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Preface

The six volumes of notes Quantum Leaps and Bounds (QLB) form the basis
of the introductory graduate quantum mechanics course 1 have given in the
Department of Physics at the University of British Columbia at various times
since 1973,

The six volumes of QLB are

* Introductory Topics: a collection of miscellaneous topics in introductory
quantum mechanics

*  Scattering Theory: an introduction to the basic ideas of quantum scattering
theory by considering the scattering of a relativistic spinless particle from a
fixed target

*  Quantum Mechanics in Fock Space: an introduction to the second-quantization
description of nonrelativistic many-body systems

*  Relativistic Quantum Mechanics: an introduction to mcorporating special
relativity in quantum mechanics

* Some Lorentz Invariant Systems: some examples of systems incorporating
special relativity in quantum mechanics

*  Relativistic Quantum Field Theory: an elementary introduction to the relativis-
tic quantum field theory of spinless bosons, spin % fermions and antifermions
and to quantum electrodynamics, the relativistic quantum field theory of elec-
trons, positrons and photons

QLB assumes no familiarity with relativistic quantum mechanics. It does
assume that students have taken undergraduate courses in nonrelativistic quantum
mechanics which include discussion of the nonrelativistic Schrodinger equation
and the solutions of some standard problems (e.g., the one-dimensional harmonic
oscillator and the hydrogen atom) and perturbation theory and other approximation
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methods,

QLB assumes also that students will take other graduate courses in condensed
matter physics, nuclear and particle physics and relativistic quantum field theory.
Accordingly, our purpose in QLB is to introduce some basic ideas and formalism
and thereby give students sufficient background to read the many excellent texts
on these subjects.

I am happy to have this opportunity to thank my friends and colleagues I1.K.
Affleck, R. Barrie, B. Bergersen, M. Bloom, J. Feldman, D.H. Hearn, W.W. Hsich,
R.LG. Hughes, F.A. Kaempffer, A H. Monahan, P.A. Kalyniak, R.H. Landau, E.L.
Lomon, W. Opechowski, M.H.L. Pryce, A. Raskin, P. Rastall, L. Rosen, G.W.
Semenoff, L. Sobrino, F. Tabakin, A.W. Thomas, W.G. Unruh, E.W. Vogt, G. M,
Volkoff and N. Weiss for sharing their knowledge of quantum mechanics with me.

I also thank my wife, Henrietta, for suggesting the title for these volumes
of notes. Quite correctly, she found my working title Elements of Intermediate
Quantum Mechanics a bore.

viii




SCATTERING THEORY







Chapter 1 INTRODUCTORY REMARKS

Much of our understanding of the structure of matter including the existence of
the atomic nucleus and the existence of quarks comes from analyses of Scaftering
experiments.

Our purpose in this part of QLB is to introduce the basic ideas of quantum
scattering theory for the simplest case, the scattering of a spinless particle by a
fixed target, and thereby give the reader sufficient background to read research
papers and the many excellent texts on the subject.

Goldberger and Watson (1964), Landau (1996), Morse and Feshbach (1953),
Newton (1966), Taylor (1972) and Weinberg (1995) are recommended for further
reading.

Monahan (1995) is recommended for the theory of scattering of two relativistic
particles with spin, scaltering in relativistic three-particle systems and Scattering
in a relaiivistic two-body system where a third particle can be created.

In the six chapters which follow, the quantum mechanics of a single spinless
particle is reviewed in Chapter 2, scattering states and Mgller operators are defined
and discussed in Chapter 3, the scattering operator is defined and discussed in
Chapter 4, the T' operator is defined and discussed in Chapter 9, standard methods
for solving the scattering problem are given in Chapters 5 and 6 and extensions
to complex momentum and energy and complex angular momentum are given
in Chapter 7. A construction of a familty of interaction potentials which are
equivalent for scattering is given in Appendix A and some properties of Riccati
functions which are important for solving the scattering problem are given in
Appendix B.







Chapter 2 PRELIMINARIES

2.1 Introductory remarks

In this chapter we consider a relativistic spinless particle of rest mass m
interacting with a fixed target. The material presented in this chapter is a review
and extension of QLB: Some Lorentz Invariant Systems Chapter 2 where the
quantum mechanics of a free relativistic spinless particle is discussed in detail.

The machinery of quantum mechanics is set up and properties of the in-
teraction potential between the particle and target are discussed in Section 2.2;
coordinate/momentum and angular momentum bases for the Hilbert space are dis-
cussed in Sections 2.3 and 2.4 and Green’s operators are defined and discussed
in Section 2.5.

2.2 Fundamentals

The physical system is a spinless particle of rest mass m interacting with a
target fixed at the origin of the coordinate system. The fundamental dynamical
variables of the system are the Cartesian coordinates and momenta

Xt x2 x3 pt op? p? @.n

which satisfy the fundamental quantum conditions




[Xj,Xk] =0 | 2.2)
[PJ’,Pﬂ —0 (2.3)

X7, PF| = ifisyy (2.4)

where 7,k = 1,2,3.

The state of the particle | ¢(¢) > at time ¢ is

[ 9(8) >=U(t) [ ¢ > (2.5)

where | ¢ > is the state at time zero and U(#) is the evolution operator, that
18,

Ut) = e /R (2.6)

where

H=Hy+V 2.7

where




Hy =/ P2c2 4+ m?2ct (2.8)

where P? = P . P and

V=V(x, X% X%, PP PY) = V(}?,ﬁ) 2.9)

The potential V' given by (2.9) specifies the interaction of the particle with
the fixed target. V' is a local potential if

v=v(X) (2.10)
V' is a central potendal if

V =V(R) (2.11)
where R = m .

Comments

1. Relativistic kinematics

(2.8) indicates that the speed of the particle is restricted only the the principle
of special relativity.




Relativistic kinematics will be used throughout this material unless stated
otherwise.

Nonrelativistic kinematics

When nonrelativistic kinematics are used (2.8) is replaced by

P2

" 2m

Hy (2.12)

Restrictions on the interaction potential

We assume that the physical system is invariant under rotations, space inver-
sion and time reversal. As discussed in QLB: Relativistic Quantum Mechan-
ics, it follows that V must satisfy

RI(OVRY(8) =V (2.13)
PVPI =V (2.14)
TVvTt=Vv (2.15)

where P is the space-inversion operator, T is the time-reversal operator and
f7(0) is the rotation operator for a rotation by é about the j—axis. That is,

RI(§) = il 0/R (2.16)




where

L=XxP (2.17)

is the angular momentum operator. it follows from (2.13) that

V,L7] =0 (2.18)

that is, angular momentum is conserved and it follows from (2.14) that parity
is conserved.

It follows from (2.13) to (2.15) that

V(X’, ﬁ) _ V()Z'Rj, ﬁRj) ~ V(—JZ, —15’) - V(}Z’, —13) (2.19)
where

Xpi = RI(O)XR1(0) (2.20)

Pri = RI(0) PR (9) (2.21)

(2.19) holds if V is a central potential (2.11).



2.3 Coordinate/momentum bases

The operators X', X2, X% and P!, P?  P® each form a complete set of
compatible observables. We denote their simultaneous eigenkets by

2> (2.22)

[ >=|al,z

o= p', % > (2.23)

respectively. These eigenkets may be used as bases for the Hilbert space. That
1s,

Xj—/d3$|5:’>mj<a'c'| (2.24)
.W:ffMﬁ>ﬁ<ﬁi (2.25)
1=/d3m]5><54:/d3p15><ﬁ| (2.26)
<F|§>=8(F—7) (2.27)
<pI§>=686F—1q) (2.28)

where §(Z — i) and 6(F — §) are 3-dimensional Dirac delta functions.!

L(F— i) = 8(x" — ¢ ) (2 — )5 (x° — %)

10



[ v(2,1) | 2detdz’dz® (2.32)

is the probability that the particle is in the volume dz'dz2dz® about the point

(m1,$2,$3) at time .

4. Momentum-space wave function

The momentum-space wave function for the particle is

PP, 1) =< §| (1) > (2.33)

and

| b (P, 2} | *dp' dp?dp® (2.34)

is the probability that the particle has momentum in the volume dp' dp? dp®
about the point (p',p?,p*) at time ¢.

5. Relationship between wave functions

12



Comments

Transformation function

It follows from (2.2) to (2.4) that

(2.29)

where

=7
i
%
E)

(2.30)

Notation

# will usually be replaced by £k as per (2.30).

—
[

And we write f (k) in place of f(p) if it is convenient.

We choose not to wse units where £ = ¢ = 1 for pedagogic reasons.

Coordinate-space wave function

The coordinate-space wave function for the particle is

(2.31)

and

11




It follows from (2.29) that

$(3,1) = (%)2 / Bk F (75 t) (2.35)

. NG L

Spectral decomposition of the free-particle Hamiltonian

The free-particle Hamiltonian (2.8) is a function of momentum so

Ho= [#p15> ¢ <p) 237)

where

ep = \/p?e + mict (2.38)

—

where p? = 7. 7.

Lorentz factor

The Lorentz factor « is

13




me " oo AN
where
€y = Aw (2.40)
po == (2.41)
and v? = ¥ ¥ where
§= &p (2.42)
tp

pc 1s the inverse of the Compton wavelength of the particle and ¥ is the
velocity of the particle when its momentum is p.

Spectral decomposition of the free-particle evolution operator

The free-particle evolution operator Uy(t) is defined as

Uy(t) = ¢ iHot/h (2.43)

14



It follows from (2.37) that

Us(t) = fd3p | g > e~ iernt/h 7 (2.44)

9. Form of the Hamiltonian

It follows using (2.37) that the Hamiltonian (2.7) may be expressed as

H:/dsp]ﬁ’>ep<ﬁ‘|+/d3:zd3y|:7:’><:E’|V|g,7><37|
(2.45)

:/d3piﬁ>ep<ﬁl+fd3pd3qlﬁ><ﬁlV|§‘><q"l

<Z[V|y>and < gV |F> are, respectively, the coordinate-space and
momentum-space representatives of the interaction potential.

If the potential is local, that is, if (2.10) holds, then

<E|VI§>= V(@)@ ) (2.46)

10. Nonrelativistic free-particle Hamiltonian

When nonrelativistic kinematics are used (2.37) is replaced by

15




2
I{g:fd3p|ﬁ>p—<ﬁ| (2.47)
2m
It follows from (2.29), (2.35) and (2.47) that
pZ
<@ | Ho |60) >= [@p<2ii> L <5luw >
(2.48)

= _ﬁvqu(Ea t)

2m

11. Nonrelativistic Schrodinger equation

When nonrelativistic kinematics are used in the coordinate-space Schrodinger

equation

<fJH|¢(t)>:iﬁ%<:E’|¢(t)>

(2.49)

it follows from (2.48) that, with a local potential (2.10), ¥(,¢) satisfies the

nonrelativistic Schrodinger equation

ﬁgvz 7,t) + V(E)w(Z, 1) = ik
VIR )+ VE(E) =

(2.50)

16




2.4 Angular momentum bases

The operators B, L2 L, and P, L2, L, where

R=vVX. X .51
P=VP.P (2.52)
=L T (2.53)

L,=13 (2.54)

each form a complete set of compatible observables. We denote their simultaneous
eigenkets by

| iy > (2.55)

| plmyg > (2.56)

respectively. These eigenkets may be used as bases for the Hilbert space. That

17



18,

/d | rimy > r <rlmy | 2.57)

O

P=>" > /dp[plmg>p<plm;| (2.58)
=0 m;=-1 0
Z Z fdr rimy > 1(1+ DA? < rlmg |
=0 m=-1}
(2.59)
00 +1 oo
z Z ]dp|plm;>l(l—i—1)ﬁ, < plmy |
=0 m=—17
o0 +i oo
L:=>_ f | rlmg > myh < rimy |
=0 my=~17
(2.60)

18



oo Al 0K
:Z Z /dr|?‘lm1><rlm1f
l=0 m1=—l 0
(2.61)
oo +1 eo
=3 >0 [ dplpim>< plomy
=0 my==1 0
< rimy | T’Z’m; >= 5(7’ — ’!"’)6[[:5msz (2.62)
< plmy | plmy >=8(p — p') 6By (2.63)

Comments

Transformation functions

The transformation functions connecting the | # >, | 7 >, | rlmy > and
| plm; > eigenkets are

6 oot

< Z |9 lmy >= —(-TT_-—T) Yirm, (92, 02) (2.64)
ik

< & | plmy >= 4!y /% J"(T—’") Yirm, (02, 02) (2.65)
- )

19




8(p—7p')

<Pl pllmy >= Yirn, (0, 0p) (2.66)
. a [ 2 k)
< Pl rimp >= (—1) g Yim, (05, ¢p) (2.67)
to 1 -] 2 -
< rimy !pl my >= 14/ }E Jl(kr)6ll’6mgm: (2.68)

where r = VZ-Z in (2.64) and (2.65), p = /7§ in (2.66), ;i(z) is a

Riccati-Bessel function! and V., (#, ) is a spherical harmonic.

Partial-wave expansion of a plane wave

It follows using (2.29), (2.61), (2.64) and (2.67) that?

]”5-—471'2 Z ljl Ylml(ak,‘?k)hmz(amcpm)
(2.69)

Jilr )Pg(cos Or—2)

where 6., is the angle between & and 7 and Py(z) is a Legendre polynomial.

(2.69) is the standard partial-wave expansion of a plane wave.

