
Table 1a: The complete MSP430 instruction set of 27 core instructions
core instruction mnemonics core instruction binary

Single-operand arithmetic 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 opcode B/
W

As source

 RRC Rotate right through carry 0 0 0 1 0 0 0 0 0 B/
W

As source

 SWPB Swap bytes 0 0 0 1 0 0 0 0 1 0 As source

 RRA Rotate right arithmetic 0 0 0 1 0 0 0 1 0 B/
W

As source

 SXT Sign extend byte to word 0 0 0 1 0 0 0 1 1 0 As source

 PUSH Push value onto stack 0 0 0 1 0 0 1 0 0 B/
W

As source

 CALL Subroutine call; push PC and move source to
PC

0 0 0 1 0 0 1 0 1 0 As source

 RETI Return from interrupt; pop SR then pop PC 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

Conditional jump; PC = PC + 2×offset 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 0 1 condition 10-bit signed offset

 JNE/JNZ Jump if not equal/zero 0 0 1 0 0 0 10-bit signed offset

 JEQ/JZ Jump if equal/zero 0 0 1 0 0 1 10-bit signed offset

 JNC/JLO Jump if no carry/lower 0 0 1 0 1 0 10-bit signed offset

 JC/JHS Jump if carry/higher or same 0 0 1 0 1 1 10-bit signed offset

 JN Jump if negative 0 0 1 1 0 0 10-bit signed offset

 JGE Jump if greater or equal (N == V) 0 0 1 1 0 1 10-bit signed offset

 JL Jump if less (N != V) 0 0 1 1 1 0 10-bit signed offset

 JMP Jump (unconditionally) 0 0 1 1 1 1 10-bit signed offset

Two-operand arithmetic 1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

opcode source A
d

B/
W

As destination

MOV Move source to destination 0 1 0 0 source A
d

B/
W

As destination

 ADD Add source to destination 0 1 0 1 source A
d

B/
W

As destination

 ADDC Add w/carry: dst += (src+C) 0 1 1 0 source A
d

B/
W

As destination

 SUBC Subtract w/ carry: dst -= (src+C) 0 1 1 1 source A
d

B/
W

As destination

 SUB Subtract; dst -= src 1 0 0 0 source A
d

B/
W

As destination

 CMP Compare; (dst-src); discard result 1 0 0 1 source A
d

B/
W

As destination

 DADD Decimal (BCD) addition: dst += src 1 0 1 0 source A
d

B/
W

As destination

 BIT Test bits; (dst & src); discard result 1 0 1 1 source A
d

B/
W

As destination

 BIC Bit clear; dest &= ~src 1 1 0 0 source A
d

B/
W

As destination

 BIS "Bit set" - logical OR; dst |= src 1 1 0 1 source A
d

B/
W

As destination

 XOR Bitwise XOR; dst ^= src 1 1 1 0 source A
d

B/
W

As destination

 AND Bitwise AND; dst &= src
1 1 1 1 source A

d
B/
W

As destination

The source and destination of an instruction are defined by the following fields:
src The source operand defined by As and S-reg
dst The destination operand defined by Ad and D-reg
As The addressing bits responsible for the addressing mode used for the source (src)
S-reg The working register used for the source (src)
Ad The addressing bits responsible for the addressing mode used for the destination (dst)
D-reg The working register used for the destination (dst)
B/W Byte or word operation:

0: word operation
1: byte operation

Table 1b: The emulated instructions

emulated core instructions instructions

ADC.x dst ADDC.x #0,dst add carry to destination

CLRC BIC #1,SR clear carry bit 0xc312

CLRN BIC #4,SR clear negative bit 0xc222

CLRZ BIC #2,SR clear zero bit 0xc322

DADC.x dst DADD.x #0,dst decimal add carry to destination

DEC.x dst SUB.x #1,dst decrement

DECD.x dst SUB.x #2,dst double decrement

DINT BIC #8,SR disable interrupts 0xc232

EINT BIS #8,SR enable interrupts 0xd232

INC.x dst ADD.x #1,dst increment

INCD.x dst ADD.x #2,dst double increment

INV.x dst XOR.x #−1,dst invert

NOP MOV #0,R3 no operation 0x4303

POP dst MOV @SP+,dst pop from stack

RET MOV @SP+,PC return from subroutine 0x4130

RLA.x dst ADD.x dst,dst rotate left arithmetic (shift left 1 bit)

RLC.x dst ADDC.x dst,dst rotate left through carry

SBC.x dst SUBC.x #0,dst subtract borrow (1−carry) from destination

SETC BIS #1,SR set carry bit 0xd312

SETN BIS #4,SR set negative bit 0xd222

SETZ BIS #2,SR set zero bit 0xd322

TST.x dst CMP.x #0,dst test destination

Table 2. Summary of addressing modes
A
s

src Syntax Description

0 n Rn Register direct. The operand is the contents of Rn.

