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Preface

The six volumes of notes Quantum Leaps and Bounds (QLB) form the basis
of the introductory graduate quantum mechanics course I have given in the
Department of Physics at the University of British Columbia at various times
since 1973. '

The six volumes of QLB are

* Introductory Topics: a collection of misceHaneous topics in introductory
gquantum mechanics

. Scattering. Theory: an introduction to the basic ideas of quantum scattering
theory by considering the scattering of a relativistic spinless particle from a
fixed target

*  Quantum Mechanics in Fock Space: an introduction to the second-quantization
description of nonrelativistic many-body systems

*  Relativistic Quantum Mechanics: an introduction to incorporating special
relativity in quantum mechanics

*  Some Lorentz Invariant Systems: some examples of systems incorporating
special relativity in quantum mechanics

*  Relativistic Quantum Field Theory: an elementary introduction to the relativis-
tic quantum field theory of spinless bosons, spin % fermions and antifermions
and to quantum electrodynamics, the relativistic quantum field theory of elec-
trons, positrons and photons

Q7 B assumes no familiarity with relativistic quantum mechanics. It does
assume that students have taken undergraduate courses in nonrelativistic quantum
mechanics which include discussion of the nonrelativistic Schrodinger equation
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and the solutions of some standard problems (e.g., the one-dimensional harmonic
oscillator and the hydrogen atom) and perturbation theory and other approximation
methods.

QLB assumes also that students will take other graduate courses in condensed
matter physics, nuclear and particle physics and relativistic quantum field theory.
Accordingly, our purpose in QLB is to introduce some basic ideas and formalism
and thereby give students sufficient background to read the many excellent texts
on these subjects.

I am happy to have this opportunity to thank my friends and colleagues
R. Barrie, B. Bergersen, M. Bloom, J. Feldman, D.H. Hearn, W.W. Hsich,
R.1.G. Hughes, F.A. Kaempffer, P.A. Kalyniak, R.H. Landau, E.L.. Lomon, A.H.
Monahan, W. Opechowski, M.H.L.. Pryce, A. Raskin, P. Rastall, L. Rosen, L.
Sobrino, F. Tabakin, A.W. Thomas, E-W. Vogt and G.M. Volkoff for sharing
their knowledge of quantum mechanics with me.

I also thank my wife, Henrietta, for suggesting the title for these volumes
“of notes. Quite correctly, she found my working title Elements of Intermediate
QOuantum Mechanics a bore.
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Chapter 1 INTRODUCTORY REMARKS

As discussed in QLB: Relativistic Quantum Mechanics, in order to describe a
Lorentz invariant physical system using quantum mechanics one must:

1. specify a set of fundamental dynamical variables for the system;
2. specify the fundamental algebra of the set of fundamental dynamical variables;
3. select a complete set of compatible observables for the system;

4. specify the Hilbert space of the system through spectral resolution of the
complete set of compatible observables;

5. determine the Poincare generators H, ﬁ, f, K for the system in terms of the
fundamental dynamical variables.

For convenience we give some elements of relativistic quantum mechanics
in Section 1.1.

We give a number of examples of Lorentz invariant systems in this volume
of QLB. We follow the above steps in each case. This procedure differs from
the historical one for the Dirac particle discussed in Chapter 4 but it yields all
the usual results.

We consider a single spinless particle in Chapter 2, a particle with spin in
‘Chapter 3, a Dirac particie in Chapter 4, a system of particle. with spin in Chapter
5 and a simple system involving particle creation and annihilation in Chapter 6.
Lists of selected reference books, journal articles and theses follow Chapter 6.
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1.1 Some relativistic quantum mechanics

In this section we give some elements of relativistic (and nonrelativistic)
-quantum mechanics which are used later in this volume and which are discussed
more fully in QLB: Relativistic Quantum Mechanics. ‘

Poincare Generators

The Hermitian operators H, ﬁ, f, K are the Poincare generators for a Lorentz
invariant physical system. H is the Hamiltonian; P is the total momentumn; J is
the total angular momentum; K is the Lorentz booster. These cperators generate
time translations, spatial displacements, rotations and Lorentz boosts, respectively.