Some properties of Riceali functions are given in Appendix B.
The second equality in (2.69) follows using the addition theorem for spherical harmonics.

20




3. Coordinate-space/angular momentum wave function

The coordinate-space/angular momentum wave function for the particle is

Dim, (1,1} =< rlmyg | (L) > (2.70)

and

[ Vi, (1, 1) | 2dr @.71)

is the probability that the particle is a distance from the origin between r and
7+ dr with angular momentum /% and z-component of angular momentum
mph at tme £,

It follows from (2.64) that the coordinate-space wave function (2.31) may be
written as

o0 +1

Tb(f,t) = Z Z ?Jbl_m;(r’_t)yvlm;(ezq@x) (2.72)

=0 my=—1

4. Momentum-space/angular momentum wave function

The momentum-space/angular momentum wave function for the particle is

Pl (P, 1) =< plmy | 9(t) > (2.73)

21



and

[ 1, (p,2) | 2dp (2.74)

is the probability that the particle has magnitude of linear momentum be-
tween p and p + dp with angular momentum (% and z-component of angular
momentum mih at time #.

It follows from (2.66) that the momentum space wave function (2.33) may
be written as

N Y, t)
UEDOEDYY ﬂf’—mm,(ﬂp,%) 2.75)
=0 m;=—I

Relationship of wave functions

It follows from (2.68) that the coordinate-space/angular momentum and
momentum-space/angular momentum wave functions are related according to

¢th(rv t) = il\/?/dkﬁ(kr)wlml(kat) (276)
(

Pim, (k,1) = (—i)l\/%/drﬁ(kr)gb;m!(n t) (2.77)
0

which equations are consistent with (B.27).

22



6. Spectral decomposition of the free-particle Hamiltonian

The free-particle Hamiltonian (2.8) is a function of P defined by (2.52). It
follows that

co  + 2
Hy = Z /dp | plrng > ¢ < plmy | (2.78)
=0 m;=~l 0

7. Spectral decomposition of the free-particle evolution operator

It follows from (2.78) that the free-particle evolution operator (2.43) may be
expressed as

o0 +i oo
Up(t) = Z fdp | plmy > ¢~iert/h plmy | (2.79)
{=0 mzz—l 0

8. Form of the interaction potential

It follows using (2.18) that

<rlmg | V| r''my >= v (r, r')&_qpémzm; (2.80)

< plmy | V | p'l'm) >= v (k, k’)a‘n,amzm; (2.81)

23




vi(r,r") and vi(k, k') are, respectively, the coordinate-space/angular momen-
tum and momentum-space/angular momentum representatives of the interac-
tion potential.

It follows from (2.68) that

vl(k, k') = %/drdr' ?[(k?‘)vl(if‘, r’)j;(k’r’) (2.82)
0

v(r,r') = & f dkdk' G (kryo(k, )71 (K'r) (2.83)
0

9. Central potential

For the central potential (2.11)

vi(r,r) =V (r)s(r — ') (2.84)

SO

v(k, k) = < | dr j(kr)V ()75 (K'r) (2.85)

o=

24




10. Yukawa potential

V(r) is a Yukawa potential if

V{r) = —ge " [r (2.86)

The constants ¢ and 1/u are the strength and range of the potential.

It follows from (2.85) and (B.28) that

11.

where @;(z) is a Legendre function of the second kind.

Coulomb potential

The Coulomb potential

V(r) =73 dez/r (2.88)

where ¢'is the charge of a proton is the special case of (2.86) when

p=0 (2.89)

g=—Z1 26" (2.90)

25




While the Coulomb potential decreases too slowly at large distances to satisfy
the requirements of the scattering theory developed in Chapter 3, we will
nevertheless recover the Rutherford cross-section formula in Chapter 6 via
the special cases (2.89) and (2.90) of the Yukawa potential.

12. Superposition of Yukawa potentials

V(r) is a superposition of Yukawa potentials if

Vir) = / plo)e™ do 2.91)
it

P

where p() is any arbitrary real function for which the integral converges.

13. Square-well potential

V(r) is a square-well potential if

Viry=-W when r<aq

(2.92)
=10 when >

The constants Vg and « are the strength and range of the potential.

14. Hard-sphere potential

V(r) is a hard-sphere potential if

26




(2.93)
={ when r>a
The constant a is the range of the potential.
15. Separable potential
The potential is a rank-1 separable attractive potential if
vg(k, k,) = —'Ug(k)vf(k’) (2.94)
vi(r,7") = —ui(r)of (') (2.95)

It follows from (2.82) and (2.83) that

I T -
= \/%/drj!(kr)w(r) (2.96)
0

=k / dk J3(kr ) (k (2.97)
0

27



16. Boundary Condition Model

In The Boundary Condition Model the potential is assumed to vanish for
distances greater than a boundary radius (which may be depend on the an-
gular momentum) while at the boundary radius the logarithmic derivative of
the coordinate-space/angular momentum wave function satisfies a boundary
condition.

The Boundary Condition Model for nonrelativistic kinematics is equivalent
to the rank-2 separable potential

2
v (r,r') = L ﬂ-&(r — 7"6*;)6(?"’ — ra:) +8(r — 7"0:)51(7”' —r5 )| (2.98)

where fi/ro, is the logarithmic derivative, 7o, is the boundary radius and

7"3“; = rg, = 0.1
It follows from (2.82) that the momentum-space/angular momentum repre-

sentative of (2.98) is

vi(k, k) = % Fi(@)7u(8) = A3(5H(3)] (2.99)

where prime on the right side means differentiation with respect to the argu-
ment and & = kry, and § = k'ry,

For further discussion of the Boundary Condition Model see Breit and Bouri-
cius (1949) and Feshbach and Lomon (1956).

ro, == 0 means that v;(r,7") is evaluated at ro, & 7 where 7 > 0 and the limit n — 0 then taken.

28




For further discussion of the separable potential (2.98) see McMillan (1961)
and Lomon and McMillan (1963).

17. Expressions for the Hamiltonian

It follows from (2.78), (2.80) and (2.81) that the Hamiltonian (2.7) may be
expressed as

=
8

e8]
H:Z dp | plmy > €, < plmy |
=0 mi=-1 0
(2.100)
o] 4+
-I-Z Z /der' | rimg > vy (r,r") < r'lmy |
=0 mi=-I 0
oa +i o0
H:Z /dp|plm;>ep<plm1|
(=0 m=-173
(2.101)
0o +1 oo
+ Z Z /dpdp' [ plmg > v (k') < pllmy |
I=0 my=—17%

which forms show explicitly that angular momentum is conserved.

18. Nonrelativistic free-particle Hamiltonian

For nonrelativistic kinematics (2.78) is replaced by

29



2

dp | plmy > £— < pimy | (2.102)
2m

=
I
NE
+

It follows using (2.68), (2.76) and (2.102) that

7 2
<rlmg | Hy | $(t) >= /dp < rimy | plm; > 2p_m < plmy | ¥(t) >
0

(2.103)

RET 8% 1I+1)
= om [_ﬁ * —] Vi (1)

19. Nonrelativistic Schrodinger equation

When nonrelativistic kinematics are used in the coordinate-space Schrodinger
equation

<rlmy | H {1 9(t) >= iﬁ% < rlmy [ 9(t) > (2.104)

it follows from (2.103) that, with a central potential (2.11), 1y, (r, ) satisfies

30



the nonrelativistic Schrodinger equation

B & 141 - O, (7, 1)
{% <* 57+ 3 ) + V(r)} Vi, (1, 1) = zﬁ——T (2.105)
2.5 Green’s operators
We define Green’s operators

Go(2) = ! 2.106)

o(2) = 7, @
G(z) = — (2.107)

Z) = - — H .

where Hp is the free-particle Hamiltonian (2.8), H is the Hamiltonian (2.7)
including interaction, V' is the interaction potential (2.9) and » is any complex
number (which has the dimensions of energy) for which the inverses exist.

Properties

1. Spectral decomposition

31




Go(z) is a known operator. It follows from (2.37) and (2.78) that

— l —
Go(2)=/d3p1p> — <7

2%
o 4 o (2.108)
=> % fdPJlez>z_ < plmy |
I=0 m;=~l 0 Ep
Lippmann-Schwinger equations
It follows from (2.106) and (2.107) that
G Ho) =Gyl (z) =V (2.109)
and therefore
Glz) = Go(2) + Go(2)VG(2) (2.110)
G(z) = Golz) + G(2)VGo(2) (2.111)
(2.110) and (2.111) are Lippmann-Schwinger equations for G(z).
Neumann series
Tt follows from (2.110) and (2.111) that
G(z) =1 — Go(2)V] " Go(z) = Ga(2)[1 — VGo(2)] (2.112)

32




Expanding either inverse in (2.112) yields

G(Z) = Go(Z) + Go(z)vag(z) + Go(Z)VGQ(Z)VGU (Z) +---

(2.113)

(2.113) 1s the Neumann series for G(z); it yields an approximation for G(z)

when truncated at a finite number of terms.

Analytic properties

It follows from (2.108) that the function < ¢ | Gy(2) | x > of the complex

variable z has branch points at me? and oo.

Principal-value Green’s operator

In view of the identity

1 P

= — ; 2.
pearer R T iwd(z) (2.114)
where P denotes principal value, it follows that for real e
Go(e £40) = Go(e) = imb(e — Hy) (2.115)

where the principal-value Green’s operator _G?(](ﬁ) is defined as
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(2.116)

whete

7[ (2.117)

denotes that the principal value of the integral is taken.
Go(e) is often called the standing-wave Green’s operator.

Matrix elements

It follows from (2.29), (2.68) and (2.108) that

3 37, ik-(F—7)
<716 |7>= (1) [T 2118)

27 z— &

o0

2
< rlmy | Go(2) | r'lmy >= ;/
0

dk gy(kr) 7 (k')
zZ — Ep

(2.119)
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7. Nonrelativistic expressions

When ¢, is replaced by me? + p? /2m in (2.118) and (2.119) it follows using
(B.29) that

m einm(Z%mc?NE—ﬂ/ﬁ.

m ekl
<Z | Golep £10) | 7 >= —
7| Golep £10) | § > o (57| (2.121)
—— . k|Z—7]|
e ___m cos
. I 2m - ’\:l:
< rlmy | Go(ep 40 | r'lmy >= —ﬁ—2i€—jg(kr<)hl (krs) (2.123)
—_ ! 2m -~ —~
< rlmy | Gole) | r'imy >= —%];(krdng(i’m@) (2.124)
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Chapter 3 SCATTERING STATES

3.1 Introductory remarks

We begin the description of scattering of the particle by the target in this
chapter. Our main purpose here is to define and describe scattering states; further
development of the theory and techniques for solving the scattering problem are
given in Chapters 4, 5 and 6.

We define scattering states in Section 3.2, Mgller operators in Section 3.3
and scattering eigenkets in Section 3.4. Coordinate-space wave functions are
considered in Section 3.5 in order to give further insight into the scatltering process.
Preparation in a mixed state is considered in Section 3.6 and derivations of some
results are given in Section 3.7.

3.2 In- and out-asymptotes

The essential feature of scattering is that the particle behaves as a free particle
well before and well after collision with the target.

The average position #(t) =< (t) | X | () > of the particle in a scattering
state 1s a straight line well before and well after the collision; Z(t) can be as
shown in Figure 3.1.
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Figure 3.1 A scattering state
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In mathematical terms, a scattering state (2.5) satisfies
UR) v >—= Ue(t) |3, > a8 ¢t — —o0 (3.1)
Ut) | >— Up(t) | Yout > as t— +oo (3.2)
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for some | i > and | ¥gy > where Up(t) is the free-particle evolution operator
(2.43).

Comments

1. Restrictions on the potential

The existence of the limits (3.1) and (3.2) restricts the form of the interaction
potential. Clearly, < & | V' | § > must be sufficiently short-ranged, not too
singular at the origin and reasonably smooth.

A central potential V(r) must fall off faster that »~* at infinity and be less

singular than r~2z at the origin.

2. In- and out-asymptotes

Uo(t) | iy > is the in-asymptote of the scattering state U(f) | v >.
Uo(t) | our > is the out-asymptote of the scattering state U {t) | o >.
3. Bound states

Not all states of the system are scattering states. If the potential is attractive
and sufficiently strong, there may also be bound states

|1>7|2>:"'7|nb> (33)

which satisfy
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H}b>:Eblb> 62172,---,nb (3.4)

< b I Y >= Sy (3.5)

No in- or out-asymptotes exist for the states

| B() >= V() [b>=e P | b>  b=1,2,n  (3.6)

3.3 Moller operators

Mgller operators 04 are defined by

Qu = lim_ UtHUs(8) (3.7)

Properties

1. Relationship between states

It follows from (3.1), (3.2) and the unitarity of the evolution operator (2.6)
that
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|9 >= lim UML) | dip >= Qs | thip > (3.8)

¥ >= iié-{[}]oo UT(t)UU(t) | Yout >= Q- | oyt > (3.9)

That is, the Mgller operators relate the actual state of the system with the
free-particle in- and out-states.

Isometric operators

00y =1 (3.10)
0.0l =1-B (3.11)
B =0LB=0 (3.12)

where B is the projection operator onto the bound states (3.3), that is,

Yy
B:Z|b><bJ (3.13)
b=1

{1+ are one-sided unitary or isometric operators.
In view the fact that | ¢ >, | #;, > and | ¥y > all have unit norm, one
might think that 34 must be unitary. The one-sidedness of (3.10) and (3.11),

that is, the presence of B in (3.11), results from the fact that not all states
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of the system are scattering states.
(3.12) and the fact that B is projection operator follow from (3.10) and (3.11).
(3.12) expresses the fact that scattering states are orthogonal to bound states.

