everywhere small compared to the contribution to the dipole
~moment per unit volume linear in the external field.

It follows also from the above that if we have a medium whose thickness is
small compared to the coherence length £, then we need not be concerned about
the question of phase matching. The second harmonic intensity is then independent
of £, and the wavevector mismatch Ak.

There is another means of understanding the phenomenon of phase match-
ing. While our treatment here is based entirely on classical physics, we may
also adopt a quantum mechanical view point, which treats the incident beam
as a collection of photons, each of energy fiw,. When X%, # 0, the photons
may interact with each other. This may be appreciated by noting that the pres-
ence of xﬁf}, leads to a term in the energy density of the medium proportional
t0 ZopyXopyEaEgE, (these remarks assume x3, is real, and ignore complica-
tions which arise from its frequency dependence). When the electric field is
expressed in terms of the photon annihilation and creation operators, one sees
this term leads to three photon interactions. Two photons may “fuse” to form
a third. Thus, two quanta in the pump beam may fuse to form a single quantum
of energy 2fiw,. While such an interaction clearly conserves energy, a photon
of wave vector k also carries momentum #k. Thus, unless k, = 2k,, momentum
is not conserved in the interaction. The full classical treatment given below of
the problem of phase matched second harmonic generation will show that under
such conditions, all the pump beam is converted to second harmonic. Thus the
photons of frequency w, fuse until the supply is exhausted.

It is quite possible to give a theoretical treatment of second harmonic gen-
eration, with use of the photon annihilation and creation operators; of course
the final answer must agree with that provided by our classical theory, when
the occupation numbers of the states involved are large compared to unity. This
is insured by the correspondence principle of quantum theory. Full quantum
theoretical treatments are to be found in the literature. In the experience of the
present author, the classical approach to such problems is far more flexible and
powerful. It is very tricky to incorporate the influence of absorption on the
nonlinear interactions, within quantum theory, for example. Most such treat-
ments ignore its role as a consequence, though in fact it is important in practice.
The treatment presented here, while very simple, in fact is valid in the presence
of absorption as it stands, though in our discussion we regarded both &(w,) and
£(2w,) as real. All we need to do is realize that in the presence of absorption, these
are complex. Also, the classical treatment is extended rather easily to incorpo-
rated boundary conditions and finite size effects (within the perturbation theoretic
framework), while full quantum treatments of such influences are much more cum-
bersome, in the view of this writer.

While we have encountered the notion of phase matching in the context of
second harmonic generation, in fact the concept enters crucially into a diverse
array of nonlinear interactions. A key ingredient critical to achieving an intense
output is the realization of phase matching in a nonlinear interaction of interest.
We next turn to a discussion of the means of achieving phase matching, in the
specific case of second harmonic generation.

4.2 Methods of Achieving the Phase Matching Condition

In general, second harmonic generation experiments are carried out in crys-
talline media since, as we have seen, for Xffg., to be nonzero, we require a
material within which inversion symmetry is lacking. Gasses and liquids are
isotropic, of course, and this third rank tensor thus vanishes in the limit of
zero-wave vector. It should be remarked that Xff;, is nonzero in the near vicinity
of the surface of any medium, since atoms in the surface occupy positions that
lack inversion symmetry. Since such a small fraction of the total number of
atoms reside in the surface, the intensity of second harmonic radiation gener-
ated from the surface region is quite small. We explore surface nonlinear effects
in Chap. 8.

We need a long optical path length for intense second harmonic signals to
be generated; one ‘must thus operate well below the absorption edge of the
medium. We have seen in Chap. 2 that ¢,(w) increases with frequency in this
spectral range, for dielectric materials, so £,(2w) > &(w) and one cannot achieve
phase matching.

However, in anisotropic crystals, by means of a trick, the condition can be
realized. In Sect. 2.3, we discussed the electromagnetic modes of a uniaxial
crystal, with dielectric constant g(w) for electric fields applied parallel to the
optic axis, and ¢, (w) applied in the basal plane. There is the ordinary wave,
with index of refraction n,(6,w) = Ve, (w) independent of propagation angle,
and the extraordinary wave with index of refraction n.(0,w) that does depend
on the angle between the wave vector of the wave, and the optic axis. The
expression for n(0,w) is given in (2.65).

If the input wave is an ordinary wave, and the output wave is an extraor-
dinary wave, then there is one particular angle # where precise phase matching
may be achieved, provided the inequality £(2w) < £,(w) is satisfied. The sit-
uation is illustrated in Fig. 4.2. The crystal KDP satisfies the required con-
dition, and Maker et al. [4.1] verified the critical role played by the phase matching
condition. We reproduce their data in Fig. 4.3; one sees the dramatic variation of
the intensity of the second harmonic output (blue light) as the angle 6 is swept
through the critical angle 8,. There is a much more modest variation with azimuthal
angle ¢. While the phase matching condition is in fact independent of ¢ in a
uniaxial dielectric, factors such as the coefficient of transmission through the film
surfaces and @ depend on azimuth. The intensity of the second harmonic exhibits
a dependence on ¢ as a consequence.