Poincare Algebra

The Poincare Algebra is the following set of commutation relations for the
Poincare generators:

{Pf,Pk] =0 (1.1
[P/, H] =0 (1.2)
|77, P¥| = ifiei P! (1.3)
[JI,H] =0 (1.4)
(79, 7] = ihejuu! (L5)




(K7, P*| = —ifbjH/ (1.6)
(K7, H] = —ihP? (1.7
[KJ',J’“] = iK' (1.8)
(K9, KF| = —ifiejud! /e (1.9)

where A = h/27, h is Planck’s constant, ¢ is the speed of light, 6;p 18 the
- Kronecker delta symbol and €4y is the Levi-Civita permutation symbol.

Galilei Algebra

The Galilei Algebra is a set of commution relations appropriate for describing

~a Galilei invariant physical system. The Galilei Algebra is identical to the Poincare
Algebra except for (1.6) and (1.9) which are the only equations in the Poincare
. Algebra which involve the speed of light ¢. More specifically, the Galilei Algebra
is identical to the Poincare Algebra except in having (1.6) and (1.9) replaced by

K9, P¥| = —ifims | (1.10)

[Ki,K’f] =0 - (1.11)

where m is the mass of the system. The Galilei booster K generates Galilei
boosts. '




Unitary Poincare operators

The unitary Poincare operators for a Lorentz invariant system are

U(t) = e4fﬂt/ﬁ (1.12)
Di(a) = ¢~iF'e/k (1.13) |
R(§) = e;*Jj”/ﬁ (1.14)
Li(u) = e~icK u/h (1.15)

- As discussed in QLB: Relativistic Quantum Mechanics, these operators cor-
respond to space-time transformations in a fixed inertial frame as follows:

" We consider a state | #» > of the system prepared by a preparation apparatus
in a fixed inertia} frame S at time zero.

U(t) is the evolution operator for the system, The state

| () >=U@) | ¥ > (1.16)

is the state of the system in S5 at time {. It follows from (1.16) that

H|¢@) >= iﬁ% | (t) > 1.17)




(1.17) is the Schrodinger equation for the system.

DI (@) is the displacement operator along the j-axis of § for the system, The
state - '

| $aisp >= D¥(a) | ¢ > (1.18)

is the state of the system prepared in S at time zero by the apparatus displaced
by a along the j-axis of S.

F7(0) is the rotation operator about the j-axis in $ for the system. The state

| Yrot >= RI(0) | ¢ > (1.19)

is the state of the system prepared in S at time zero by the apparatus rotated
by @ about the j-axis of S.

Li(u) is the Lorentz boost operator along the j-axis in $ for the system.
The state

| Bhoost >= L7 (u) | ¢ > (1.20)

is the state of the system 'prepared in S at time zero by the apparatus boosted
with rapidity v along the j-axis of S.

The states | 14isp >, | ¥rot > and | Pp001 > evolve under the influence of the
Hamiltonian H and at time ¢ in S are




| ".bd'isp(t) >= U(t) | "abd:'sp > (121)
| $rot(t) >= U(2) | ¥rot > o (1.22)

I ¢baost(t) >= U(t) I 'beoost > (1.23)

It follows from the Poincare Algebra (1.1) to (1.9) that the above states are
related to the state | ¢(¢) > as follows:

| Paisp(t) >= D(a) | $(t) > (1.24)
| Yrot(t) >= R(0) | 9(t) > (1.25)
D7 (2") | roont (') >= LI (u)D¥ () | (t) > (1.26)
where
z' = y(z — vt) (1.27)
¢ = 7(; - 'c'f) (1.28)

where ¥ = cosh u.