Intertwining equation

We show in Section 3.7 that

U(t)ﬂi = QiUg(i) (3.14)
HOQx = Q4 H, (3.15)
OLHO, = I, (3.16)

(3.14) 1s the intertwining equation.

(3.16} is consistent with the fact that when B # 0 the Mgller operators are
not unitary and #/ and H; have different spectra.

Space-time transformations

It follows from (2.13) to (2.15) that

RO RY(0) = 04 (3.17)

[y, L] =0 (3.18)
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POLPY = Q. (3.19)

TOQLT = 0 (3.20)

where Rj((?) is the rotation operator (2.16), P is the space-inversion operator
and T is the time-reversal operator.

Integral formula

We show in Section 3.7 that

. F
Qi:1+% / AUt VU (1) (3.21)
0

(3.21) is a key equation in developing Lippmann-Schwinger equations for
solving the scattering problem.

Relationship to the Green’s operator

We show in Section 3.7 that it follows from (3.21) that

Qi:1+/d3pG(epii0)V|ﬁ><ﬁ|

s 41 09 (3.22)
:1+Z /dpGep+zOV|plm,g><plm1l
l=0 m;=—l 0

and therefore
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<G| Q2 [F>=86F -+ < 7| Gley £i0)V | 5> (3.23)

and

< qlmy | QL | pl'm) >

(3.24)
= Sprbmm [0(p — )+ < ¢lmy | Gep 4+ 10)V | plmy >

We show in Section 5.5 how (3.23) and (3.24) lead to methods for solving
the scattering problem.

3.4 Scattering eigenkets

We define scattering eigenkets | p+ > and | plm;+ > by

|pt >=Qy |p> (3.25)
[ plmit >= 04 }plm; > (3.26)
Properties

1. Eigenkets of the Hamiltonian

It follows using (3.15) that
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H|pt>=¢, |t > (3.27)

H | plm£ >= ep | plmy=+ > (3.28)

That is, | p& > and | plmy+ > are eigenkets of H belonging to spectral
value ¢,.

2. Orthonormality

We show in Section 3.7 that

<Pt | qt >=6(F—q) (3.29)
<pL|b>=0 (3.30)

< plmyk | Pyt >= 8(p — p') 1Sy m (33D
< plmyx | b>=0 (3.32)

3. Spanning the Hilbert space

It follows from (3.11), (3.25) and (3.26) that

1=0.0, +B (3.33)
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where B is given by (3.13) and

ninfz./}ﬁp[ﬁt:x:ﬁi|

(3.34)

o0 +i
=0

o0
fdp | plmyt >< plmy+ |
0

m1=—l

(3.33) is a decomposition of the unit operator into orthogonal projections
onto the scattering states and the bound states.

Spectral decomposition of the Hamiltonian

It follows from (3.27), (3.28) and (3.33) that

H=H,+ H (3.35)

where

m:/&mﬁ>%<ﬁ|

(3.36)

o

+H 7
= Z /dp | plmyt > €, < plmyt |
0

=0 m;=-1
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and

ng
Hy=> |b>eq<b| (3.37)
b=1

Spectral decomposition of the evolution operator

It follows from (3.29), (3.31) and (3.35) to (3.37) that

U(t) = Us()Uy(t) = Uy ()T, (1) (3.38)

where
Ui = [ @y 5> ol < |
o 4l | (3.39)
= Z /dp | plmyd > e=rt/h ploy = |

=0 ny=—1 0

and
g )
U() = |b> et/ < p| (3.40)

=1
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Spectral decomposition of the Green’s operator

It follows from (3.35) to (3.37) that

G(z) = Go(z) + Gy(z) (3.41)

where

Gs(z):/d3p|ﬁﬂ:> < pt |
Z— &
oo 4l % (3.42)
= Z fdp | plrgx > < plmy |
Z— €
=0 my=—1I 0
Gb(z)=2|b>z — <b] (3.43)
— G4
=1

Analytic properties

It follows from (3.41) to (3.43) that the function < ¢ | G(z) | x > of the
complex variable z has branch points at me? and oo and poles at the bound-
state energies €g,---, €y, of .
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3.5 Coordinate-space wave functions

- In- and out-wave functions

The coordinate-space scattering wave function ¥(Z,¢) defined by (2.31) sat-
isfies

V(L) = i (E,1) as t— —o0 (3.44)

B(F,1) — bou(Z 1) as  t— too (3.45)

where the in- and out-wave functions ;. (Z,1) and You(Z,¢) are defined by

Pin(Z,t) =< & | Up(t) | by, > (3.46)

Youlst) =< & | Un(t) | out > (3.47)

(3] [

P (F,1) = (-2%) / dSkei(E‘f“"t)gbin(g) (3.48)

=
o
s
=
&
e
S
fl
o
Y|
SN
b0

/ dBrei(Bi-otyy (1'5) (3.49)
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where

Yin (75) =<F| ¥in > (3.50)
%/)out(g) =< 7| Yoyt > (3.51}
Comments

1. Wave-packet

It follows from (3.44) and (3.46) that as t — —oo the scattering wave function
h(@,t) is a wave-packet whose shape is determined by ;, (I’?)

Pin (:’Z) is a known function determined by the preparation apparatus for the
particle.

Yout (i;), on the other hand, is not known a priori; properties of %ut(i;’)
are determined by the detection apparatus for the particle.

2. Average initial momentum

The average momentum of the particle

<Ypt)| Pl ot) >=fpy, as L —oo (3.52)

where
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Pin =< Us (V)i | P | Un(t)ebyy >
(3.53)
=< @bmlPHbm fdspp|¢1n(§)l ?

Pip 18 the average initial momentum of the particle.

In practice, pj, is pointed towards the target and i (P) is sharply peaked
about pj,.

Average position well before the collision

The average position of the particle

B(t) | X [ () >— & n(t) as t— —o0 (3.54)
where
Zin(t) =< Up(t)edy, | X | U ()i, >
(3.55)
= Zjp -+ Uint
where
Tin =< %ip | X | in > fd3$ # [ (&) | 2 (3.56)
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and

Uin =< ¥ip | J bin > /dg ‘ p | $in(P) | 2 (3.57)

where

in(F) =< & | by, > (3.58)

Zin(t) is the average position of the particle well before the collision.

The last line of (3.55) indicates that the particle behaves as a relativistic free
particle well before the collision.

Similar equations hold for average position Zq,(t) of the particle well after
the collision.

_Scattering functions

We write the coordinate-space representative of the scattering eigenket | g+ >
defined by (3.25) as

<& |t >= (T) () (3.59)

which equation defines the scattering function ().
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We write the coordinate-angular momentum representative of the scattering
eigenket | plm;+ > defined by (3.26) as

4 /2
< rlmg | pl'ml4 >= 4! — 1, }) 6 (3.60)

which equation defines the partial-wave scattering function hy(r, k).

Comments

1. Notation
We use a Greek letter to label the functions defined by (3.59) and (3.60) for
consistency with other works on scattering theory; (%) and t;(r, k) are not

representatives of a state of the system.

2. Normalization

It follows from (2.26), (2.61), (3.29) and (3.59) that

(E?I%E) f Lopa(Z)pp(E) = 67 - 3) (3.61)
fd'rlbz (r, k) (r, k') = (k E)éy (3.62)
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3. Partial-wave expansion

We show in Section 3.7 that

k)
Pp @ =dr )y D0 i T Y (O ) Vi, (0, )

=0 my=—1

(3.63)

= (21 + l)z'l ——= Py{cos Oy )

ti(r, k)
kr
=0

(3.63) is the partial-wave expanston of ().

(3.63) becomes the partial-wave expansion (2.69) of a plane-wave when the
potential vanishes.

4. Relationship to the scattering wave function

We show in Section 3.7 that

p(71) = (%)é / e (@i (F) (3.64)

(3.64) shows how the scattering wave function (Z,¢) is related to the
scattering function (7).

The coordinate behavior of +(Z,¢) is approximately given by wﬁin(f) if

Pin (12) is sharply peaked about pj,.

Comparison of (3.64) with (3.48) shows that (7, t) becomes the in-wave
function 1, (2, ) when ¢(Z) is replaced by e**%.
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5. Time-independent methods for solving the scattering problem

While scattering is inherently a time-dependent process, it follows from (3.64)
that time-independent methods can be used to solve the scattering problem.

Methods for determining () and t;(r, k) are given in Chapter 6.

Other time-independent methods for solving the scattering problem are given
in Chapters 4 and 5.

6. Time-independent Schrodinger equation

It follows from (3.27) that ¢3(Z) satisfies

[ @y <E U175 4500) = @ (3.65)

It follows from (3.28) that /;(r, k) satisfies

/dr’ < vl | H{ v'lmy > oy (v, k) = eppi(r, k) (3.66)
0

7. Nonrelativistic fime-independent Schrodinger equation

When the free Hamiltonian Hj is replaced by its nonrelativistic form (2.12)
and the interaction potential V' is local (2.10) it follows from (3.65) that
Y5(Z) satisfies
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(V2 + & — U@z, () =0 (3.67)

where U/(Z) is defined by

V(Z) = —U(Z) (3.68)

Similarly, when the interaction potential V' is a central potential (2.11 ) it
follows from (3.66) that vy(r, k) satisfies

& (41
dr? 2

+ & U@ (k) =0 (3.69)

The most general free-particle solution of (3.69) is a linear combination of
the Riccati-Bessel function j;(kr) and the Riccati-Neumann function 7y (kr).!

Further discussion of how (3.69) is used to solve the scattering problem for
a nonrelativistic particle are given in Chapter 6.

3.6 Preparation in a mixed state

So far in this chapter we have assumed that the particle is prepared in a pure

state. When the particle emerges from the collimator of an accelerator, however,
the particle is prepared in a mixed state because the collimator has a non-zero
aperture size. We discuss the properties of such a mixed state in this section. We

Some properties of Riccati functions are given in Appendix B.

50



assume that the particle is prepared in a pure stat in the development of scattering
theory in later chapters merely for convenience in writing.

A mixed state of the particle is represented by the nonidempotent density
operator

(L) = UH)TU(1) (3.70)

The scattering state (3.70) satisfies

URWUT () — Uo()Wi Ui (1)  as ¢t — —oo (3.71)

UBTUNt) = Ug($) Tl (1)  as  t — oo (3.72)

for some Wi, and Wy where Up(t) is the free-particle evolution operator (2.43),

We assume that the collimator of the accelerator produces a particle with
average initial momentum perpendicular to the plane of the aperture of the
collimator. In order to accommodate the nonzero size of the aperture W, is
specified as

T, = / Pa| D@y > p(@) < D(@)by, | (3.73)

where p(d) is the probability per unit area for preparing the particle in a pure
state with in-asymptote determined by | D(@)w;, > where
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D(@) = ¢ialk (3.74)

is the operator for displacement of the system by &.

We assume that p(d) differs from zero only if d is perpendicular to average
initial momentum of the particle. Accordingly, the integral in (3.73) is a 2-di-
mensional integral. The function p(&) is a characteristic of the aperture of the
collimator and is restricted only by the condition

/ d*a p(d) =1 (3.75)

Comments

1. Mixed states and the density operator formalism

Mixed states of a physical system and the density operator formalism of
quantum mechanics are described in QLB; Introductory Topics, Chapter 5.

This formalism is used in Chapter 4 to express the differential cross section
in terms of the scattering amplitude.

2. Average initial momentum

The average initial momentum pj, of the particle is

58



ﬁin =Tr (15 U (1) ‘IfinUg(t))

=< | P 1in >= [ 71430 | ?

which, of course, is the same as (3.53) because the mixed state (3.73) differs
from the corresponding pure state form only by a space displacement which
operation leaves momentum unchanged.

Average position well before the collision

The average position #;, () of the particle well before the collision is

Fo (1) =Tt ()? Uo(t) W, U] (t))

where

Ty = By + f d*a d p(@) (3.78)
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where fin and "Jin are given by (3.56) and (3.57), respectively.

The last line of (3.77) shows that the particle behaves as a relativistic free
particle well before the collision.

The second term in (3.78) is a vector in the plane of the aperture of the

collimator and reflects the lack of precision of the initial state of the particle
by the collimator.

3.7 Some derivations

Derivation of (3.14) to (3.16)

It follows from (2.6) and (3.7) that
U(t)‘Qf:l: - e—i_Ht/ﬁ hm e'ifIT/ﬁe—iHaT/ﬁ

T—F oo

= lim eiH(T—f)/ﬁe_iH"T/ﬁ(eiﬂﬂ/ﬁe_iﬂ”tm)
T—F0o0

(3.79)
— lim H—8)/k —illo(r—t)/k —iHoi/k
T—F00

= 21Us(2)

which is (3.14). (3.15) follows on differentiating (3.14) with respect to ¢ and
setting ¢ = 0, and (3.16) follows using (3.10).