1 n x(Rn) Indexed. The operand is in memory at address Rn+x.

2 n @Rn Register indirect. The operand is in memory at the address held in Rn.

3 n @Rn+ Indirect autoincrement. As above, then the register is incremented by 1 or 2.

Addressing modes using R0 (PC)

1 0(PC) label Symbolic. x(PC) The operand is in memory at address PC+x.

3 0(PC) #x Immediate. @PC+ The operand is the next word in the instruction stream.

Addressing modes using R2 (SP) as CG1 and R3 as CG2, constant generation

0 2(SP) - register mode

1 2 (SP) &LABEL Absolute. The operand is in memory at address x.

2 2 (SP) #4 Constant. The operand is the constant 4.

3 2 (SP) #8 Constant. The operand is the constant 8.

0 3(R3) #0 Constant. The operand is the constant 0.

1 3 (R3) #1 Constant. The operand is the constant 1. There is no index word.

2 3 (R3) #2 Constant. The operand is the constant 2.

3 3 (R3) #-1 Constant. The operand is the constant -1.

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X is stored in the next word.
Indexed mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction contains the absolute address.
 X is stored in the next word. Indexed mode X(SR) is used.

10/− Indirect register mode @Rn Rn is used as a pointer to the operand.

11/− Indirect autoincrement @Rn+ Rn is used as a pointer to the operand. Rn is incremented
afterwards by 1 for .B instructions and by 2 for .W instructions.

11/− Immediate mode #N The word following the instruction contains the immediate
constant N. Indirect autoincrement mode @PC+ is used.

Table 3: Example program layout in memory

memory
location

byte The table to the left shows how the binary executable
is to be stored in the flash memory. Notice that it is
usual to show memory locations with the lowest
addresses at the bottom of the table. The memory
locations available for the program start at f800. The
information is organized in 2 bytes words. The low
byte is stored in a location of the lower address and
high byte of the word goes into the location with the
higher address in the contiguous flash memory. This is
called a little-endian format as shown in the table.
(The big-endian format stores the high bytes in the
lower addresses),. Program code segment grows
upward. The stack pointer is set at top of the ram, the
bytes pushed into the stack go downward. Vectors are
stored in a specially reserved flash memory locations.

-.

F810

00
22
00
F7
40

F80A F2 40F2 00F7 0022

01
20
5A
80
40

F804 B2 40B2 5A80 0120

02
80
40

F800 31 4031 0280 mov
#0x280, sp

Table 4: Memory map of G2231

address in
hex

memory map
functional blocks

used
physical addresses

ffff

.

.

ffe0

interrupt vector table

power-up/main fffe=f800

ffdf

.

.

f800

flash

program org f800

10ff

.

.

1000

information memory (factory)

027f

.

.

0200

ram stack pointer
0280 (push = pre-decrement;
pop=post-increment)

01ff

.

.

0100

16-bit peripherals watchdog timer, 0120=5a80

00ff

.

.

0010

8-bit peripherals port 1 P1OUT 0021=x

P1DIR 0022=1

000f

.

.

0000

Special function registers

Table 5: Decimal/Binary/Hexadecimal Reference Table
decimal binary, b 0x, hexadecimal, h There are 3 popular ways of representing the numbers used in

programming: our familiar decimal system, binary system (digits
0 and1) and hexadecimal system (digits 0-9,a,b,c,d,e,f). Prefix
0x or suffix h is used to indicate hexadecimal numbers, suffix b is
used to indicate binary. To convert a number from binary to
hexadecimal (see the table) you should group the binary digits
them into 4-bit groups and assign a hexadecimal digit to each
group.

When you prepare bit patterns to write into registers the binary
notation, for example 11110111b is much more descriptive than
the hexadecimal one 0xF3.

Executable program is always stored in the computer memory as
binary, to assemble the instruction is to convert them from the
mnemonics format into binary, to disassemble is the reverse
process. You will try both during lab 1..