Space inversion and time reversal

As discussed in OLB: Relativistic Quantum Mechanics, the Poincare genera-

tors transform under space inversion and time reversal as follows:

PHP = H (1.29)
PPpi=_pP (1.30)

PJP =T (1.31)
PEP = K (1.32)
THT = H (1.33)
TETt = —P (1.34)
TJT = —J (1.35)
TEKT = K (1.36)

where the linear operator P is the space inversion operator and the antilinear

operator T is the time reversal operator for the system.

P and T correspond to space inversion and time reversal in a fixed inertial

frame as follows:




We consider a state | ¢» > of the system prepared by a preparation apparatus
_in a fixed inertial frame S at time zero.

The state

| ine >=P | > (1.37)

is the state of the system prepared in S at time zero by the space-inverted
apparatus and the state

| rew >=T | > (1.38)

is the state of the system prepared in S at time zero by the time-reversed apparatus.

The states | 1hiny > and | ¥re, > evolve under the influence of the Hamiltonian
H and at time ¢ in S are

| Yinu(t) >=U(2) | ino > (1.39)

| Pren(t) >=U(t) | trew > (1.40)
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It follows from (1.29) and (1.33) that the above states are related to the state
{ (1) > as follows:

| bino(t) >= P | $(t) > (1.41)

[ "/)rev(t) _>: T I ’l,b(——t) > (1.42)

Invariant mass

The invariant mass M of a Lorentz invariant system is

M= lVP.P (1.43)

c

That 1is,

Mc* =/ H2 — P2¢2 (1.44)

Pauli-Lubanski four-vector

The Pauli-Lubanski four-vector W# for a Lorentz invariant system is

W# = —%e"""""JF',,Mcrr (1.45)
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where ¢#777 is the unit antisymmetric tensor. That is,

wl=J.P (1.46)
W= %Hf+ & x P (1.47)
Centre of mass position
The centre of mass position X of a Lorentz invariant system is
Fo_9(lpg. gl ¢ PxW  (148)
2\ H H (E+ Mc)MH )
where
E=vVH? =+P%24+ M24 (1.49)

Centre of mass velocity

The centre of mass velocity V of a Lorentz invariant physical system is

defined as

(1.50)

12




It follows from (1.48) that

. 2P
= — 1.51
14 I (1.51)
Internal angular momentum
The internal angular momentum § of a Lorentz invariant system is

e [ =W — 52

5 Mc(E E+ Mc? ) (1.52)
It follows from (1.52) that

[5*, H] =0 (1.53)
WW = —(Mc)*5-§ (1.54)

—p
o~

S is a constant of the motion and § - 5 is a Lorentz invariant,
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Helicity

The helicity A of a Lorentz invariant system is

A= %.‘E (1.55)
where P = \/ﬁ—f"
it follows from on calculation that
(A, H] =0 (1.56)
AP =0 (1.57)
[A,J“] —0 (1.58)
[AR] = iﬁMc(P§ - AP‘) (1.59)

A is a Lorentz invariant for a system with M = 0.
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Chapter 2 | SPINLESS PARTICLE

In this chapter we consider a Lorentz invariant physical system consisting of
a single spinless particle.

We follow the steps given in Chapter 1: we specify the physical system by
a set of fundamental dynamical variables and we construct Poincare generators
in terms of these variables.

Fundamental dynamical variables for the system are given in Section 2.1,
Poincare generators are given in Section 2.2, various space-time transformation
operators are given in Section 2.3, coordinate- and momentum-space wave func-
tions are given in Section 2.4, some transformed coordinate-space wave functions
are given in Section 2.5, the integro-differential equation for the coordinate-space
wave function is given in Section 2.6 and the Klein-Gordon equation for the
coordinate-space wave function is given and discussed in Section 2.7. Some
derivations are given in Section 2.8.

2.1 Fundamental dynamical variables

Fundamental dynamical variables for a physical system consisting of a spinless
particle of rest mass m are the Cartesian coordinates and momenta!

