LAST NAME:

STUDENT #:

FIRST LETTER OF LAST NAME:

FIRST NAME:

Phys. 101 Section 203 Mid-term exam.

Thurs. Feb. 23, 2006. Hebb Theatre 9:40 am – 10:30 am

Instructor: J. E. Eldridge

ANSWER BOTH QUESTIONS. PART MARKS ARE SHOWN IN THE MARGIN.

Question	#1	#2	TOTAL
Mark			

Part marks

Question 1. How many cubic metres of helium are required to lift a balloon with a 400-kg payload to a height of 8000 m? (Take $\rho_{He} = 0.180 \text{ kg/m}^3$.) Assume that the balloon maintains a constant volume and that the density of air decreases with the altitude z according to the expression $\rho_{air} = \rho_0 \exp(-z/8000)$ where z is in m and $\rho_0 = 1.25 \text{ kg/m}^3$ is the density at sea level.

Buoyancy mass,
$$m_B = P_{air} V$$
 where $V = volume of balloon. (1)$

$$P_{air} = 1.25 \exp(-\frac{8000}{8000}) = 1.25 e^{-1} = 0.460 \text{ kg/m}^3$$

$$Mass to be supported = PHe V + 400 \text{ kg}$$

$$= 0.18 V + 400 \qquad (2)$$

Equating (1) and (2)

$$0.46V = 0.18V + 400$$

$$V = \frac{400}{0.46 - 0.18} = \frac{400}{0.28} = 1428.6 \text{ m}^{3}$$

$$V = \frac{400}{0.46 - 0.18} = \frac{400}{0.28} = 1428.6 \text{ m}^{3}$$

$$V = \frac{400}{0.46 - 0.18} = \frac{400}{0.28} = 1428.6 \text{ m}^{3}$$

PAGE 2

Question 2 MULTIPLE CHOICE (Circle the one correct answer. Each of the five questions is worth 10 marks)

ques	tions is worth	1 10 marks)									
1.	Water is pumped through a neighbourhood. It moves under pressure at a speed of 1.25 m/s through 6.0 cm radius pipe at the bottom of a hill. What is the speed in m/s when it reaches the top of the 9 m hill where the pipe narrows to 3.0 cm radius?										
	a) 2.5	b) 0.31	c) 0.62	d) 13.3	(e) 5	0.					
2.	will it be, in						4.00 atmosphere moulli's equation				
								e			
	a) 405	b) 406	c) 204	d) 308	(e) 3	17					
3.		-					re d, x and t are rave to change b				
	a) 31.4 mse	ec (b) 6	62.8 msec	c) 251 n	nsec	d) 3.6 sec	e) 0.	57 sec			
4.	mass is pull		(+x) and rele	eased at $t = 0$			ring is fixed. The days and the maximum				
	(a) 0.127	b) 1	.26 c) 1	1.0	d) 2.0	e) 2.50	f) 0.40				
5.	If the damp resonance is		, in a damped f	forced harmo	onic oscillat	tor is doubled, t	he amplitude at				
	a) doubled	b) the same	c) halved	d) quadı	upled	e) reduced t	o ¼ of its first v	alue			