Derivation of (3.21)

It follows from (3.7) that

Qu = Bim F(2) (3.80)
where
F(t) = UT()Us(t) (3.81)
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so (3.21) follows on noting that

/ dF(r)
Ft)y=F(0) + [ dr
0/ dr
where ,
P — L0M)(H - H)n(r) = S04 )W i)

Derivation of (3.22)

It follows from (2.26), (2.44),

+oo

tkx ?
dr =
/ ¢ x 20
0

and (2.107) that

Foo

dtUT )V Up(t) = fdtUT(t)VUo(i)fdap | F>< 7|

o\_g

Foo
— /dtez(ﬂﬁcp)t/ﬁ/d3pv|ﬁ><ﬁ|
0

- —%fcﬁpc(ep L0V [ §>< 7|

(3.82)

(3.84)

(3.85)

The first equality in (3.22) then follows from integral formula (3.21) for (...

The second equality in (3.22) is derived in a similar fashion.
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Derivation of (3.29) to (3.32)

(3.29) to (3.32) follow from (2.28), (2.63), (3.10), (3.12) (3.25) and (3.26).

Derivation of (3.63)

It follows from (2.61), (2.64), (2.67), (3.26) and (3.60) that

<E| P+ >=<Z| Q4 | F>=
o0
Z fdr'dp' < Z|r'lmy ><rlmg | Qy | pl'm) >< pl'm) | §>
Imil'm]

(3.86)

Nk

+ (o)
Z /dr’dp’ < Z | r'lmg ><r'lmy | pllmg+ >< pllmy | 7>
0

=0 my=-1

Il
o

V rﬁ3 Z Z Hbl Ylmz(ak ©1)Yim, (0, ©z)

=0 my=—1

which with (3.59) yields (3.63). The second equality in (3.63) follows using the
addition theorem for spherical harmonics.

Derivation of (3.64)

Tt follows using (3.8) that

G(@,t) =< Z| U(t) | § >=< 2| U)y | by, > (3.87)
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the right side of which is

[ # <@ 100001 5>< 7l iy >
= /dap ST U) | p+ >< 7| hig > (3.88)

- /Cﬁpe—f‘fﬂ/ﬁ <E| P < |y >

which using (3.50) and (3.59) is the right side of (3.64).

Derivation of (3.77)

It follows using
USXU () = X + Ve (3.89)

and . .
DUXD(@) =X + & (3.90)

that the expectation value in the integrand in the second line of (3.77) is
< Uo()D(@) iy | X | Us(£) D(@Nibyy >= Ty + G+ Wit (3.91)

which leads immediately to the last line of (3.77).
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Chapter 4 SCATTERING OPERATOR

4.1 Introductory remarks

In Chapter 3 we introduced Mglier operators Q4 which relate the actual state
of the system with free-particle in- and out-states. In this chapter we introduce the
scattering operator S which relates the out-state with the in-state without direct
reference to the actual state.

The scattering operator is defined in Section 4.2 and properties are given
in Section 4.3. The scattering amplitude is introduced in Section 4.4 and the
relationship between the scattering amplitude and measurable scattering cross
sections is given in Section 4.5. Derivations of some results are given in Section
4.6.

4.2 Definition

It follows from (3.8) to (3.10) that

| Yout >= 5 | by, > 4.1)

where | 45, > and | 1oy > are given by (3.1) and (3.2) and where the scattering
operator S is defined by

S=0l0, (4.2)

where {14 are the Mgller operators (3.7).
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4.3 Properties

1. Relationship between states

(3.8) and (3.9) show that the Mgller operators relate the actual state of the
system with the free-particle in- and out-states.

The scattering operator (4.2), on the other hand, relates the out-state with the
in-state without direct reference to the actual state.

2. Main goal of scattering theory

The main goal of scattering theory is to express the out-asymptote

Uo(t) | out > in terms of the in-asymptote Us(t) | 1y, > without further
direct reference to the experimentally indeterminate details of the scattering
state U(t) | ¥ >.

The main goal of scattering theory therefore is to determine the scattering
operator 5.

3. Unitarity

We show in Section 4.6 that

§18 =58t =1 (4.3)

Unlike the Mgller operators, the scattering operator .S is unitary.

4, Congervation of energy

We show in Section 4.6 that
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Us(t)SUL () = § (4.4)

and therefore

S, Ho] = 0 @.5)

(4.5) states that energy is conserved in the scattering process.

The appearance of Hj in (4.5) corresponds to the fact that the particle is
asymptotically free.

It follows using (3.8), (3.9) and (3.16) that conservation of energy in the
scattering process may be expressed

<P() | H | ft) =< | H | >
(4.6)
=< d’in | Hy | ‘tf/)in = 7v/)()ut | Hp | "'ﬁout =

The last equality in (4.6) with (4.1) is consistent with (4.5).

Space-time transformations

It follows from (3.17) to (3.20) that
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RI(O)SRY(H) = § (4.7)

[S,L7] = 0 (4.8)
pspt =g (4.9)
TST = 9t (4.10)

where R7(8) is the rotation operator (2.16), P is the space-inversion operator
and T is the time-reversal operator.

Spectral decomposition; phase shifts

It follows from (4.3), (4.5) and (4.8) that

oo
S = Z Z /dp | plmy > 20 < plm, | (4.11)
=0 m;:-—l 0

where &(p) is real. (The factor 2 in the exponential is inserted for later
convenience.)

é1(p) is the I—th partial-wave phase shift. We show in Chapter 6 that §;(p) is

the shift in the phase of the partial-wave scattering function due to scatiering
by the target.
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It follows from (4.11) that the main goal of scattering theory is to determine
the partial-wave phase shifts.

Reactance operator

The reactance operator K is defined by

1-5
K= .
{ =1 T3 4.12)
It follows from (4.12) that
14K
= 4.1
3 1 —:K (4-13)

K is hermitian; its speciral values are real. Tt follows from (4.11) that

oo +{ o0
K=>" %" / dp | plmy > tan §(p) < plmy | (4.14)
=0 mt=—l il

Dyson_series

We show in Section 4.6 that

e.s]

oo 1 /—i\ "
”"=1+Za(f> [ dndapin) o) @as)
n=1

— 00
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where

Va(1) = etflot/hy g —itlot /R (4.16)

and

P(Vol(ta) -~ Valta)) = Vo(ti)---Vo(t;) where &> >¢;  (4.17)

Vo(t) is the potential in the interaction picture.

When operating on a product of time-labelled operators, the operator P yields
a time-ordered product of operators, the latest occurring first in the product.

(4.15) is the Dyson series for the scattering operator; it yields an approxima-
tion for .5 when truncated at a finite number of terms.

It is clear from the derivation that (4.15) is not restricted to the scattering
of a spinless particle by a fixed target. Valid quite generally it is one of the
main wols used to calculate the scattering operator in relativistic quantum
field theories.

Integral formula

We show in Section 4.6 that

S=1- -;; / vl ({v, Ui (4.18)
0
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where {A,B} = AB + BA.

(4.18) is a key equation for developing Lippmann-Schwinger equations for
solving the scattering problem.

10. Relationship to the Green’s operator

We show in Section 4.6 that it follows from (4.18) that

<TI(S—1) | F>=—5 <7 {V,G(2)} 7> (4.19)

< qlmy | (S =1) | pl'm) >

. (4.20)
= —561116,”””; < qlmy | {V,G(2)} | plm; >

where z = (e, + ¢;) + 40,

We show in Section 5.5 how (4.19) and (4.20) lead to methods for solving
the scattering problem.

4.4 Scattering amplitude

It follows from (4.5) that the momentum representation of the scattering
operator (4.2), that is, < ¢ | 5 | p > (“the S matrix”), which corresponds to
the scattering of a particle with initial momentum 7 to final momentum ¢, has
the form
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<q| 3| F>=8(—q) —2mid(ep — €)1 (7, ) 4.21)

which equation defines (7, §).

Using
§ d(p —
(ep — &) _ (p-q) (4.22)
ymn Y4
and defining f(7,q) by
F(B, @) = —(2m) hrym t(5, §) 4.23)
it follows from (4.21) that
-3 - - = Z . —
<@ S| F>=8F—q -+ —%ﬁpé(p q}f (7, q) (4.24)
Comments

1. On-shell 7" matrix

As shown by (5.16), the momentum-space representative of the operator
T(ep + ¢0) defined by (5.1) is (7, ).
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Because of the factor 6(¢, — ¢,) in (4.21), (7, §) for given F only involves
values of ¢ on a spherical shell of radius | 7 |.

t(p, ¢) is called the on-shell 7' matrix.

Scattering amplitude

The function f(p,§), which has the dimensions of length, is the scattering
amplitude.

f(7, @) corresponds to the scattering of a particle with initial momentum §
to final momentum 4.

Restrictions by space-time invariances

It follows from (4.7) to (4.10) that

F(5,9) = f(0rs, Gps) = F(=5,—7) = J(=4,—P) (4.25)

It follows from (4.25) that f(p ¢) is a function the variables 7, ¢-§, 5-.
Because of the factor é(p — ¢) in (4.24) we write

f(3,4) = f(k,9) (4.26)

where k =| 5| /k and 4 is the angle between p and 7,

Orientation of the coordinate system

When the 3-axis of the coordinate system is in the direction of p the angle ¢
defined in the previous item is a spherical polar coordinate of §.
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There is no dependence of f(p,¢) on the azimuthal coordinate of ¢ because
of rotational invariance.

5. Partial-wave expansion of the scattering amplitnde

We show in Seciion 4.6 that

F(k,0) = (20 + 1)ay(k) Pr(cos 0) 4.27)
{=0
where
c2i0i(k) _q
ai(k) = 5 (4.28)

and where F(z) is a Legendre polynomial.
(4.27) is the partial-wave expansion of the scattering amplitude.

ai(k) is the partial-wave scattering amplitude.

4.5 Cross sections

We show in this section how the scattering amplitude (4.26) is related to
experimental observations.
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* Differential cross section

In Section 4.6 we define the differential cross section

do
6D 4.29

for a particle with average initial momentum ¢ in the 3-direction to scatter o
final momentum ¢ with spherical polar coordinates § = (p, 4, ¢).

We show in Section 4.6 that

do
B = f(k,0) | ? (4.30)

Comments

1. Effective cross-sectional area of the target

The differential cross section (4.29) is the effective cross-sectional area of
the target for the scatiering of a particle with initial average momentum 7 to
final momentum ¢

2. Experimental observations

We show in Section 4.6 how the differential cross section is related to the
number of particles detected by the detector. That is, we show how (4.29)
1s measurable.
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3. Dependence on the initial state

The differential cross section (4.30) depends on the average initial momentum
of the particle; it is otherwise independent of the details of the initial state.

As shown in Section 4.6 this follows because the scattering amplitude is
essentially constant over the region where momentum-space representative of

the incoming wave function is appreciable.

4. Legendre series

It follows from (4.27) that

oo

(k,0) = > (21 + 1)(2f + V)ay(k)af (k) Pr{cos 0) Py (cos ) (4.31)
LU=0

?

do

d§)

. Total cross section

The total cross section o (p) for the scattering of a particle with initial average
momentum 7 is defined as

do
o) = [ 10555 (4.32)

where d©? = d(cos §)dyp.
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1.

Comments

Effective cross-sectional area of the target

o(p) is the effective cross-sectional area of the target for the scattering of a
particle with initial average momentum g.

Optical theorem

We show in Section 4.6 that

4
o(p) = = Imf (7, 5) 4.33)

(4.33) is the optical theorem,

Partial cross sections

It follows from (4.31) that

o(k) =" oi(k) (4.34)

where

o(k) = %g-(zz + 1) sin? & (k) (4.35)

o1(k) is total cross-sectional area of the target for a particle with momentum
$ and angular momentum /#.
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4.6 Some derivations

Derivation of (4.3)

It follows from (4.2) and (3.10) to (3.12) that

sis=(0la.)'olo. =alo ol q,
(4.36)
=0, (1-B)2, =0l0, =1
. i )
sst=al o, (Q“_m) =aoto,ata_
@.37)
=0 1 -Bo_=0lo_=1

Derivation of (4.4) and (4.5)

It follows from (4.2} and (3.14) that

U(£)SU (1) = Vo2t 0,080 = [-ui )] ‘Ui
(4.38)
= [vtme-| vime, = ol vwoime, =ota, =

(4.5) follows on differentiating (4.4) with respect to ¢ and setting ¢ = 0.

Derivation of (4.15)

It follows from (4.2) that
S= lim lim F(it) {(4.39)

t——too fg——o00

where

F(t,t0) = US()U (U (26)Us(t0) (4.40)
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Now

and

50

(4.41)

(4.42)

(4.43)

Thus, & may be determined from the linear Volterra integral equation (4.43);

(4.15) corresponds to the (iterative) Neumann solution to (4.43).

Derivation of (4.18)

Taking the two limits simultancously in (4.39) yields
S = lim F(t)
t—4o0
where

Pty = Ul (Ui

(4.18) follows on noting that

where dF )
) LU, U Ui

dr kK
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(4.45)

(4.46)

4.47)



Derivation of (4.20)

It follows from (4.18), (2.61), (2.79), (2.107) and (3.84) that
<plmi | (S =1) | p'l'm) >

(o 0]
— 5 [t < vt | IOV, 0000 | o >
0

3
(4.48)
:g%%ﬁmw<anl{K/ﬁw*ﬁﬁ“ﬂmm}|ﬁhﬁ>
5
1 i
= "55”’671%:"&; < plmy f {V; G(z)} | plmy >
where z = $(ep + ) + 0.
Derivation of (4.27)
It follows from (4.11) and (2.66) that
<q(S-1}[p>
Ie's) +1 ©0 . )
:Z Z /dp’ < & | p'lmy > (62“51(3’) —1) <plm;| 5>
il 49

o0 {
§(p—q u . z_
- 7 IS Vi (O 00)¥i B ) (o) — 1)
l:[] mt:ml

(4.27) follows from (4.24), (4.49) and the addition theorem for spherical
harmonics.
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Derivation of (4.30)

We suppose that an accelerator and a detector are pointed toward the target
which is at the origin of the coordinate system.. We suppose that a particle
approaches the target with in-asymptote determined by | ;, > (3.1) and with
average initial momentum pj, (3.53) in the 3-direction.