X1 x2 x3 pt p? pd 2.1)

: (2.16) shows that P? is a Poincare generator. We have antic:pated this result in order not to prohferate

the number of symbols,
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which satisfy the fundamental quantum conditions

ke ,X’“] =0 2.2)
[PJ', P’“] =0 2.3)
X7, PH| = iy 2.4)
The operators
Xt x? x3 (2.5)
Pl p? p3 (2.6)

each form a complete set of compatible observables. We denote their simultaneous

eigenkets by

| & >=| z,y, 2 >=| 2!, 2%, 2% > 2.7)

| #>=|p',p%p° > 2.8)

These eigenkets may be used as bases for the Hilbert space. That is,

16




ijfd3m|5:'>xj<5| (2.9)
szfd3p|ﬁ>pj<ﬁ'| (2.10)
and
I:fd3m|£><£|=/d3p[ﬁ‘><ﬁl (2.11)
<#ld>=6(3-7) 2.12)
<717 >=4(5—7) (2.13)
where & (E — ;E") and § (ﬁ‘ - ﬁ) are 3-dimensional Dirac delta functions.
It follows from (2.2) to (2.4) that
1 \?
= - N 15 Z/h
<Z|p (gﬂ_ﬁ) e

(2.14)
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2.2 Poincare generators

We require the particle to be a Lorentz invariant system. We must, therefore,
construct the Poincare generators H, P, J, K in terms of (2.1). We quote the final

- results. The Poincare Algebra (1.1) to (1.9) is satisfied when

H = /P22 + m2ct (2.15)
P=P (2.16)
J=XxP 2.17)
— 1 s —+
R=-55 (XH + HX) (2.18)
Comments
1. Spectral decomposition of the Hamiltonian
H is a function of momentum so
H:/d3p|ﬁ>e,,<ﬁ'| (2.19)
where
ep = VP2 + miet (2.20) .
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2. Comparison with the nonrelativistic case

The Galilei Algebra is satisfied when

H = _21_2 2.21)
P=FP (2.22)
J=XxP (2.23)
R —mX O (224)

The Hamiltonian H and the booster K are different in relativistic and non-
relativistic. quantum mechanics. The total momentum P and total angular
momentum .J are the same.

3. Imvariant mass

it follows from (1.44) that

=
I
3

(2.25)

4. Centre of mass position and internal angular momentum

It follows from (1.48) and (1.52) that

19




P
]
e

(2.26)

Tl
f
oo

2.27)

The centre of mass position of the particle is the Cartesian position; the
internal angular momentum of the particle is zero.

Centre of mass velocity

(2.15) corresponds to the classical expression for the energy of a particle in
terms of its momentum. It follows from (1.51) and (2.15) that the velocity
of the particle is '

—

2P
VP2Z 1 mict

<t
H

(2.28)

Furthermore,

mV
1 —V2/c?

mc:2

b= ———ee (2.30)

S -V

P= (2.29)

(2.30) is the guantal version of Einstein’s equation in classical special rela-
tivity.
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6. Particle with zero rest mass

It follows from (2.15) and (2.28) that when m = 0

H = Pec (2.31)

—

V= (2.32)
V=c (2.33)

A particle with zero rest mass travels at the speed of light.

2.3 Space-time transformation operators

In this section we give expressions in terms of position and momentum
eigenkets for the unitary Poincare operators (1.12) to ¢1.15) and for the space

inversion and time reversal operators.

Unitary Poincare operators

The evolution operator (1.12) is

(2.34)

V) = [ 15> il < )

The displacement operator (1.13), rotation operator (1.14) and boost operator
(1.15) may be written as

21




Di(a) =/d3x|:?:'pj S< 7]

(2.35)

RI(8) = /d3x | Zps >< T |= fdsp | Pri >< 7| (2.36)
L (u) = / d*p [ | i >< 7 (2.37)

tp

where, for example,

| Zp1 >=| 2t 4+ ¢, 2%, 2% > (2.38)
| g1 >=] 2! 2% cosf — z°sin @, z%sin  + z° cos§ > (2.39)
| prr >=| p! ,p? cos @ — pdsin 6, p? sin 8 + p°cosf > (2.40)

