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Given here are solutions to 6 problems on matter waves.
The solutions were used as a learning-tool for students in the introductory undergraduate course Physics

200 Relativity and Quanta given by Malcolm McMillan at UBC during the 1998 and 1999 Winter Sessions.
The solutions were prepared in collaboration with Charles Asman and Adam Monaham who were graduate
students in the Department of Physics at the time.

The problems are from Chapter 4 Matter Waves of the course text Modern Physics by Raymond A. Serway,
Clement J. Moses and Curt A. Moyer, Saunders College Publishing, 2nd ed., (1997).

Planck’s Constant and the Speed of Light.

When solving numerical problems in Quantum Mechanics is useful to note that the product of Planck’s
constant

h = 6.6261× 10−34 J s (1)

and the speed of light
c = 2.9979× 108 m s−1 (2)

is
hc = 1239.8 eV nm = 1239.8 keV pm = 1239.8 MeV fm (3)

where
eV = 1.6022× 10−19 J (4)

Also,
~c = 197.32 eV nm = 197.32 keV pm = 197.32 MeV fm (5)

where ~ = h/2π.

De Broglie Matter Waves

Problem 4.5, page 181

To observe small objects, one measures the diffraction of particles whose de Broglie wavelength is approxi-
mately equal to the object’s size.
• Determine the kinetic energy (in electron volts) required for electrons to resolve a large organic molecule

of size 10 nm, an atomic features of size 100 pm and a nucleus of size 10 fm.
• Repeat these calculations using alpha particles in place of electrons.

Solution
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A small object can be observed by a wave if the wave can be effectively scattered by the object. This
happens if the object’s size and the wavelength of the wave are about the same. That is, to observe an object
of length d, a wave of wavelength λ ' d is needed. Because of their wavelike properties, electrons can be used
to observe small objects. This is the basis of electron microscopy.

An electron (rest mass me=511 keV/c2) with momentum p has energy

E =
√
p2c2 +m2

ec
4 (6)

and kinetic energy
K =

√
p2c2 +m2

ec
4 −mec

2 (7)

and de Broglie wavelength

λ =
h

p
(8)

so

K =

√(
hc

λ

)2

+m2
ec

4 −mec
2, (9)

the nonrelativistic limit of which is

K =
h2

2meλ2
. (10)

Eq. (10) is a good approximation to Eq. (9) when p� mec or λ� h/mec = 2.43 pm.
Setting d = λ, it follows from Eqs. (9) and (10) that K = 15 meV when d = 10 nm; K = 150 eV when

d = 100 pm; and K = 123 MeV when d = 10 fm.
Eq. (10) is a good approximation to Eq. (9) for an alpha particle (rest mass mα= 7295 me) when λ �

0.332 fm.
Setting d = λ, it follows from Eq. (10) that for an alpha particle K=2.06 µeV when d=10 nm; K=20.6

meV when d=100 pm; and K=2.06 MeV when d=10 fm.

Low-Energy Electron Diffraction

Problem 4.14, page 182

• Show that the formula for low-energy electron diffraction when electrons are incident perpendicular to a
crystal surface is

sinφn =
nh

d(2meK)1/2
(11)

where n is the order of the maximum, d is the atomic spacing, me is the electron mass, K is the electron’s
kinetic energy and φ is the angle between the incident and diffracted beams.
• Calculate the atomic spacing in a crystal that has consecutive diffraction maxima at 24.1◦ and 54.9◦ for

100 eV electrons.

Solution

Eq. (11) follows from text Eq. (4.9):
d sinφn = nλ (12)

and Eq. (10).
It follows from Eq. (11) that

d =
h

(2mK)
1
2 (sinφn+1 − sinφn)

(13)

from which d = 0.299 nm for a crystal which exhibits consecutive diffraction maxima at 24.1◦ and 54.9◦ for
100 eV electrons.
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Phase Speed and Group Speed of a Free Relativistic Electron

Problem 4.17, page 182

The dispersion relation for a free relativistic electron wave is

ω(k) = c
√
k2 + k2

e (14)

where ke = mec/~.
• Obtain expressions for the phase speed vp and group speed vg for this wave and show that their product

is constant, independent of k.
• What can you conclude about vg?

