1. A muon is captured in orbit around an α particle in a state with orbital angular momentum $l=2$. If the total angular momentum quantum number j for the system is $5 / 2$, and the z component of the total angular momentum is $+\frac{1}{2} \hbar$, what is the probability of finding the muon with $m_{s}=+\frac{1}{2}$?
2. (This question will test your angular momentum skills and give you practice finding information in the Particle Data Booklet, or in the online version.) A $K_{3}^{*}(1780)$ particle decays into a K^{0} and a $\rho^{0}(770)$ particle. What are the allowed values of orbital angular momentum between the two final state particles?
3. What are the total possible isospins for the following reactions: (a) $K^{+}+p \rightarrow \Sigma^{+}+\pi^{+}$; (b) $K^{-}+p \rightarrow \Sigma^{+}+\pi^{-}$. Find the ratio of the two cross sections, assuming that either one or the other isospin channel dominates.
4. Explain why a $\rho^{0}(770)$ particle decays strongly into two pions but not three pions. What is the ratio of the decay rate into $\pi^{0} \pi^{0}$ to the decay rate into $\pi^{+} \pi^{-}$?
5. A Ξ^{0} can decay by $\Xi^{0} \rightarrow \Sigma^{+} e^{-} \bar{\nu}_{e}$. Initially the Ξ^{0} is at rest with its spin pointed in the $+z$ direction. The decay products are produced with no orbital angular momentum. The $\bar{\nu}_{e}$ is produced going in the $-z$ direction, and the electron's spin is measured to have $m_{s}=+\frac{1}{2}$. What is m_{s} for the Σ^{+}?
6. Graduate students only: The T2K experiment will study neutrino oscillations with a terrestrial beam. A particle accelerator in Tokai, Japan will produce a collimated beam of ν_{μ} 's that will be aimed at the Super-Kamiokande detector 295 km away. Super-Kamiokande will measure the flavour content of the oscillated beam (i.e. what fractions of the beam are $\nu_{\mu}, \nu_{e}, \nu_{\tau}$). We denote the oscillation probability by $P\left(\nu_{a} \rightarrow \nu_{b}\right)$: the probability that a neutrino of type a turns into a neutrino of type b at some later time.

A Show that conservation of CPT requires that $P\left(\nu_{a} \rightarrow \nu_{a}\right)=P\left(\bar{\nu}_{a} \rightarrow \bar{\nu}_{a}\right)$.
B Show that if neutrinos respect CP symmetry, then $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=P\left(\bar{\nu}_{\mu} \rightarrow\right.$ $\left.\bar{\nu}_{e}\right)$.

C We can define the CP asymmetry for any neutrino oscillation by:

$$
A_{C P}\left(\nu_{a} \rightarrow \nu_{b}\right)=\frac{P\left(\nu_{a} \rightarrow \nu_{b}\right)-P\left(\bar{\nu}_{a} \rightarrow \bar{\nu}_{b}\right)}{P\left(\nu_{a} \rightarrow \nu_{b}\right)+P\left(\bar{\nu}_{a} \rightarrow \bar{\nu}_{b}\right)}
$$

If muon neutrinos (antineutrinos) do not oscillate into electron neutrinos (antineutrinos), then prove that $A_{C P}\left(\nu_{\mu} \rightarrow \nu_{\tau}\right)=0$. (Assume that CPT is conserved, and that there are only three neutrino flavours.)
7. Graduate students only: Griffiths 4.19