1
| Fr1 >=| pl coshu + Eep sinh u,pz,p3 > (2.41)
€prr = €pcoshu + cp! sinhu (2.42)

(2.35), (2.36) and (2.37) give a direct correspondence with transformations of

space-time points; they also allow simple proofs of

22




D'(a)X*Dit(a) = X* — ab; (2.43)
RYOX'R1(6) = X! (2.44)
RYOX2RM(8) = X% cos 0 + X?sind (2.45)
R'(O)X*R"(0) = —XZsind 4 X3 cos 8 (2.46)
LY (u)H L (u) = H coshu — ¢P¥ sinh u (2.47)
LI (u)eP? L7 (u) = ¢P? coshu — H sinhy (2.48)
L(w)ePP L) = eP* (54 k) (2.49)

Space inversion and time reversal operators

The operator P corresponding to space inversion is

P:fdgzc[—-f><:7:'[=_/d3p[—ﬁ'><ﬁ| (2.50)

23




The operator T' corresponding to time reversal is

T ¢S>=/d3m | ;Ts‘><qb|5:’>:/d3p|—ﬁ><¢|ﬁ'> @.51)
where | ¢ > is any vector or ket in the Hilbert space.
- Tt follows from (2.50) and (2.51) that for any linear operator A
PAPT = /d%d%’ |#>< —F|A]~7 >< o |

(2.52)

= [Ey |5>< 51 Al-F ><7 |

TAT = /d3a:d3:r’ Z><i|A|d S<a |

(2.53)

= [#py |7>< =71 Al =7 <7 |

Thus,

PAP' = A (2.54)

24




§—£|A|—Q>=<5|A|Q> (2.55)
or
<—FlA|~p >=<F|A|p > (2.56)
and
TAT = A (2.57)
if
<F|A|d >=<Z|A|2 > (2.58)
or
<-plA|-p >=<F|A|f > (2.59)

25




In particular, if

<#| A7 >= a@)6(z~ ) (2.60)

then (2.55) and (2.58) become

o(—2) = a(@) @61) |

a* (&) = a(Z) (2.62)

(2.62) is satisfied if A is Hermitian; accordingly, a local observable is invariant
under time-reversal, as follows also from (2.66).

Finally, (2.52) and (2.53) allow simple proofs of

PXPt = _X (2.63)
pPPpt = P (2.64)
PHP = H (2.65)
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TXT = X (2.66)
TPTY =P | (2.67)

THT = H (2.68) |

2.4 Wave functions

The coordinate-space wave function 1(Z, t) for the particle is defined as

P(F) =< T | P(t) > (2.69)

where | 9(¢) > given by (1.16) is the state of the particle at time £, and

| 9(Z,t) | 2d*z (2.70)

is the probability that the particle is in the volume d®z about £ at time {.

The momentum-space wave function (g, ¢) for the particle is defined as

P(pyt) =< | $(t) > (2.71)

and

27




| (B, t) | 2d®p 2.72)

is the probability that the particle has momentum in the volume d°p about §
at time t.

It follows from (2.14) that

w@0=(55) [ Erm Moz .73

B(pt) = (ﬁ) f dPpeTE By (3 1) (2.74)

1t follows from (2.34) that

PpEty =T pl > (2.75)
and _.thcrefore
= _ ﬁ % 37 .1 E-f—;wkt i
W(F, 1) = (5;) / dBlei( )¢(k) (2.76)

where § = ik, ¢, = iy and ¢(E) =< 7|9 >
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1.

2.

Comments

Plane wave

The function
ei(fi‘:-f—-wkt) (2.77)
describes a plane sine wave moving with phase speed w; /& and group speed

diwy _ pc2

T 7 ey (2.78)

in the direction k.

Wave packet

(2.76) describes a wave packet; its shape is determined by the probability
amplitude for having prepared the particle at time zero with momentum Ek.

2.5 Some transformed wave functions

In this section we give expressions for some space-time traasformed

coordinate-space wave functions which follow using the space-time transforma-
tion operators given in Section 2.3.