Solution

Eq. (14) follows from Eq. (6) on writing E = ~ω and p = ~k.
The phase speed vp of a wave with frequency f and wavelength λ is defined as

vp = fλ (15)

It follows from Eq. (8) and f = 2πω that the phase speed vp of a free electron wave is

vp =
ω(k)
k

= c

(
1 +

k2
e

k2

)1/2

≥ c (16)

The group speed vg of a wave is defined as

vg =
dω(k)
dk

(17)

It follows that the group speed vg of a free electron wave is

vg = c

(
1 +

k2
e

k2

)−1/2

≤ c (18)

It follows that
vpvg = c2. (19)

The group speed vg of a free electron wave is equal to the electron particle speed v defined by

p = γmev E = γmec
2 (20)

That is,

v =
pc2

E
= c

(
1 +

k2
e

k2

)−1/2

= vg (21)

Heisenberg’s Uncertainty Relation for Position and Momentum: Application to a Photon

Problem 4.24, page 182

We wish to measure simultaneously the wavelength and position of a photon.
Assume the wavelength measurement gives λ = 600 nm to an accuracy to one part in a million, that is,

∆λ/λ = 10−6.
• Determine the minimum uncertainty in the position of the photon.

Solution

3



We use the Heisenberg Uncertainly Relation (text Eq. (4.31))

∆x∆p ≥ ~/2 (22)

to define the minimum uncertainty ∆xmin in the position of a photon with momentum uncertaintly ∆p:

∆xmin =
~

2∆p
(23)

We use the de Broglie relation Eq. (8) to write

∆p '
∣∣∣∣ dpdλ

∣∣∣∣∆λ =
h∆λ
λ2

(24)

so

∆xmin '
λ2

4π∆λ
. (25)

Thus, ∆xmin ' 4.8 cm when λ = 600 nm and ∆λ/λ = 10−6.

Heisenberg’s Uncertainty Relation for Energy and Time: Lifetime of the Delta Particle

Problem 4.30, page 183

Measurements to determine the mass of the subatomic delta particle give a mass peak at 1236MeV/c2 with
110 MeV/c2 full width at half maximum.
• Estimate the lifetime of the delta particle.

Solution

The lifetime τ of the delta particle is too short to be measured directly. It is defined instead using the
Heisenberg Uncertainly Relation (text Eq. (4.34))

∆E∆t ≥ ~/2 (26)

which relates the uncertainty ∆E in the energy of a system with the smallest time interval ∆t required to
measure a change in the system.

τ is defined as
τ =

~
Γ

(27)

where Γ is the full-width at half-maximum of the delta mass distribution. This gives τ = 6.0× 10−24 s.

Principle of Superposition: Two-Slit Diffraction of Electrons

Problem 4.33, page 183

A two-slit electron diffraction experiment is done with slits of unequal widths.
When only slit 1 is open, the number of electrons reaching the screen per second is 25 times the number of

electrons reaching the screen per second when only slit 2 is open.
When both slits are open, an interference pattern results in which the destructive interference is not com-

plete.
• Determine the ratio of the probability of an electron arriving at an interference maximum to the probability

of an electron arriving at an adjacent minimum.

Solution
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We denote the wavefunction describing the electron as Ψ. The probability P of finding the electron at a
given location is proportional to |Ψ|2.

We denote the wavefunction describing the electron when only slit 1 is open as Ψ1 and the probability of
finding the electron in this case as P1.

We denote the wavefunction describing the electron when only slit 2 is open as Ψ2 and the probability of
finding the electron in this case as P2.

Then,
P1

P2
=
|Ψ1|2

|Ψ2|2
= 25 (28)

so
|Ψ1|
|Ψ2|

= 5. (29)

When both slits are open, the wavefunction of the electron is Ψ = Ψ1 + Ψ2. At an interference maximum
Ψ1 and Ψ2 are in phase so

Pmax = (|Ψ1|+ |Ψ2|)2 (30)

At an interference minima Ψ1 and Ψ2 are out of phase so

Pmin = (|Ψ1| − |Ψ2|)2 (31)

It follows that
Pmax
Pmin

=
(|Ψ1| / |Ψ2|+ 1)2

(|Ψ1| / |Ψ2| − 1)2
= 2.25 (32)
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