The probability that after scattering the particle has momentum in the volume
d*q about § = (q,0,¢) is

< 71 Uo(thbout >| *dq =|< 7] S | ¢y, > *d%q
(4.50)
=< 718 | by >| *g*dgdQ
where df) = d(cos #)de.

The probability p(t;,,4) that after scattering the particle emerges anywhere
in the solid angle element JQ2 about the direction of ¢ is?

e el

p(¥iy,0) = dﬂ/qqu |< @] S|y > 2 4.51)
0

So far we have assumed that the particle is prepared in a pure state. When
the particle emerges from the collimator of the accelerator, however, it is actually
prepared in a mixed state because the collimator has a non-zero aperture. For
preparation by an accelerator the particle approaches the target with in-asymptote
determined not by | 45, > but by W, as given by (3.73).

The probability that after scattering the particle emerges anywhere in the
solid angle element d€} about the direction of ¢ when it has been prepared by
the accelerator is

/ d*a p(@) p(D(@)yy, 0) (4.52)

E There is no dependence on the azimuthal angle ¢ because of rotational invariance.
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When the experiment is repeated over and over again with a single particle
or, more efficiently, when a beam of particles is used, the number of particles
n(¥y, 0) scattering into d2 is

(i, 0} = /dza n{@) p(D(&’)win, f) (4.53)

where n(d) is the number of particles per unit area with impact parameter a.
This number of particles is measurable.

We proceed to evaluate the right side of (4.53). We note first that in
practice the beam spot is much larger than the target, so we can safely take
n(d) = constant = ny, over the region where p( (&), 0) is nonzero. Thus,

n(1bin, 0) = iy o (Y, 9) (4.54)

where
o (in, 0) = / d®a p(D(@)hi, 0) (4.55)

J(@[’in: H) is the effective cross-sectional area of the target for scattering scattering
of a particle with in-asymptote determined by | 145, > into d2. Now because of
the factor df} in (4.51), we can write

o {1, 0) = dnﬁ(%, 8) (4.56)

where, using (4.51),

do 7 . .
7q Pinf) = fdza/qqu < @1 5D(@) | i >| * (4.57)
0

j—g(win,ﬂ) is the differential cross section for an accelerator-prepared particle
to scatter to spherical polar angles (6, ) when its in-asymptote is determined by

| ’(,bin >
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We evaluate the right side of (4.57). First,

<71 5D(@) | iy >= / Ppe U < 7 3| 5> b (7)
{4.58)

?

TRy () o f d*pe™ T 5(p — ) F(7, @)ebin ()

We now assume that the detector is not placed in the beam, that is, we assume
that ¢ # pi,. For such ¢, ¥,(¢) = 0, so

d 1 \?
) = (75) [ [a
0 (4.59)

/ Ppd*y PR (5 V(o — ) F(5, D (ﬁ, cf) Yin(P)¥5, (ﬁ’)

The right side of (4.59) is a 9-dimensional integral. The double integral over
@ yields a two-dimensional delta function

/ Lae W) = (orn)s (5~ L) (4.60)

where p; and g; 1 are the components of 7 and 337 which are perpendicular to the
average initial momentum p;, so (4.59) becomes

d >0
g%(tbm,@) = /dsp/dqﬂq—p)-
0 .61

[ #46 -8 = 756,05 (7,2 b ()
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Now

5(p*p’)5(13l —zﬂ) = 2p6(p° —p'z)c?(zﬁ —pﬂ)

= 2p5<(ﬁ//)2 - (ﬁ//)2>5(15l - f;;_l_)

-

= pl%[a(p// —p’//) +5(p// _l_pr//)]&(ﬁl _Pf_l_)

= L [o(p-7) + oo )57 -]

(4.62)

where p;; and p"/ ) are the components of 7 and ﬁ which are parallel to the
average initial momentum 7.

There is no contribution to (4.61) from the second term in the last line of
(4.62) because 1;,(p) and zﬁi‘n (ﬁ ) vanish when p;; or p’/ / is negative. That is,
the accelerator produces particles going away from it, not towards it. It follows
then from (4.61) and (4.62) that

do 7 .
70 Win,6) = / &p / dq6(qmp)£7|f(p,®l Pl | @63
0

We now assume that | ¢:,(F) | ? is sufficiently peaked about Pip that
| f(P,@) | ? is essentially constant over the region where iy (P) is appreciable.
Thus we replace

§(q—p) =L | F(7,d) | 2 (4.64)
Py
by
5(a = pin) T2 | (Fons )| 2 (4.65)
m
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in (4.63). The 3-dimensional integral over p’ is unity and removes any further
dependence of the right side of (4.63) on ¢;, (7). Accordingly, we write

do do T L
7 Pinr0) = =5 (Pin, 9) = f dgé(q = pin) | f(Fin ) | ° (4.66)
0
the last equality in which is (4.30).

Derivation of (4.33)

We write
S=1+R (4.67)
then (4.3) yields
R+ R' = —RR! (4.68)

Using (4.24) it follows that
<@l (R4 R) |7>=<|R|p>+<F|R|7>"
(4.69)

¢

= zwﬁp5(p — i (B9) — (7, p)]

and
<€IRR*|ﬁ>:/dgz5'<é’|R|p'><ﬁlRlp’> ‘

( 4.70)
:5P_Q)fd346 ' T e T
)t ] 47 (' —p)f (p ,q)f (p ,p)
so, from (4.68),
FED - 1@D = 5o [ E700 -n) s (0)(F8) @7y
which is (4.33) when § = p.
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Chapter 5 T OPERATOR

5.1 Introductory remarks

We consider methods for solving the scattering problem in this chapter and
in Chapter 6. Towards this end we define the 7' operator which yields tractable
expressions for matrix elements of the Mgller operators and the scattering operator
derived in Chapters 3 and 4.

The T' operator is defined in Section 5.2 and properties of the 7 operator
are given in Section 5.3. The standard method for determining phase shifts and
bound-state energies is given in Section 5.4 and some derivations are given in
Section 5.5,

5.2 Definition

The appearance of the Green’s operator and the interaction potential in the
combinations (7(z)V and V(G(z) in matrix elements (4.19) and (4.20) of the
Mgller operators and the scattering operator suggests that it is useful to define an
operator which contains these combinations explicitly.

Accordingly, we define

T(z) = Gy (2)G(2)V = VG(2)G; () (5.1)

where z is any complex number for which G(z) exists.
That one equality in (5.1) follows from the other follows from (2.110) and (2.111).
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5.3 Properties

1. Products with the free Green’s operator

It follows from (5.1) that

Go(2)1(2) = G(2)V (5.2)

T(2)Gy(2) = VG(z) (5.3)

2. Conventional definition

It follows from (5.1), (5.5) and (5.6) that

T(z) =V + VG{z)V (5.4)

(5.4} is the conventional definition of 7'(2).

3. Analytic properties

It follows from (5.1) and from (3.41) to (3.43) that < ¢ | 7'(z) | ¥ > has
branch poinis at mc? and co and poles at the bound-state energies €1, -, €y,
of H.

4. Lippmann-Schwinger equations

It follows from (2.110), (2.111) and (5.1) that
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T(z) =V +VG(2)T(z) (5.5)

T(2) = V + T(2)Go(2)V (5.6)

(5.5) and (5.6) are Lippmann-Schwinger equations for T'(z).

5. Neumann series

It follows from (5.5) and (5.6) that

T(z) =1~ VGo(2)]'V = V]I — Go(2)V] ™} (5.7)

and therefore

T(2) =V + VGo(2)V + VGo(2)V Go(2)V + - (5.8)

(5.8) is the Neumann series for 7'(z); it yields an approximation for T'(z)
when truncated at a finite number of terms.

6. Green’s operator as a propagator

A term in (5.8) corresponds to a sequence of interactions with free propagation
of the particle between interactions. Accordingly, Gy(z) is often called a
propagator,

7. Principal-value 7 operator
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In analogy with (5.7) we define the principal-value T operator 7'(¢) for real
¢ by

T(e)=1-VGo(e)] 'V (5.9)

where Gy(¢) is the principal-value Green’s operator (2.116).

T(e) is often called the K operator. The relationship between spectral values
(4.14) of the reactance operator X and corresponding matrix elements of

T(c,) is given by (5.18).

8. Lippmann-Schwinger equation for the principal-value 7' operator

It follows from (5.9) that

T(e) =V + VGol()T(c) (5.10)

9. Relationship between the ' operators

We show in Section 3.5 that

T(e+140) — T(e) +inT(e)6(c — Hy)T{e+i0) = 0 (5.11)

(5.11) is often called Heitler’s equation.

10. Lippmann-Schwinger equations for the partial-wave 7" matrices
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We define partial-wave T matrix elements ¢;(p,p'; 2) and 7(p, p'; €) by

t;(p,p’; z) =< plmy | T(2) | p'lmy > (5.12)

and

f;(p, P’ 6) =< plmy [Tg(e) | p'lmy > (5.13)

It follows from (5.5) and (5.10) and the spectral decompositions (2.108) and
(2.116) that

o]

d H,U 1 .[’ H, ,;Z
u(p.v's 2) = vi(p,») +/ & I(p’zp_);(f 232) (5.14)
b '
and
_ Oodnv N (! s e
W) = ulpp) + § THREIELTD g
Pff
0

where v;{p, p') is is the momentum-space/angular momentum representative
of the interaction potential as given by (2.81).

The Lippmann-Schwinger equations (5.14) and (5.15) are one-dimensional
linear Fredholm integral equations.
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11.

On-shell 7" matrix

We show i Section 5.5 that

17,0 =< 7| T(cp +50) | 5> (5.16)

12.

when | ' |=| ¢ | where t(p, §) is the on-shell 7' matrix (4.21).

Partial-wave scattering amplitude and phase shift

We show in Section 5.5 that

YT .
ay(k) = — ,;32 ti(p, p; ¢p + 10) (5.17)
and
TYIM —
tan (k) = ==L (p, pi ) (5.18)

where a;(k) is the partial-wave scattering amplitude (4.28) and 61(k) is the
phase shift (4.11).

5.4 Determining phase shifts and bound-state energies

~ The method

Phase shifts

(5.15) and (5.18) give a method for solving the scattering problem:
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Solve (5.15); the phase shift §;(k) is given by (5.18).

Bound-state energies

(5.14) and the analytic properties of < ¢ | T'(z) | x > provide a method for
determining bound-state energies of H:

Solve (5.14); the bound-state energies of H are the poles of ;(p, p'; z).

S Soluble example: separable potential

We show in Section 5.5 that (5.14) and (5.15) can be solved exacily when the
potential 1s separable (2.94) to yield

o0 -1
_mm ) 12 dp' [oi(k) |
ai(k) =275 ulk) | 1+f pp————y (5.19)
0

and
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0 -1
dp' | vi(k) | *

€

(5.20)
p — Cp'

There is at most one bound state for each ! with this potential. The bound-
state energy ¢, for a state with angular momentum /% is given by

(e 0]

1= /M (5.21)

€p — b
0

-~ Inverse scattering problem: separable potential

We consider the inverse scattering problem for the separable potential (2.94).
That is, we regard &(k) as known and determine v;(k) in terms of &(k).

We show in Section 5.5 that when there are no bound states

T 8i(k') deys
[op(k) ] % = ik sin §i{k) exp : ][ Sulk) deyr (5.22)
W’ym T Ep — Epl
mc?
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Comment

1. Constructed potential

(5.22) shows that is always possible to construct a separable potential (2.94)
from a given phase shift &;(%k) when there are no bound states.

2. Realistic potential

In view of (5.22), the separable potential (2.94) is a realistic potential because
it reproduces the phase shift §;(%) exactly.

5.5 Some derivations

Derivation of (5.11)

It follows from (2.115), (5.5) and (5.10) that
Tle+:0)=V+ VGole+ )T (e+ iO)
' (5.23)
=T(c} + VGo(e)[T(e +140) T(c)] —inV8(ec — Hy)T(e+ i0)

That is,
T(e+140) — T(e) +im [l — V()] " V(e ~ Ho)T(e +0) =0 (5.24)
(5.11) then follows using (5.9).

Derivation of (5.17)

It follows from (5.2), (5.3) and (2.108) that
< plmy | {V,G(2)} | Pl >=< plny | {T'(2), Go(2)} | p'limy >
(5.25)

=< plmy | T(2) | p'tm; > ( L + ! )

Z—Ep! Z*'Ep
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(5.17) follows using (4.11), (4.28), (4.20) and

1 1 ( 1 1
+ =2 — - .
Z—€y Z— & €p = €y -+ 20 €y — €pr — 20

i
= —4nid(ep — ¢p) = — W;Zmﬁ(p —p)

(5.26)

when z = 1(e; + ) + 40,
(5.16) is derived in a similar fashion using (4.19).