Displaced wave function

The displaced coordinate-space wave function 1g;,,(Z, ) for the particle is

at time ¢ is defined as

Yisp(Z,t) =< Z | Yaisp(t) > (2-79)
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where, following (1.21),

| $aisp >= D(@) | ¥.> (2.80)
where
D(@) = D(a') D?(a®) D3(a?) (2.81)
It follows from (2.35) that
Paisp(Tot) = (T — @, 1) (2.82)

Space-inverted wave function

The space-inverted coordinate-space wave function v;,,(Z,t) for the particle
is at time ¢ is defined as

":bz'vw(iat) =<z l ¢inv(t) > (283)

where | ti,,(t) > is given by (1.39). It follows from (2.50) that

binol3,1) = 9(=Z,2) (2.84)
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Time-reversed wave function

- The time-reversed coordinate-space wave function ;,,,(,t) for the particle
is at time t is defined as

Vrew (5, t) =< I l wa'rev(t) > (2.85)

where | 1..4(t) > is given by (1.40). It follows from (2.51) that

‘/’rev(f:t) = ¢*(fv —t) (2.86)

The complex conjugated wave function appears on the right side of (2.86)
* because the time reversal operator i§ antiunitary.

- 2.6 Equation for the coordinate-space wave function

We show in Section 2.8 that the coordinate space wave function t(Z,1)
satisfies the following integro-differential equation:

() [ atnaereomy(. =aE20 )
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Nonrelativistic Schrodinger equation

The nonrelativistic limit of (2.87) follows on replacing e, by p?/2m. This
replacement yields

L V(@0 = (@) .88

(2.88) is the nonrelativistic Schrodinger equation.

2.7 Klein-Gordon equation

As is seen from performing the required differentiations, the wave packet
(2.76) satisfies

[El + (-ﬁ—) ]?,b(w,t) =0 (2.89)
where
1 9 9
O=535-V (2.90)

(2.89) is the Klein-Gordon equation, We derive (2.89) directly in Section 2.8. _
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Comments

1. Negative energy solutions

The coordinate representation of every solution of the Schrodinger equation
(1.17) satisfies (2.89). The converse, however, is not true. This follows since
the derivation of (2.89) involves the square of H so (2.89) could also have
been derived by taking H to be equal to —v/P2c% + m2ct. One says that
(2.89) possesses both positive energy solutions and negative energy solutions.

The negative energy solutions of (2.89) have no sensible interprctation in a
one-particle theory. C

2. Loren_tz invariant solutions

The d’Alembertian (2.90) is invariant under all Poincare transformations.
That is,

O=0 (2.91)

where
o = 1 8% p_ 1 8 H? 02 0? 5.9
TN T 2o Bz By 027 (2.92)

where
' = A¥ g¥ 4 a* (2.93)

is a Poincare transformation. It follows that if f(z,y,z,%) is a solution of
(2.89) then so is f(z',y',2',t'). One can construct solutions f(z,y,z,t) of
(2.89) which satisfy

f@& 2 ) = f(z,y,2,1) (2.94)

Such solutions are called Lorentz invariant solutions of the Klein—Gordon
equation.

3. Lorentz invariant wave-packet solutions
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The wave packet (2.76) is a Lorentz invariant solution of (2.89) if

Whth (ié'f) = wpth (i’é) | (2.95)
. where
K = AR R (2.96)
-~ and
K = wy, e (2.97)

A manifestly covariant form for this wave packet is

éb(e':‘, t) = f d* k6 (k.k—- (%)z)awﬂ)eik-xa(k#) (2.98)

where (k") is the positive step function and

—

(k) = 2 (%) gRLN (%) (2.99)

Quantizing the Klein-Gordon equation

-(2.98) is the traditional starting point for the development of the relativistic
quantum field theory of uncharged bosons with zero spin.

The function a(k*) is reinterpreted as an annihilation operator for a boson
with energy-momentum %# and (2.98) is reinterpreted as an expression for a
field operator in the Heisenberg picture. The field operator obeys the Klein-
Gordon eguation (2.89)..

