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Given here are solutions to 7 problems in the Quantum Theory of Light.
The solutions were used as a learning-tool for students in the introductory undergraduate course Physics

200 Relativity and Quanta given by Malcolm McMillan at UBC during the 1998 and 1999 Winter Sessions.
The solutions were prepared in collaboration with Charles Asman and Adam Monaham who were graduate
students in the Department of Physics at the time.

The problems are from Chapter 2 The Quantum Theory of Light of the course text Modern Physics by
Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Saunders College Publishing, 2nd ed., (1997).

Planck’s Constant and the Speed of Light.

When solving numerical problems in the Quantum Theory of Light it is useful to note that the product of
Planck’s constant

h = 6.6261× 10−34 J s (1)

and the speed of light
c = 2.9979× 108 m s−1 (2)

is
hc = 1239.8 eV nm = 1239.8 keV pm = 1239.8 MeV fm (3)

where
eV = 1.6022× 10−19 J (4)

Wien’s Displacement Law

Problem 2.2, page 92

The temperature of your skin is approximately 35oC.
• What is the wavelength at which the peak occurs in the radiation emitted from your skin?

Solution

Wien’s displacement law, given by text Eq. (2.6):

λmaxT = 2898 µm ·K (5)

gives the wavelength λmax of maximum power emission of a black body at temperature T . Thus, λmax =
9.40 µm when T = 35oC.
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Photons from a Radio Transmitter

Problem 2.9, page 93

An FM radio transmitter has a power output of 100 kW and operates at a frequency of 94 MHz.
• How many photons per second does the transmitter emit?

Solution

A photon of frequency 94 MHz has energy

E = hf = 6.23× 10−26 J (6)

The radio transmitter emits energy at a rate of 100 kJ/s so

# photons
unit time

=
energy/unit time
energy/photon

= 1.61× 1030 s−1. (7)

Photoelectric Effect

Problem 2.19, page 93

A light source of wavelength λ illuminates a metal and ejects photoelectrons with a maximum kinetic energy
of 1.00 eV. A second light source with half the wavelength of the first ejects photoelectrons with a maximum
kinetic energy of 4.00 eV.
• Determine the work function of the metal.

Solution

Text Eq. (2.24):

Kmax =
hc

λ
− φ (8)

relates the maximum kinetic energy Kmax of a photoelectron with the wavelength λ of the light producing the
photoelectron and the work function φ of the metal.

It was with this equation that Einstein introduced the notion of light quanta in 1905 and for which he
received the Nobel Prize for Physics in 1922.

Let λ1 and λ2 be the wavelengths of the light emitted by the first and second sources, respectively, and let
K1 and K2 be the maximum kinetic energies of the corresponding photoelectrons.

It follows from Eq. (8) that

K1 =
hc

λ1
− φ (9)

K2 =
hc

λ2
− φ (10)

where λ2 = 0.5 λ1, so
K2 − 2K1 = φ (11)

and therefore φ = 2 eV when K1 = 1 eV and K2 = 4 eV.

Compton Effect

Problem 2.24, page 94
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X-rays with an energy of 300 keV undergo Compton scattering with a target.
• If the scattered X-rays are detected at 30◦ relative to the incident X-rays, determine the Compton shift

at this angle, the energy of the scattered X-ray, and the energy of the recoiling electron.

Solution

Text Eq. (2.28) gives the increase in a photon’s wavelength (the Compton shift) when it is scattered through
an angle θ by an electron:

λ′ − λ = λe(1− cos θ) (12)

where
λe =

h

mec
= 2.43 pm (13)

is the Compton wavelength of the electron and me = 511 keV/c2 is the mass of the electron. It follows that
the Compton shift is 0.325 pm when θ = 30◦.

The energy E′ of the scattered photon is

E′ =
hc

λ′
(14)

and
λ =

hc

E
(15)

with E=300 keV is the wavelength of the incoming photon. It follows that E′ = 278 keV. By conservation of
energy, the energy lost by the photon in the collision is converted into kinetic energy K of the recoiling electron
so K = 22 keV.