OPTIC Fig. 4.2. An illustration of how one satisfies the
AXIS phase matching condition in a uniaxial dielectric. We
, sho.w the index of refraction n,(w) and n,(2w) for the
// ord‘mary ray, and n.(6,2w) as a function of propa-
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While second harmonic generation is not possible in gasses or liquids, the
generation of the third harmonic is allowed. The phase matching condition is
now n(w) = n(3w), which is in general not satisfied. It is, however, possible
to “tune” the frequency variation of the dielectric constant of some gases, so
that phase matching can be achieved at one desired frequency. Consider a’gas
of atoms, called species 1, where the constituents have an excited state that
produces a resonance in the dielectric constant at a frequency w, that lies be-
tween w and 3w. Then as we see from Fig. 2.3, ny(w) > n,(3w). Now mix in
atoms of type 2, whose first resonance lies above 3w. For a gas of type 2 atoms
ny(w) < ny(3w). For the mixture, the index of refraction is (1 — f)n,(w) +’
fny(w), where f is the fraction of type 2 atoms present. One may always choose
S so that the phase matching condition is satisfied at selected frequencies. Gen-

eration of the third harmonic in the gas phase has been reported by Bloom et al.
[4.2,3), under conditions where phase matching has been achieved.

4.3 Evolution of the Second-Harmonic Wave
under Phase Matched Conditions

We have seen that when the process of second-harmonic generation is perfectly
phased matched, the perturbation theory breaks down if the path length is suffi-
ciently long, for arbitrarily small x®.

To proceed, we must realize that under these conditions, the pump beam
at the frequency w, is depleted, as the second harmonic is generated. The first
step is thus to allow the amplitudes E(w,) and E*(w,) in (4.3) to vary with
distance of travel z. We thus begin by replacing E(w,) by E(w, z) in (4.11),
after setting k, = 2k;. One then has

0E(w;,2) 4Amriw}
az c*k,

2B w,, 2) . (4.16)

We now require a second statement which describes the evolution with z
of E(w,, z). There is, in fact, a contribution to the nonlinear polarization which
exhibits the time variation exp(—iw,#). This arises, in our general expression
(3.3), from the interaction of the Fourier component of the second harmonic
with time variation exp(—i2w,#) with that of the pump beam with time variation
exp(+iw,#). The former has amplitude proportional to E(w,, 2), and the latter
E*(w,, 2) [(4.3)]. We may write this contribution to the magnitude of the non-
linear polarization at frequency w, in the form'

P"Y(w,, 2) = 2¥PE(w, )EX (@1, 2) - 4.17)

When this expression is inserted into the inhomogeneous wave equation for
E,(w,,z), and the slowly envelope approximation is invoked, one finds

0E(wy,2) drriw}

™ i FPEQuw,, 2)EX(@y,2) . (4.18)
1

These two differential equations are to be solved with the boundary con-
ditions EQ2w,, 0) = 0, and E(w,, 0) = E(w,), the amplitude of the pump beam
at the surface. It is possible to solve this set in closed form. We next proceed
with the solution.

! See remarks on the permutation symmetry of the second order susceptibility given in [4.4]. It
is quite obvious from the structure of our (3.3) that xf,,’}.,(k,w., kyw,) is invariant under simul-
taneous exchange of the combinations (ak,0,) and (Bk,w,) as we have remarked in Chap. 3.




We begin by writing

E(wy, 2) = E(w)fi(2) 4.192a)
and

E(w,,2) = E(w) f2(2), (4.19b)
where f(z) and f,(z) obey the boundary conditions

£H0) =1 (4.19¢)
and

£0)=0. (4.19d)

We also change to a dimensionless measure of length:

Z=LC§5

v&fhere L. = c’k,/41w}¥®E(w,) is the critical length which entered our earlier
discussion.

Our equations then become
o ..,
i E =if] (4.20a)

and

i ow

& iLrt. (4.20b)
One may proceed by breaking f; and f; into amplitudes and phases

f12(8) = u (£ *9 : (4.21)

then separating (4.20 a,b) into real and imaginary parts. This leads to a set of four
coupled differential equations:

%{5 = —u} sin(2¢, — @), (4.22a)
uz%% = uj cos(2¢, — $2), (4.22b)
%l? = wu, sin(2¢; ~ ¢,), 4.22¢)
and
%92—‘ = u, cos, — ¢,) . (4.224d)

,,,,,,

These may be reduced to a set of three equations, by noting the phase angles

enter only in the combination ¢ = 2¢, — ¢,. Thus,

]
2 _Bsinyg, (4.232)
o
aul
— = sin ¢, 4.23b
af U Uy lll ( )
and
Y uf
—=|2u,——)cosy. (4.23¢)
13 1153 .

Through use of (4.23 a,b), (4.23 ¢) may be arranged to read

g ———————=0 4.24)
which is in fact a statement of a conservation law:

a 2

;g_ln[uzu1 cosy] =0 . 4.25)

or

u(E)ui(€) cos[Y(£)] = const . (4.26)

Now as & — 0, uy(£§) — 0. Hence the constant of integration on the right-hand
side of (4.26) vanishes and we must have y(¢) = +4r/2 or —m/2, independent
of ¢ everywhere. We choose the minus sign so that du,/d¢ > 0 in (4.23 a) and
the second harmonic grows with increasing £.

We are then left with the pair of equations

i +ui, 4.27a)
]
ko SRR (4.27b)
0
which require
auz aul _ i
uy—+uy,— =20 (4.28)
9 ¢

or

WO +u®=1. (4.29)
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