The above reinterpretation is called quantizing the Klein-Gordon equation.

The negative energy solutions of (2.89) are reinterpreted as field operators for
particles with negative charge. '
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We develop the relativistic quantum field theory of spiniess bosons from
first principles in QLB: Relativistic Quantum Field Theory. The traditional
approach of guantizing the Klein-Gordon equation will not be followed.

2.8 Some derivations

Derivation of (2.87)

(£, 1) satisfies
<Z|H|y@t) >= iﬁ?%?t—) (2.100)
(2.87) follows using |
<z |H|p) >=fd3x’<f|ﬂ|a?>¢(:5",t) (2.101)
and

—

<f|H|:?>=fd3pd3p’<f|ﬁ><ﬁ|ﬂ|£'><;5‘|m'>

(2.102)
AN [ s (-
= (%) f d°p epe
- which yields (2.87).
Derivation of (2.89)
Operating on both sides of (1.17) with H yields
s
H? | (t) >= —ﬁzﬁ | $(t) > (2.103)
the coordinate representation of which is
2,0 ( 3 :
< F|H? | p(t) >= —i20 P& (2.104)

ot?
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Using (2.15), the left side of (2.104) is

& < | P?|y(t) > +mictep(3, 1) (2.105)
and since
<#| P bt) >= k(@ 1) (2.106)
it follows that
< Z| H? | 9(t) >= —R2EV2)(F, 1) + mic*p(2,1) (2.107)

(2.89) is (2.104) in more compact form.
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Chapter 3 PARTICLE WITH SPIN

In this chapter we extend the material of Chapter 2 to consider a Lorentz
invariant physical system consisting of a single particle with spin s where s is
any positive integer or positive half-odd integer. As we shall see, inclusion of
spin is simple and straightforward.

We follow the steps given in Chapter 1: we specify the physical system by
a set of fundamental dynamical variables and we construct Poincare generators
in terms of these variables.

Fundamental dynamical variables for the system are given in Section 3.1,
Poincare generators are given in Section 3.2, coordinate- and momentum-space
wave functions are given in Section 3.3 and helicity wave functions are given
in Section 3.4.

3.1 Fundamental dynamical variables

Fundamental dynamical variables for a physical system consisting of a particle
of rest mass m and spin s where s is any positive integer or positive half-odd
integer are the Cartesian coordinates, momenta and spin'

X', X% X3 PP P ST, 52, 60 3.1

which satisfy

! (3.20) shows that P7 is a Poincare generator, We have anticipated this result in order not to proliferate

the pumber of symbols.
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[Xf,X’“] =0 (3.2)
[P, P =0 (3.3)
X7, PH] =gy (3.4)
[Sj,S’"'] = ifiejS! 3.5)
S.5 =s(s+1)K? (L6)
[Si,x"] - [Sj,Pk] —0 3.7)
The operators
X x? x3,83 (3.8)
P, P p3 53 (3.9)

each form a complete set of compatible observables. We denote their simultaneous

eigenkets by
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| Zms >=| z,y,2,ms >=| 2}, 2%, 2%, m, > (3.10)

| #ms >=| p', p?, p%,ms > (3.11)

These eigenkets may be used as bases for the Hilbert space. That is,

X'= > f &Pz | Fm, > &) < &my (3.12)
Ma=—=—§ .

' ) +s )

Pl = Z /d3p | Pms > p? < pimy | (3.13)
Me=—38

Y fd3:c|fms>msﬁ<_fm3|

me=—38
s (3.14)
= Z fd3p|ﬁms>msﬁ<ﬁms[
Mm=—3

and

+s '
1= Y [ )am ><am, |

Ma=—5
e (3.15)
= 3 /dsp!ﬁm3><ﬁm5]

m.=—38
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< Zmy | P, >= 5(5:*— a?') - (3.16)

-
!

