Physics 400/506 March 8, 2004 Midterm 80 minutes

Each question is worth 10 points, with the exception of Question #0, which is worth 0 points, but is mandatory. Undergraduates may attempt the final question for extra credit. You may use a calculator and a copy of Griffiths.

0. Write your name at the top of each page of this exam.

Useful information				
Particle	Quark Content	Mass	$J^{P(C)}$	Isospin
π^+	$u \bar{d}$	$139.6 { m MeV}$	0^{-}	1
π^0	$\frac{1}{\sqrt{2}}(u\bar{u}-d\bar{d})$	$135.0~{\rm MeV}$	0^{-+}	1
η	$(u\bar{u}+d\bar{d}-2s\bar{s})/\sqrt{6}$	$547.8~{\rm MeV}$	0^{-+}	0
$\omega(782)$	$(u\bar{u} + d\bar{d})/\sqrt{2}$	$782.6 { m ~MeV}$	1	0
Λ^0	uds	$1115.7~{\rm MeV}$	$\frac{1}{2}^{+}$	0
Σ^0	uds	$1189.4~{\rm MeV}$	$\frac{1}{2}^{+}$	1
γ		$0 \mathrm{MeV}$	$1^{}$	0

1. Particle A is moving along the x-axis when it decays into two charged pions. Pion B has an energy of 1942.2 MeV, and is moving up and to the right at an angle of 15.6° to the x-axis. Pion C has an energy of 555.2 MeV, and is moving down and to the right at an angle of 75.8° to the x-axis. Calculate the mass and velocity of particle A.

A Consider the decay of the $\omega(782)$ meson $(I = 0, J^{PC} = 1^{--})$. Using any applicable conservation laws, predict whether the ω should decay (a) into two γ 's, (b) into three γ 's, or (c) into either 2 or 3 γ 's. Explain your answer.

B What conservation law if any forbids the decay $\eta \to \pi^+ \pi^- \pi^+ \pi^- \pi^0$?

2.

- 3. Brief essay questions:
- A What makes weak interactions so weak?

B Explain briefly in words why there is no spin-1/2 baryon made of three up quarks (in other words, why isn't there a doubly charged counterpart of the proton?)

4. A spin-1 particle (s = 1) has orbital angular momentum number $\ell = 1$. Suppose that $m_s = +1$ and $m_\ell = -1$. You measure the total angular momentum $\vec{J} = \vec{L} + \vec{S}$ to determine the total angular momentum quantum number j.

A What are the possible values of j that can result from this measurement?

B What is the probability of measuring each value of j?

A A α particle (z = 2) with a velocity near its minimum ionizing velocity passes through 5 cm of copper. The density of copper is 9.0 g/cm³. Estimate how much energy is deposited by ionization in the copper.

B The radiation length of copper is 12.9 g/cm^2 . How far in cm will a high energy electron travel through copper before it loses 90% of its energy?

5.

6. (This question is mandatory for graduate students, and extra credit for undergraduate students.)

In the simple ABC of Chapter 6 of Griffiths, determine the lowest-order amplitude M for the scattering process $A + B \rightarrow A + B$. (Note: there are two diagrams.)