0 0000 0000 00

1 0000 0001 01

2 0000 0010 02

3 0000 0011 03

4 0000 0100 04

5 0000 0101 05

6 0000 0110 06

7 0000 0111 07

8 0000 1000 08

9 0000 1001 09

10 0000 1010 0A

11 0000 1011 0B

12 0000 1100 0C

13 0000 1101 0D

14 0000 1110 0E

15 0000 1111 0F

16 0001 0000 10

.

Examples of Dissasembling a Command (using first 3 directives of lab1 program):

Instruction 1:

It is standard procedure is to initialize the RAM for stack operation using the instruction :

mov #0x280, sp

Use Table 1. To understand the binary format of this instruction shown below. This instruction
moves the hexadecimal number 280 (0x280) to register sp which is a second register in the cpu
memory map (Fig.2.),

· two-operand move opcode becomes 4 (0100b)
· source register (S-reg): we are using here the immediate addressing which means that

the number is stored directly in the command. It is pointed out by the number in the
program counter (PC) so that field becomes 0, (0000b). For immediate addressing
mode the source register is always PC.

· for word bit B/W becomes 0 (this bit is 1 when the instruction deals with bytes of 8bits
each or is 0 if the instruction deals with words of 16bits each)

· immediate mode As/Ad becomes 11/- (- means either 0 or 1), consult the table 2 of
addressing modes

· so the field Ad B/W As is 0011b or 0x3 (hexadecimal 3)
· destination register (D-Reg) field of sp (stack pointer) is 1
· 0280 will be the operand which follows the instruction

MOV Move source to destination 0 1 0 0 S-reg A
d

B/
W

As D-Reg

Mov.b #0x280, sp which disassemble to
binary

0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1

4031 0280 this hexadecimal number is the instruction in a format ready to send to the flush
memory of the microprocessor.

Instruction 2

The following instruction will stop the watchdog timer:

mov.w # WDTPW|WDTHOLD, & WDTCTL

WDTPW and WDTHOLD are constants defined in the include file, the symbol | indicates that
they are added to become 0x5A80, When send to the register at the address WDTCTL which is
hexadecimal 0120 it stops the watchdog timer.

· two-operand move opcode, green columns, becomes 4`
· Source in immediate addressing is 0x0
· bit B/W becomes 0
· immediate mode As/Ad becomes 11/-
· destination is an absolute address specified in the command, D-Reg field becomes 2.
· 5A80 is the word to send to watchdog timer to stop it and 0120 is the

watchdog timer’s absolute address which is the operands which follows the
instruction –

MOV Move source to destination 0 1 0 0 S-reg A
d

B/
W

As D-Reg

mov.w #WDTPW|WDTHOLD, &WDTCTL 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0

40B2 5A80 0120 is a 6 byte instruction. It will take 5 cycles of CPU clock to execute.

Instruction 3:

To assemble the instruction

mov.b #11110111b, & P1DIR

· two-operand move opcode is 4
· byte B/W becomes 1 (byte operation)
· immediate mode As/Ad becomes 11/-
· source S-reg is implied to PC that field becomes 0
· destination is absolute address , D-Reg becomes 2
· #N 00f7 (binary 11110111) absolute address 0022 of port P1 direction register will be the

operands which follows the instruction –
MOV Move source to destination 0 1 0 0 S-reg A

d
B/
W

As D-Reg

mov.b #11110111b, &P1DIR which disassemble to
binary

0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0

40F2 00F7 0022

To assemble the instruction mov.b #0, & P1OUT
· We can use exactly the same format as the previous one and obtain: 40F2 0000 0021

where 0021 is the address of the P1OUT register
· but instead we can use the fact that certain numbers like 0 can be generated by a

constant generation register As becomes 0, S-reg becomes 3, which results in faster
more efficient code.

MOV Move source to destination 0 1 0 0 S-reg A
d

B/
W

As D-Reg

mov.b #0, &P1OUT which disassemble to
binary

0 1 0 0 0 0 1 1 1 1 0 0 0 0 2 0

43C2 0021 is a 4 byte instruction. It will take 4 cycles of CPU clock to execute.

Similarly we can use constant #1 in assembling the instruction bis #1, &P1OUT will yield D3E2
0021. The list of As values for constant generation using source register 3 is in Table
3 2.Values of Constant Generators CG1, CG2 of the MSP430x2xx Family User’s Guide−

Use the instructions described above with appropriate values of the parameters to create a
program, which when run by the microprocessor will display first 4 digits of your student number
on the seven segment display.

