Physics 400/506 Problem Set 3 Due Tuesday, February 7, 2006 at the start of class

1. A muon is captured in orbit around an α particle in a state with orbital angular momentum l = 2. If the total angular momentum quantum number j for the system is 5/2, and the z component of the total angular momentum is $+\frac{1}{2}\hbar$, what is the probability of finding the muon with $m_s = +\frac{1}{2}$?

2. (This question will test your angular momentum skills and give you practice finding information in the Particle Data Booklet, or in the online version.) A $K_3^*(1780)$ particle decays into a K^0 and a $\rho^0(770)$ particle. What are the allowed values of orbital angular momentum between the two final state particles?

3. What are the total possible isospins for the following reactions: (a) $K^+ + p \rightarrow \Sigma^+ + \pi^+$; (b) $K^- + p \rightarrow \Sigma^+ + \pi^-$. Find the ratio of the two cross sections, assuming that either one or the other isospin channel dominates.

4. Explain why a $\rho^0(770)$ particle decays strongly into two pions but not three pions. What is the ratio of the decay rate into $\pi^0 \pi^0$ to the decay rate into $\pi^+ \pi^-$?

5. A Ξ^0 can decay by $\Xi^0 \to \Sigma^+ e^- \bar{\nu}_e$. Initially the Ξ^0 is at rest with its spin pointed in the +z direction. The decay products are produced with no orbital angular momentum. The $\bar{\nu}_e$ is produced going in the -z direction, and the electron's spin is measured to have $m_s = +\frac{1}{2}$. What is m_s for the Σ^+ ?

6. Graduate students only: The T2K experiment will study neutrino oscillations with a terrestrial beam. A particle accelerator in Tokai, Japan will produce a collimated beam of ν_{μ} 's that will be aimed at the Super-Kamiokande detector 295 km away. Super-Kamiokande will measure the flavour content of the oscillated beam (i.e. what fractions of the beam are ν_{μ} , ν_{e} , ν_{τ}). We denote the oscillation probability by $P(\nu_{a} \rightarrow \nu_{b})$: the probability that a neutrino of type *a* turns into a neutrino of type *b* at some later time.

- A Show that conservation of CPT requires that $P(\nu_a \rightarrow \nu_a) = P(\bar{\nu}_a \rightarrow \bar{\nu}_a)$.
- B Show that if neutrinos respect CP symmetry, then $P(\nu_{\mu} \rightarrow \nu_{e}) = P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$.
- C We can define the CP asymmetry for any neutrino oscillation by:

$$A_{CP}(\nu_a \to \nu_b) = \frac{P(\nu_a \to \nu_b) - P(\bar{\nu}_a \to \bar{\nu}_b)}{P(\nu_a \to \nu_b) + P(\bar{\nu}_a \to \bar{\nu}_b)}$$

If muon neutrinos (antineutrinos) do not oscillate into electron neutrinos (antineutrinos), then prove that $A_{CP}(\nu_{\mu} \rightarrow \nu_{\tau}) = 0$. (Assume that CPT is conserved, and that there are only three neutrino flavours.)

7. Graduate students only: Griffiths 4.19