Derivation of (5.18)

It follows from (5.11), (5.12) and (5.13) that
ti(p, ps &p +10) — ti(p, pj )

= —éfrfdp'fz(p,p'; ep)8(ep — ep )t (p', p; €p + i0) (5.27)
0

EYM .
=i t(p, p; ep)tilp, p; € + 20)

where the second line of (2.61) is used in middle line above. (5.18) then follows
using (5.17).

Derivation of (5.19) and (5.20)

Substituting (2.94) into (5.14) vields

ti{p, 0’ 2) = —vilp)ur(p; 2) (5.28)
where
ood Itk M 1 o,
w;(p";z) =v?‘(p") +f v (Zw)_ZE(P 05 2) (5.29)
p.”
0
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and substituting (5.28) back into (5.29) yields

oo -1
1 it 2
wn(p'; 2) = vi (p') (1+/dp L‘”(f )| ) (5.30)
—_ pH

0

(5.28) then is

00 ~1
) oy d” It 2
tz(p,p;z):—vz(p)‘vz(p)(H/ ) | ) (5.31)
0

Zz — Eph'

and (5.19) follows using (5.17).
(5.20) is derived in a similar fashion; it also follows from (5.19) using (2.114).

Derivation of (5.22)

We solve (5.20) to yield (5.22).

We write (5.20) as

Rk —

bo(k) | 2 = ——tan §(k) Di{ep) (5.32)
where
_ < k! 2d /

Di(ey) = 1+ ][ [olk) | 7dy (5.33)

Ep - Ep’

We define I(z) for complex z by

2

d
1+/ | Ul | D (5.34)
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then

— 1
Di(ey) = 5Di(ep +10) + Dy(e — i0)] (5.35)

We show below that

17mm@

Dy(z) =exp |~ [ ——2£ (5.36)
T Z— €
me?
and, therefore, using (2.114),
1 T (k) d
quﬁiiﬂ)zzaQ)[-‘%‘Ji—l—ﬁi}exwdm (5.37)
Vs ép" - EP
me?

(5.22) then follows from (5.32), (5.35) and (5.37).

Derivation of (5.36)

It follows from (5.34) that D;(z) is analytic in the z-plane cut from mec? to
oo. Since the discontinuity of In D;(z) across this cut is known from

Difep —40) _ (2i8(k)

Di(ep + 20) (5:38)

which is derived below we write a Cauchy integral for In D;(#). We assume that
Di(z) has no zeros in which case ln Dj(2) is analytic in the z—plane cut from

mc? to oo o
In Dy(2') d2'
1@@:L/i$ii (5.39)
27y 2 —z
C

where C is a closed contour about z which avoids the branch cut.
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Expanding the contour in (5.39) and assuming the contribution from the circle
at infinity vanishes yields

mc2 e s]
In Dy(z) = 1 ' / In Di(e, — 10) de, N / In Dy(ep + 10) dey,
2mi € — % €p — %
0 me?
(5.40)
0] o0
1 Di(ep +10)  de, 1 / 6i(k) dep
2me Di(ep —i0) ¢ — 2 = Z— €
mc? mc?
taking the exponential of which gives (5.36).
Derivation of (5.38)
It follows from (5.34) that
Dg(ep + iO) — D;(Ep — 7,0)
I 1 1
:/ __ | (k) | 2y
/ [epgﬁpa—i—z() €p — €y — 20 (5.41)

[o,8]
= —27?i/5(ep — &) | v (k) | 2dp' = %Qiﬂ—;; | v(k) | 2
0

use of which in (5.32) with (5.35) yields (5.38).

99







Chapter 6 SCATTERING EIGENKETS
REVISITED

6.1 Introductory remarks

We return in this chapter to the scattering eigenkets | 74+ > and | plm+ >
and scattering functions 5(#) and v;(r, k) defined in Section 3.4.

Further properties of the scattering eigenkets and scattering functions and
in particular their relationship with the 7' operator and phase shifts defined in
Chapter 5 are given in Sections 6.2 and 6.3. Some results for the first Born
approximation are given in Section 6.4 and standard coordinate-space methods
and the variable phase method for solving the nonrelativistic scattering problem
are given in Section 6.5. Some derivations are given in Section 6.6.

6.2 Properties of scattering eigenkets

1. Relationship to the 7' operator

We show in Section 6.6 that

T(ep£i0) | o=V | pt > (6.1)

It then follows from (5.16) that

1P, q) =< q|V | p+ > (6.2)

101



2. Relationship to the scattering amplitude

It follows from (4.23) and (6.2) that for a local potential (2.10 )

F0,0) =~ [ dee” T (@) (63)

where (%) is the scattering function (3.59).

3. Lippmann-Schwinger equation

We show in Section 6.6 that

| P+ >=] 7> +Go(ep +10)V | 4 > (6.4)

(6.4) is the Lippmann-Schwinger equation for | p4 >.

4. Nonrelativistic Lippmann-Schwinger equation

It follows from (6.4) that the scattering function satisfies

a1 iklE~7]
1'[)1_5(3:) :ezkm_ - d3y|

U(@)(5) 6.5)

— —
Z—7|

for nonrelativistic scattering by a local potential,

5. Scattering function at large distances

We show in Section 6.6 that for nonrelativistic scattering by a local potential
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it follows from (6.5) that

ezkr

p2(E) = ¢FF £ f(k, ) s - 0o (6.6)

T

where » =| Z | and @ is the angle between Z and £.

Scattering wave function at large distances

Tt follows from (3.64) and (6.6) that

H(Z,t) — win(f’ ) + Ygean(@, 1) a8 r — 0o (6.7)

where 1;,(£,¢) is given by (3.48) and where

1(kr—wt)

A\® §
bsanl®t) = (3) [ 100" 0n(F) 69

It follows from (6.7) that far from the target the scattering wave function
consists of a free-particle incoming wave packet and a free-particle outgoing
spherical wave packet, the amplitude of which depends on the value of the
scattering amplitude.

6.3 Properties of partial-wave eigenkets

Relationship to the partial-wave scattering amplitude

It follows analogously from the derivation of (6.1) that
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T(ep £10) | plmy >=V | plmy+ > (6.9)

It follows then from (5.17) that

vsadec)

fik?

a(k) = =215 < plmg | V | pling+ > (6.10)

Partial-wave amplitude for a central potential

It follows from (6.10) that for a central potential (2.11)

= _-g-z—/drjl (kr)U(r)y(r, k) (6.11)
0

where ;(r, k) is the partial-wave scattering function (3.60).

Phase shift for a central potential

It follows from (6.11) that for a central potential (2.11)

tan é;(k) =

?s-*|-2

fd'rjg(kr) (T)El(f‘, k) (6.12)
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where the real function v;(r, k) is defined by

i(r, k) = %) cos §(k)p;(r, k) (6.13)

Lippmann-Schwinger equation

It follows analogously from the derivation of (6.4) that

| plmg+ >=| plmy > +Go(ep + 1)V | ploy+ > (6.14)

Nonrelativistic Lippmann-Schwinger equation

It follows from (6.14) and (B.29) that for nonrelativistic scattering by a central
potential ;(r, k) satisfies

Gilr, k) = qi(kr) + / dr'Goi(r, v, B)U (7 )y (v, &) (6.15)
0
where!
- I ]- - o~
Gulr,r k) = —Ejg(k?“<) ni(krs) (6.16)

As shown by (2.124) the Green’s function Eoz(r, r', k) is proportional to the coordinate-space/angular
momentun representative of the nonrelativistic principal-value Green’s operator Gy (¢,).
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or, more explicitly,

Pi(r, k) = ?;(k?") — %’ﬁ;(kr) /dr’}}(kr')U(r'ﬁbﬂl (', k)
0

(6.17)
1 (o:0]
Ltk / a5 (k') U (Y, (', B)
Nonrelativistic Schrodinger equation
(r, k) satisfies the nonrelativistic Schrodinger equation
& I+, —
E“—Q— —_ 7'2 + kY — U(T‘) wl(T, ]C) =1 (618)
Low-momentum behavior
It follows (6.15) that
P, k) oc K as ko0 (6.19)

Smali- and large-distance behavior

It follows from (6.15) that
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Dr, k) o Pt as -0 (6.20)

and

Yu(ry k) — 71(kr) + tan &i(k) ng(kr) as  r— oo (6.21)

It follows from (6.21) that

El(r, k) — secé(k) sin (kr — =1/2 + 8;(k)) as  r-— oo (6.22)

which equation shows that the scaitering by the target has shifted the phase
of the partial-wave scattering function by &/(k).

Finite-range potential

It follows from (6.21) and (6.22 ) that for values of r outside the range of
a finite-range potential

Plr, k) = Gi(kr) + tan (k) 7y(kr) (6.23)
and
Pi(r, k) = sec §(k) sin (kr—7l/2 4+ §(k)) (6.24)
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10. Low-momentum behavior of the phase shifts

The effective range expansion

1
K cot §y(k) = —ai + 5k + O (k) (6.25)
)

follows from (6.12) and (6.19). Then

S(k) = mr —aik®™ a5 k=0 (6.26)

As shown in Section 6.6, the constant n; is the number of bound states with
angular momentum /.

The constant ag 1s the scattering length. It follows that the partial S—wave
Cross section at zero energy is

oo (0) = dral (6.27)

6.4 First Born approximation: some results

The first Born approximation is to take

T(z)=V (6.28)
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as an approximation for the 7 operator and

hy(®) = T (6.29)
i(r, k) = ji(kr) (6.30)

as an approximation for the scattering functions.

1. Scattering amplitude for a local potential

It follows from (4.23), (5.16) and (6.28) that the first Born approximation for
the scattering amplitude for a local potential (2.10) is

S5 @) = m% & SR (2 (6.31)

2. Scattering amplitude for a central potential

It follows from (2.11} and (6.31) that the first Born approximation for the
scattering amplitude for a central potential is

f(k,0) = —% fdrr sin krU(r) (6.32)
0
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where

0
5= 2ksin 5 (6.33)

Phase shift

It follows from (6.12) that the first Born approximation to the [-th partial
wave phase shift &(p) for a central potential is

Mmz_%/wﬁwﬂwﬂ (6.34)
0

It follows from (6.34) that the first Born approximation to &;(k) is positive
for an atiractive potential.

It is shown in Topic 6.5.3 that this result follows more generally from the
variable phase equations.

Yukawa potential

The first Born approximation for the scattering amplitude for the Yukawa
potential (2.86) is

2gym
B2 (2 + 4k% sin? g)

f(k,0) = (6.35)

The first Born approximation for the phase shift for the Yukawa potential
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(2.86) is

2
§i(k) = %Zl Q; (1 + 2—%) (6.36)

Rutherford formula

It follows using (2.89) and (2.90) that the first Born approximation for the
cross-section for nonrelativistic scattering by the Coulomb potential (2.88) is

2
do 3 N 21Z262
(k0 = ( ) (6.37)

4E sin? %

where E = p?/2m. (6.37) the Rutherford formula.

The above quantal derivation of the classical Rutherford formula was first
given by G. Wentzel in 1926. Improved and exact derivations of the same
result were given by I.R. Oppenheimer in 1927 and W. Gordon in 1928.

6.5 Solving the nonrelativistic scattering problem

Standard integral and differential methods

Integral method

The standard integral method for solving the nonrelativistic scattering problem
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Solve (6.15); the phase shift é;{k) is given by (6.12), (6.21) or (6.22).

Differential method

The standard differential method for solving the nonrelativistic scattering
problem is:

Solve (6.18) with boundary condition (6.20);
the phase shift §;(k) is given by (6.12), (6.21) or (6.22).

Qualitative picture

A qualitative picture of v,(r, &) and 8(k) for an attractive potential is given
in Figure 6.2.

An attractive potential increases the curvatre of 9g(r, k); it pulls ¢y(r, k)
towards the origin and 49(k) is positive.

A repulsive potential decreases the curvature of y(r, k); it pushes g (r, k)
away from the origin and éy(%) is negative.
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Figure 6.2 Qualitative picture of 1,(r, %) for an attractive potential

. | f‘; D)

Fi o Bwke ANy [T "y &%

Some exact results

1. Phase shifts for the hard-sphere potential

It follows from (6.21) that the exact phase shifts for the hard-sphere potential
(2.93) are given by

(6.38)

In particular,
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do(k) = —ka (6.39)

and

ag=a (6.40)

where ag 1s the scattering length.

Phase shifts for the square-well potential

The differental method can be solved exactly for the square-well potential
(2.92) to yield

. Ife) = Bie)
tan &;(k) = Ra) + 6 Aile) (6.41)

where prime means differentiation with respect to the argument and

arg j3(exo)
Oéjl(ao)

Br= (6.42)

where
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2ma*Vy

= (6.43)

ap = {/o? +

and

o= ka (6.44)

Phase shifts for the Boundary Condition Model

The Boundary Condition Model specifies the logarithmic derivative f;/rq, of
(r, k) at a boundary radius ro,. That is,

dEl(T: k)

dr r=r =

';]l :‘_l (TGH k) (645)

0¢

(6.45) is equivalent to the rank-2 separable potendal (2.98).

It follows from (6.21) that exact phase shifts for the Boundary Condition
model are given by

tan §;(k) = fﬁl(a) _ a}'\_{(a)

= 6.
= e 1 aml(a) (6:46)

where prime means differentiation with respect to the argument and o = kry,.
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The parameters f; and rg, can be chosen to accommodate a phase shift which
changes sign at some value of k.

