Physics 400/506
March 8, 2004 Midterm

$$
80 \text { minutes }
$$

Each question is worth 10 points, with the exception of Question $\# 0$, which is worth 0 points, but is mandatory. Undergraduates may attempt the final question for extra credit. You may use a calculator and a copy of Griffiths.

0 . Write your name at the top of each page of this exam.

Useful information				
Particle	Quark Content	Mass	$J^{P(C)}$	Isospin
π^{+}	$u d$	139.6 MeV	0^{-}	1
π^{0}	$\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})$	135.0 MeV	0^{-+}	1
η	$(u \bar{u}+d \bar{d}-2 s \bar{s}) / \sqrt{6}$	547.8 MeV	0^{-+}	0
$\omega(782)$	$(u \bar{u}+d \bar{d}) / \sqrt{2}$	782.6 MeV	1^{--}	0
Λ^{0}	uds	1115.7 MeV	$\frac{1}{2}^{+}$	0
Σ^{0}	uds	1189.4 MeV	$\frac{1}{2}^{+}$	1
γ	-	0 MeV	1^{--}	0

1. Particle A is moving along the x-axis when it decays into two charged pions. Pion B has an energy of 1942.2 MeV , and is moving up and to the right at an angle of 15.6° to the x-axis. Pion C has an energy of 555.2 MeV , and is moving down and to the right at an angle of 75.8° to the x-axis. Calculate the mass and velocity of particle A.
2.

A Consider the decay of the $\omega(782)$ meson $\left(I=0, J^{P C}=1^{--}\right)$. Using any applicable conservation laws, predict whether the ω should decay (a) into two γ 's, (b) into three γ 's, or (c) into either 2 or 3γ 's. Explain your answer.

B What conservation law if any forbids the decay $\eta \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$?
3. Brief essay questions:

A What makes weak interactions so weak?

B Explain briefly in words why there is no spin-1/2 baryon made of three up quarks (in other words, why isn't there a doubly charged counterpart of the proton?)
4. A spin-1 particle $(s=1)$ has orbital angular momentum number $\ell=1$. Suppose that $m_{s}=+1$ and $m_{\ell}=-1$. You measure the total angular momentum $\vec{J}=\vec{L}+\vec{S}$ to determine the total angular momentum quantum number j.

A What are the possible values of j that can result from this measurement?

B What is the probability of measuring each value of j ?
5.

A A α particle $(z=2)$ with a velocity near its minimum ionizing velocity passes through 5 cm of copper. The density of copper is $9.0 \mathrm{~g} / \mathrm{cm}^{3}$. Estimate how much energy is deposited by ionization in the copper.

B The radiation length of copper is $12.9 \mathrm{~g} / \mathrm{cm}^{2}$. How far in cm will a high energy electron travel through copper before it loses 90% of its energy?
6. (This question is mandatory for graduate students, and extra credit for undergraduate students.)

In the simple $A B C$ of Chapter 6 of Griffiths, determine the lowest-order amplitude M for the scattering process $A+B \rightarrow A+B$. (Note: there are two diagrams.)