Derivation of the Compton Formula

Problem 2.32, page 95

• Derive the Compton formula Eq. (12).

Solution

A photon with momentum p = h/λ collides with a stationary electron. The photon scatters at an angle
θ from the incident direction of the photon with momentum p′ = hc/λ′. The electron scatters at an angle φ
from the incident direction of the photon with momentum pe and energy Ee =

√
p2

ec
2 +m2c4.

In the collision, energy is conserved:

pc+mec
2 = p′c+ Ee (16)

and so is momentum in the direction of the incident photon:

p = p′ cos θ + pe cosφ (17)

and perpendicular to the direction of the incident photon:

p′ sin θ = pe sinφ (18)

The above equations may be simplified to

1
λ

+
1
λc

=
1
λ′

+

√
1
λe

2
+

1
λ2

c

(19)

1
λ

=
cos θ
λ′

+
cosφ
λe

(20)
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sin θ
λ′

=
sinφ
λe

(21)

where we have written pe = h/λe.
We eliminate φ and λe from these equations. Eliminating φ from last two equations yields

1
λ2

e

=
1
λ2

+
1
λ′2
− 2 cos θ

λλ′
(22)

which, with Eq. (19), yields Eq. (12).

Comments on the Compton Formula.

The derivation of the Compton formula in 1922 was the first application of the idea that the momentum p
of a photon is related to its wavelength λ by p = h/λ.

The reconciliation of this “wave-particle duality” was resolved with the subsequent invention of Quantum
Mechanics and the development Quantum Electrodynamics.

Quantum Electrodynamics (QED) is the relativistic quantum theory of Maxwell’s Equations of Electro-
dynamics and systems of electrons, positrons and photons. QED is the most successful relativistic quantum
theory ever developed. There are no known discrepancies between QED and experiment.

Comparing the Compton Effect and the Photoelectric Effect

Problem 2.37, page 95

In a Compton collision with an electron, a photon of violet light (λ = 400 nm) is backward scattered through
an angle 180◦.
• How much energy is transferred to the electron in this collision?
• Compare the result with the energy the electron would acquire in a photoelectric process with the same

photon.
• Could violet light eject electrons from a metal by Compton collision? Explain.

Solution

Eq. (12) with Eq. (13) gives the shift in the wavelength of a photon when it is scattered through an angle
θ by an electron. The wavelength shift (the Compton shift) is 4.86 pm when θ = 180◦.

The energy lost by the photon during the collision is

hc

λ
− hc

λ′
= hc

λ′ − λ
λλ′

' hcλ
′ − λ
λ2

= 37.7 µeV. (23)

By conservation of energy, this energy is converted into kinetic energy Kc of the recoiling electron so Kc =
37.7 µeV.

In a photoelectric process, the entire energy of the incident photon is converted into kinetic energy Kp of
the electron:

Kp =
hc

λ
= 3.10 eV. (24)

The work function for a metal is typically on the order of a few eV. A Compton collision involving violet
light could not eject an electron from a metal surface since the kinetic energy Kc transferred to the electron is
much too small.

Bragg Equation

Problem 2.38, page 95
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X-rays of wavelength λ = 62.6 pm from a molybdenum target are incident on a crystal with atomic plane
spacing d = 400 pm.
• Determine the three smallest angles at which intensity maxima occur in the diffracted beam.

Solution

Constructive interference occurs as given by text Eq. (2.26) (the Bragg Equation):

nλ = 2d sin θ (n = 1, 2, 3, . . .) (25)

where n is the order of the intensity maximum and θ is the angle for an intensity maximum in the diffracted
beam as measured from the top atomic plane.

The three smallest angles at which intensity maxima occur are

θ1 = sin−1

(
λ

2d

)
= 4.49◦ (26)

θ2 = sin−1

(
λ

d

)
= 9.00◦ (27)

θ3 = sin−1

(
3λ
2d

)
= 13.60◦ (28)
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