Variable phase differential method

The variable phase method for solving the nonrelativistic scattering problem
is:

Determine the variable phase function 6§;(r, &) from

d * "~ 2
61((;;" k) = M%U(r) Jilkrycos §(r, k) + ng(kr)sin &(r, k) (6.47)

with boundary condition

§(0,k) =0 (6.48)

The phase shift &{k) is determined from

0100, k) = (k) (6.49)
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(6.47) for S-wave scattering is

dé‘o('f", k) N 1 .7
g =T Ulr) sin® [kr + do(r, k)] (6.50)
Comments

1. Calogero equation

(6.47), which we derive in Section 6.6, is the Calogero equation.

The Calogero equation is a nonlinear first-order ordinary differential equation
for the variable phase function &(r, k).

The variable phase method for solving the nonrelativistic scattering problem
was invented by Calogero (1967).

2. Direct method for solving the scattering problem

In contrast with the standard integral and differential methods which give
6i(k) indirectly via 4y(r, k), the variable phase method gives &(k) directly
via (6.49).

3. Sign of the phase shift

It follows from (6.47) to (6.49) that §;(k) is positive for an attractive potential
and negative for a repulsive potential.
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6.6 Some derivations

Derivation of (6.1)

1t follows from (3.25) and (3.22) that
|7 >=0L | p>=[1 + Glep £10)V] [ > (6.51)
(6.1) then follows using (5.4).

Derivation of (6.4)

It follows from (5.2) and (6.1) that
G(2)V | §>= Go(2)T(2) | p>= Go(2)V | o+ > (6.52)
where z = €y £¢0. (6.4) then follows from (6.51).

Drerivation of (6.6)

We consider (6.5) for large r =| # |. Now

|- gl= (17| —2F g+ 7] %)*
, (6.53)
7y 171
:?‘(1— 7 )JrO( = )
SO
I 5~ b g ik 6.54
Jim pp(7) = €™~ — [ dye (9)$(7) (6.54)

which, using (6.3), is (6.6).
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Derivation of (6.47) to (6.49)

We write (6.17) as

El(r, k) = ’f;(k?")c;(?", k) + ng(kr)s(r, k) (6.53)
where »
—1-1 f dr'si (kYU (Y (' ) (6.56)
and
%/dr'ﬂ Lr)U 1[)l(r r’c) - (6.57)
0
Then
er{oo, k) =1 (6.58)
and
s1(00, k) = tan §(k) (6.59)

Defining #;(r, k) by

s(r, k)
k) =

t(r, k) S (6.60}

it follows that

dt(r, k 1 > ~ 2
EE; ) = %EU(?”) [j[(k?‘) + 7 (kr Yty (r, k)] (6.61)
and
4(0,k)=0 (6.62)
ti(oo, k) = tan §i(k) (6.63)
(6.47) t0 (6.49) follow on defining

Si(r, k) = tan™t #;(r, k) (6.64)

119






Chapter 7 PARTIAL-WAVE
AMPLITUDES REVISITED

7.1 Introductory remarks

We have previously considered the analytic properties of the matrix elements
of the Green’s operators and the T operator as functions of complex energy. In
this chapter we consider the nonrelativistic partial-wave amplitude as a function
of complex momentum and energy and complex angular momentum,

We show in Section 7.3 how a Breit-Wigner resonance appears in the partial-
wave amplitude as a function of complex energy and we also develop another
method (the N/D method) for solving the scattering problem. We show in
Section 7.4 how poles of the partial-wave amplitude as a function of complex
angular momentum interpolate a family of bound states and resonances. Some
derivations are given in Section 7.5.

7.2 Definition

The key to extending the definition of the partial-wave amplitude ai(k) to
complex values of momentum and angular momentum is the fact that the Bessel
function Jy(z) is defined for complex argument z and complex order A.

Thus, the function @) (x) is defined by analytic continuation from ai(k) by

ax() = 20— 1 (7.1)

2iK

where
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sx(k) = e¥0 () (7.2)

and where

tan 6y(k) = —

x|~

/dT?g(ET)U(T)@A(T, %) (7.3)
0

where 1 (r, k) is determined from

h@EA (rye) = }A(K)T) + / dr' Gy, (T‘, v &)U(r')EA (T’7 KZ) (7.4)
0

with

— 1~ ~
Gl (T, 7 K',) = Ia(sre) my(srs) (7.5)

7.3 Complex momentum and energy

In this section we consider the partial-wave amplitude for integer angular
momentum ! and complex momentum % and complex energy z = A%x?/2m.
That is, we consider the functions e;(x) and a;(z).
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. Analytic properties

The analytic properties of ;(x) and a;(z) for a potential which is a superpo-
sition of Yukawa potentials (2.91) are summarized on Figures 7.3 and 7.4.

| ﬂ

Bouwo  STATE 7
POLES —n THE PHYSICAL REGON

" (

ra)

x VRTORL \/’x
STRTE POLE

RENSNANCE POLES
- ‘,Ha

Figure 7.3 Analytic properties of ai(k)
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Figure 7.4 Analytic properties of a:(z)

THE  PHYSICAL. SHEET ¥ 5

THE PHYSICAL REGION

L
47
6._: -?E'-

Complex momentum

1. Physical region

The physical region in the complex «-plane is the positive real axis. That is,

K=k where k>0 (7.6)

2. Branch cuts
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a;(x) has branch cuts on the imaginary axis. The branch points at +iu/2
depend only on the range of the potential.

Branch_cuts: first Born approximation

"The branch points of a;(«) can be seen by noting that the first Born approxi-
mation to a;(«x) for the Yukawa potential (2.86) is

2
ap (k) = -,% Qz(l + 2’“’?) (7.7)

and recalling that the Legendre function @;(z) has branch points at z = 1.

Bound states, virtual states, resonances

a(x) has poles on the imaginary axis and in the lower-half g-plane off the
imaginary axis.

The poles on the positive real axis correspond to bound states.
The poles on the negative real axis correspond to virtual states.

The other poles in the lower-half plane correspond to resonances.

Complex energy

Physical and unphysical sheets

ai{z) is a function on a two-sheeted Riemann surface.
The first sheet (the physical sheet) corresponds to the upper-half k-plane.
The second sheet (the unphysical sheet) corresponds to the lower-half r-plane.
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Branch cuts, physical region

@;(z) has branch cuts on the real axis. The left-hand cut depends on the
the potential; the right-hand cut arises because the Riemann surface is two-
sheeted.

The physical region in the complex z-plane is the upper lp of the right-hand
cut on the physical sheet. That is,

2k2
z=¢e+10 where €= ﬁ—— (7.8)
2m

Left-hand cut: first Born approximation

The branch points of a;(z) can be seen by noting that the first Born approxi-
mation to a;(z) for the Yukawa potential (2.86) is

2e
o (z) = 2% Qr (1 - 7L> (7.9)
where
ﬁz 2
(L= r’i (7.10)

and recalling that the Legendre function (;(z) has branch points at z = +1.

Bound states, virtual states, resonances
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Bound-state poles occur on the physical sheet.

Virtual-state poles and resonance poles occur on the unphysical sheet.

Resonance

We suppose that s;(z) for some [ has a pole when

r=T=¢p—i= (7.11)

where ep and I" are both positive. (7.11) characterizes a resonance pole of sy(z).

Now since

8 (2) = §(2") (7.12)

it follows that s;(z) has a zero when z = € as per Figure 7.5. Accordingly,
we write

(20i(2) _ E T2 2ibg() | (7.13)
€— Z

where 6p,(z) is real on the real axis and where e2%s(?} is not singular when

z = € 0r €.
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Figure 7.5 Resonance pole and zero of si(z)
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It follows from (7.13) that
8i(€) = Byg(€) + bresfe) (7.14)

where 6,.:(¢) is the angle shown in Figure 7.6. That is,

r/2

(7.15)
V(e =)+ (1/2)?

sin (Sres(é) =
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Figure 7.6 The angle yc.{¢)

Comments

Experimental manifestation

Figure 7.6 shows that as € is increased past eg, 6res(¢) and hence &(e)
increases rapidly by = provided € is close to the real axis, that is, if T is
sufficiently small.

The rapid increase of &(¢) by = is the experimental manifestation of a
resonance pole.

Breit-Wigner formula

If 5bg(2’) = (, then
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sin §;{€) = L/2 (7.16)

V(€= er)® + (T/2)?

and

ar(20 + 1 I'/2)
ai(p) = ( 5 ) ( 2/ ) 5 (1.17)
B (e—er)” +(T/2)

for € near eg. (7.17) is the Breit-Wigner resonance formula.
The resonance factor

I/2)?

( 2/ ) 5 (7.18)

(e —er)” +(I'/2)
has a maximum of unity when ¢ = ¢x and is equal to one-half when
€ = e + %F
The resonance occurs when € = e and T is the resonance width.
It follows from (7.16) that
kin
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Temporary capture of the particle

Far from the target the scattering wave function (6.7) consists of a free-particle
incoming wave packet 1y, (Z,t) and a free-particle outgoing spherical wave

packet 1hgeqi(Z,1).

The behavior of Pgcae(Z, ) depends on the relative sizes of I" and the energy
uncertainty Ac of t;,(Z,¢) when there is a resonance.

A bump in the cross-section corresponding to the resonance will be observed
when Ae < T. In this case, the outgoing wave packet lags the incoming
wave packet by a time interval

(7.20)

which may be arbitrarily large. The time lag comesponds to the temporary
capture of the particle in a metastable state.

Exponential decay

The resonance must be very narrow (I' < Ae) for the decay of the metastable
state to be observed directly. In this case, for a pure Breit-Wigner resonance,
the time-dependence of | hgeay(#,¢) | 2 has the form

e Tt (7.21)

for sufficiently large values of #. 1/ is the lifetime of the metastable state.
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Levinson’s theorem

We show in Section 7.5 that 6(¢) satisfies

51(0) - 51(00) = (n;, — np)’ﬂ' (7.22)

where n; is the number of bound states with angular momentum [ and n,, is
the number of poles of £;(z) on the physical sheet.

Comments

1. Levinson’s theorem

(7.22) is Levinson’s theorem; it is a remarkable connection between the phase
shift and the number of bound states.

2. Poles

Poles of D;(z) on the physical sheet are called C' DD poles.

N/D equations

We show in Section 7.5 that ¢;(z) may be written in the form

a;(z) = N[(Z)/D;(Z) (7.23)

where
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Di(z) =1 Z;EO j e fezk)?; l(_ﬁ)ﬁo) (7.24)
and
Ni(z) = By(z) + Idd{;(z, O Ni(€) (7.25)
where
Kilz,e) = % (e — 60)51561)—(6%20;0)31(2) (7.26)
and
By(z) = % _Z de Imeai(ez—l— i0) a2

where ey 1s a real constant.

133




We show also that

Jin(e) _ Dile —10)

Di(e +0) (7.28)

1.

Comments

N/D equations

(7.23) to (7.27) are the N/D equations for a;(z).

(7.24) gives Di(z) in terms on Vi{z) and (7.25) is a linear integral equation
for NVi{z).

Solving (7.25) requires values of By(z); that is, values of Imaj(e+ 10) on
the left-hand cut.

The N/D equations were first derived by Chew and Mandelstam (1960).

The N/D equations are believed to hold for a wide class of interactions
because the only direct dependence on the interaction potential is through ¢;,.

Self-consistent method

(7.23) to (7.27) provide a method to determine a;(z):
Solve (7.25) for Ni{z) for some choice of Imay(e -+ ¢0) on the left-hand cut
then compute D;(z) using (7.24). (7.23) then gives a;(z). Repeat the process

until self-consistency is obtained.

Determinantal approximation

Rather than solving (7.25) for Vi(z) a simple approximation (the determinan-
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tal approximation) is to take

Ni(2) = o (2) (7.29)

where aP(z) is the first Born approximation to ai(z) [(7.9) gives the first

Born approximation for the Yukawa potential] and to determine Di(z) from
(7.24).

Separable potential

The partial-wave amplitude (5.19) for the separable potential (2.94) has the
form (7.23) with

B
Ny(z) = ";—Z | vy(k) | 2 (7.30)

and ¢y = oo. Thus the determinantal approximation (7.29) is equivalent to
replacing the actual potential with the separable potential (2.94) where

|vi(k) | 2 = = aP (k) (7.31)

Bound states

A pole of a;(z) corresponds to a bound state. It follows from (7.23) that

Di(er) =0 (7.32)
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yields the bound-state energies.

6. Breit-Wigner resonance

We show in Section 7.5 that the resonance parameters specified by (7.11) for
a pure Breit-Wigner resonance are determined by

Re Di(eg +10) = 0 (7.33)

and

1F B Im Dl(z) - Ec% Im DI(Z)
2 4 Re Dy(z)

I g=egr-+10 (734)

7.4 Complex angular momentum; Regge poles

In this section we consider the function ay(k) defined for complex angular
momentum A and real momentum %k and real energy ¢ = A2k?/2m.

The physical region in the complex A—plane is the set of non-negative integers.

A=1=0,1,2,.-- (7.35)
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Analytic properties

The analytic properties of (k) have been investigated for a wide variety of
potentials and in particular for a potential which is a superposition of Yukawa
potentials (2.91). The first investigation was by Regge (1959); see also Bottino,
Longoni and Regge (1962).

Properties

I. ax(k) vanishes exponentially as A ~ oo.

2. ay(k) has only a finite number of simple poles at ar(k), -+, e, (k) in the
upper-half A-plane when Re A > —1.

3. Each oy (k) is real for negative k2, complex for positive 42 and satisfies

lim  a; (k) = —n, (7.36)

k2—do0

where n, is a negative integer.

4. Re a,(k) is bounded above for every r.

Comments

1. Regge poles
The poles of ay(k) for complex X are called Regge poles.

2. Regge trajectory

A plot of Re o, (k) and Im o, (k) as a function of € = A%k%/2m is a Regge
trajectory. A typical Regge trajectory is shown in Figure 7.7.
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Figure 7.7 A typical Regge trajectory

Regge expansion of the scattering amplitude

It follows from the theorem of residues in complex variable theory that the
partial-wave expansion of the scattering amplitude f(%,8) given by (4.26) may
be written as

/2/\—1-1&;\ ) Pr(— cos 8)dA

sin wA

(7.37)

l\.‘)leﬂ

a

where C encloses the zeros of sinw A in the complex A-plane.
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It follows from the properties of ay(k) given in Topic 7.4.1 that for a
superposition of Yukawa poteniials (2.91) the contour in (7.37) can be moved
to yield

sy 205, + 1 ﬂr( ) C}.’T(k)(_cos 9)
= —7
sinwag (k)

i (7.38)
i f (2X + 1)ax (k) Py (= cos 0)dA
2 sin T A

—%—ioo
where a;-(k) is a (Regge) pole of ay(£) for complex X and
Br(k) = lim (A — o (k))ay (k) (7.39)

A—T

is the residue of the pole at «, (k).
Comments

1. Watson-Sommerfeld transformation

(7.37) is the Watson-Sommerfeld transformation.

Re-expressing an infinite summation as an integral in the complex plane is an
old trick: it appears in Titchmarsh (1939); Sommerfeld (1925), Appendix to

Chapter VI (application to propagation of radio waves); and was first applied
to that problem by G.N. Watson in 1918,
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2. Regge expansion of the scattering amplitude

(7.38) is the Regge expansion of the scattering amplitude.

3. Regge poles, bound states and resonances

1t is seen from the first term in (7.38) that the scattering amplitude has a pole
when «,(k) is an integer.

Indeed, as indicated on Figure 7.7, each Regge pole o, (k) interpolates a
family of bound states and resonances:

The negative values of ¢ for which

ar(ey) = ! (7.40)

forl =0,1,2,-- - are the bound-state energies and /% is the angular momentum
of the bound state.

The positive values of ep and I' given by

Re a,(eg) = 1 (7.41)
1 ¢
lpo Imarlen) (7.42)
2 % Re ap(e) | e=en
for { = 0,1,2,.-- are the resonance parameters of a pure Breit-Wigner

resonance with angular momentum (7.

4, Separable potential
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It follows from (5.19} that there is a single Regge pole a(k) for the separable
potential (2.94) given by

>0

dl 5 ! 2
1+/ P |Ua(L)(p)| __ (7.43)
0

Ep - fpf +20

For further discussion see McMillan (1963, 1964).

7.5 Some derivations

Derivation of (7.22)

It follows from Cauchy’s Theorem that if a function f (z) of the complex
variable z is analytic inside and on a closed contour C then

1 (=) _
%/dz f(Z) —nzerosﬁnpoles (744)
o

where nzerps and np,pes are the number of zeros and poles, respectively, of f(z)
inside .

We consider f(z) = Di(z). D;(z) has a branch cut along the real axis; the
zeros of Dy(z) correspond to bound states and the poles of Dy(z) are C DD poles.

Using
fe
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and taking into account the analytic properties of 1;(z) it follows that the contour

in (7.44) can be moved to yield

G

d d
P . a4 .
/ € In Dy(e zU)—I—/de 7 In Dj{e 4 20)

o0 0

= 2mi(ny — nyp)

the left side of which is

o0

d . Die+i)
0 0
T d |
= Qz/de E&(e) = 2i[61(o0) — 61(0)]
0
using (7.28).

Derivation of (7.23) to (7.27)

d
- = 0) — 1n Dile — 30)] = Bl e A S M
/dc = In Dy(e+20) — In Di(e — 40)] fde - In e —0)

(1.46)

(7.47)

We write a;(z) as (7.23) where Ny(z) is chosen to have only the left-hand cut

and Dj(z) the right-hand cut. In addition
Ni(2) = Ni(=")
and

Di(z) = Di(")

We write Cauchy integrals for N;(z) and Dy(2):
1 [ M)

) 2z

Ni(z) =

(7.48)

(7.49}

(7.50)



Di(z) = = [ D) (7.51)

27 -z
C

Moving the contours and assuming that the contribution from the circle at infinity
vanishes and using (7.48) and (7.49) yields

/Ngﬁ—l-zﬂ /NIE—ZO
l 27rz €—z €— 2z

(7.52)
€
1 j‘ Tm Ny(e + i0)de
o m c— 2
—xJ
and
0 o0
D[(Z) _ Zi' / Dl(e — iO)de +f D;(e -+ iO)dE
A € — Z E— 2
— 0 0
(7.53)

€—z

1 71111 Di(e +40)de

<

We choose to set Di(ep) = 1 at some arbitrary real negative energy ¢y where
e, < €y << 0, that is,

00
D 0)d
1 / Im Di{e + ¢0)de _ (7.54)

T
¢

€E— ¢
so that (7.51) may be written as

z— € 7 Im Di{e + i0)de
T (e —z)(e — o)
0

Di(z)=1+ (7.55)
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The constant €y is a subtraction constant. The subtraction at ¢ improves the
convergence of the integral and introduces an arbitrary constant in the formalism.

We now re-express Im Ny(e -+ :0) and Tm Dj(e 4 40) in the intregrands in
(7.50) and (7.55). For —oco < ¢ < ¢,

Im N{e + 0} = Im [Di{e -+ :0)ay(e + i0)]

(7.56)
= Dy(e) Im ay(e + 40)
and for 0 < ¢ < oo,
. N;(G-Fi[))
Im Dy(e +¢0) = Im ———+~
m Dife+10) = Im aile 1 10)
(7.57)
1
= m —— — — —
NI(E) 1m CL_((E—I-iU) ]CN{(E)
s0 (7.50) and (7.55) may be written as
1 7 Dy(e)Im ayc +i0)d
e)lm aj(e 4 20)de _
N,(z):;f ! 6_’2 (7.58)
. Z— € 7 kN;(e)de
Di(z) =1— - /(e e — e (7.59)
0

(7.59) is (7.24) and substituting (7.59) into (7.58) into yields (7.25).
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Derivation of (7.28)

It follows from (7.59) that
D1(6 + iO) — Dz(é - 30)

oo
€€ f 1 K Ny(ehde
e’—egzO € —e+i0] € — e
0

= —271'2

7 {
Ni(
/5 k l )d :—QikNg(ﬁ)
— €0
0

That 1s,

1

Nile) = o

[Di(e —30) — Dy(e + i0)]

(7.28) follows from (4.28), (7.23) and (7.61).

Derivation of (7.33) and (7.34)

(7.60)

(7.61)

We suppose that si(z) has a pole as specified by (7.11) and such that

bpg(2) = 0.

It follows from (7.19) that a;(eg) is tmaginary; (7.33) then follows from

(7.23) and (7.48).

(1.34) follows from (7.23) on expanding D(e + :0) about € = ¢p.
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Appendix A Unitarily-equivalent potentials

A.1 Introductory remarks

We give the main methods for solving the scattering problem for a spinless
particle by a fixed target in Chapters 3 to 6. That is, the material in these chapters

shows how to determine the scattering operator S for a given interaction potential
V.

Is there a unique V for each 5?7 Clearly not since a scattering experiment
involves a measurement far from the target and so cannot for any finite energy be
sensitive to every short-range detail of the target-projectile potential.

We show in this appendix how to generate a family of potentials all of which
are equivalent as far as scattering is concerned. The potentials generated are
nonlocal and differ from each other only at short distances.

A.2 The unitary transformation

We suppose that we have constructed a potential V' which via the Hamiltonian
(2.7) yields the observed cross sections and binding energies. We now consider
a new potential V' defined so that the new Hamiltonian

H=Hy+V (A1)

is related to the old Hamiltonian (2.7) by

H=uout (A.2)
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where I/ is unitary. That is,

~

V= —Hy +U(Hy + VUl (A.3)
where
Ut =utu =1 (A4)
Claim
It is sufficient that
Ul d>— 7> as | ¥l— oo (A.5)

in order that V' and V' be equivalent as far as scattering is concerned.

Proof of claim

(A.5) follows on noting that H and I have the same spectrum since U is

unitary and it follows from (3.35) to (3.37) that

(A.6)

where
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E5=/d3p{§£>e,,<g§£| (AT

and

ny
Hy=> |b>¢<b| (A.8)
b=1

where €, and ¢, are given by (2.38) and (3.4), respectively, and

Pt s=U | P> (A.9)

1 T>=U]b> (A.10)

Now since scattering involves < & | p== > and < & | p& > for large distances i t
follows from the material of Chapter 6 that # and H will give the same scattering
wave function are large distances if

<E|FE>o<E|fE> a5 |7 oo (A11)

which holds if (A.5) holds.
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A.3 An example

The operator

U=1-2|u><u (A.12)
is unitary provided
<ulu>=1 (A.13)
and satisfies (A.5) if
u(Z) — 0 as | Z |— oo (A.14)
The interaction potential then is
V:V~2{H,]u><u|}—|—4Iu><u|H|u>{u (A.15)
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Comments

1. Special case

(A.14) is satisfied if | w > is a linear combination of the bound-state
eigenvectors of H

u>=>"g|b> (A.16)
k=1

The simplest special case, namely, | v > equal to one of the bound-state
eigenvectors of H

|u>=t > (A.17)

is, however, trivial since it yields

| 7 >=] > (A.18)
|T>=b> i bAVY (A.19)
Vo> — |V > (A.20)
and
V=V (A.21)
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Generalization

A generalization of (A.12) is

n

U=1-— Z ar | u; >< ug | (A.22)
J.k=1
where
< Uy I U >= 6jk‘ (A.23)

and where the complex numbers & ik — ;& are form a unitary » X n matrix,
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Appendix B Riccati functions

Definitions

As with Taylor (1972) we define the Riccati-Bessel function 3}(2:), the Riccati-

Neumann function 7;(z) and the Riccati-Hankel functions ’];?E(z) by

(B.1)

(B.2)

(B.3)

where Jy(z) is the Bessel function.

Relationship to spherical functions

The Riccati functions (B.1) to (B.3) are related to the spherical Bessel j,(z),
spherical Neumann n;(z) and spherical Hankel functions hl(i (z) defined in

Messiah (1958) by

j(z) = zj()
n;(z) = an(z)

ki (z) = 2h{7(2)

(B.4)

(B.5)

(B.6)
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As noted in Messiah (1958}, most authors denote by n;(z) the same function
with a change of sign and define spherical Hankel functions hgl)(z) = —ihgﬂ(z)
and 27 (2) = in{7(2).

General forms

The Riccati functions (B.1) to (B.3) have the general form

71(2) = Ry(2)sinz + Si(#) cos z (B.7)
ny(z) = Ri{z) cos z — S(2)sin z (B.8)
BE(2) = [Ri(2) + iSy(2)]e (B.9)

where Rz} is a polynomial in 1/z of degree ! with real coefficients and Si(z)
is a polynomial in 1/z of degree [ — 1 with real coefficients. In particular, 5;(z)
and 7;(z) are real when z is real.

Some derivatives

If f;(z) is a linear combination of 7;(z) and () with coefficients independent
of [ and =z then

dfi(= {
_]}(_) _ Lt lfl(z) — Jiy1(2) (B.10)
=z =
d {
flzf,lz(ZJ - —iz_ lfl+1(2') + fi(z) (B.11)
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2
d_+1___l(l+1) fi(z) =0 (B.12)

(B.10) provides fi1(z) given fi(z) and (B.12) follows from (B.10) and (B.11).

Some values

Jo(z) =sinz (B.13)
no(z) = cos z (B.14)
O (B.15)
-~ 1.
Ji1(z) = —sinz — cos z (B.16)
z
- 1 :
n1(z) = —cosz+sinz (B.17)
z
hE(z) = (1 = é)eﬂ(z—f/% (B.18)
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Galz) = (;32- - 1) sinz — i:)’-cosz (B.19)

fig(z) = (—5—2 — 1) cos z + g sin z (B.20)

hE(z) = (1 + % ~ %).eﬂ(z—ﬂ ®.21)
2

. S+ ,
Ji(z) = mp +0(zY)] as  z—0 (B.22)
— 1
w(z) = u[l +0(z)] as  z—0 (B.23)
b4
Behavior at infinity
Az)=sin(z—Ir/2) + O(z"Y)  as 2 - oo, real (B.24)
ny(z) = cos (z — In [2) + O(z_l) as  z — oo, real (B.25)
E?:(z) = eFilz=in/2) [1 + O(z_l)] as 2z — oo (B.26)
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Some integrals

f dri(kr)j (k'r) = g—5 (k—F) (B.27)
0
7 e Hn 1 k24 E? 4 P
/d*r —ji(kr)g (k') = —Qz( S (B.28)
0
where ¢);(z) is a Legendre function of the second kind.
Dodm}‘\; wr) g1 (kv T ~
/ 52 (_ K; i( 0 ) - ~9 ailkr )by (krs) (B.29)
0
where
flz)gly>) = flz)gly) i z<y
(B.30)
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