< pm, | P, >= 5(5— e ) St (3.17)

It follows from (3.2) to (3.4) that

3

Fmy | gt o= — | &PERg, (3.18)
< Tmg | pmg > ok m.m

3.2 Poincare generators

We require the particle to be a Lorentz invariant system. We must, therefore,
construct the Poincare generators H, P, J, K in terms of (3.1). We quote the final
results. The Poincare Algebra (1.1) to (1.9) is satisfied when

H = /P22 + mict (3.19)

P=P (3.20)

J=XxP+8§ (3.21)
K:—Q-C-E(XH+HX)+m(SXP) (3.22)




Comments

1. Comparison with the spinless particle case
" H is the same as in the spinless particle case: H does not depend upon 3.

(3.21) is the obvious generalization of (2.17); K therefore depends upon g
because of the Poincare Algebra equation (1.9).

Modifying J and K from the spinless case and leaving H and P unchanged
corresponds to the point form of dynamics defined by Dirac (1949).

2. Comparison with the nonrelativistic case

The Galilei Algebra is satisfied when

H= % | (3.23)
B=p (3.24)
J=XxP+5 (3.25)
B =—mi (3.26)

Only J depends upon § in the nonrelativistic case.

3. Energy spectrun:

H is a function of momentum so
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- It follows from (1.51) that

42

+s5
H= Y f &Bp | s > €y < fims | (3.27)
Me=—5§
where ¢, is given by (2.20).
4, Invariant mass
It follows from (1.44) that
M=m (3.28)
5. Cenire of mass position and internal angular momentum
It follows from (1.48) and (1.52) that
X=X (3.29)
5=5 (3.30)
The centre of mass position of the particle is the Cartesian position; the
internal angular momentum of the particle is the Cartesian spin. -
6. Centre of mass velocity




b

ctP

VP22 4 mict

mV

V1=V2/c?

me

R —
NI

(3.31)

=
f

My
I

(3.32)

(3.33)

(3.33) is, for a particle with spin, the quantal version of Einstein’s equation
in classical special relativity.

Wigner rotation of spin

The dcpendence of K upon S in the Poincare case yields a rotation of spin
under Lorentz boosts. This is the Wigner rotation for a particle of spin s.

The Wigner rotation is a purely relativistic effect. There is no Wigner rotation
in the Galilei case because, according to (3.26), K in that case does not
depend upon 5.

. Particle with Zero rest mass

Tt follows from (3.19) and (3.31) that when m = 0
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H = Pe (3.34)
. P
== - 3.
V== (3.35)
V=c (3.36)

A particle with zero rest mass and spin s travels at the speed of light.

3.3 Wave functions

The coordinate-space/spin wave function b, (Z,t) for the particle is defined

as

Y (E,8) =< Fms | (t) > (3.37)

‘where | ¥(t) > given by (1.16) is the state of the particle at time ¢, and

| Y. (F,1) | 2d%z (3.38)

is the probability that the particle is in the volume d3z about # at time ¢ with
3-component of spin equal to m,.

The momentum-space/spin wave function 1, (g, t) for the particle is def_}ned

as




PYm, (7, 1) =< ﬁhis | (t) > (3.39)

and

| ¥m.(52) | *d°p (3.40)

is the probability that the particle has momentum in the volume d®p about 7
at time ¢ with 3-component of spin equal to m.

The coordinate-space/spin and momentum-space/spin wave functions are re-
lated according to

1 \? '
Ym(Z,1) = (-2-;—,-{) / Ppe?/hy (5,1) (3.41)
o (1) = (ﬁ)z / Bpe By (2 ) (3.42)

It follows from (3.27) that

thm (B 1) = e TR < G | > (3.43)

and therefore
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Ym.(Z,1) = (—ﬁ—)“ f PreiFF-mt)y, (E) (3.44)

~where §' = hE, ep = Rwy and ¢, (1-5) =< pms | ¢ >.

_ (3.44) describes a wave packet in terms of the probability amplitude for having
prepared the particle at time zero with momentum fik and 3-component of spin
equal to my.

hm.(Z, ) given by (3.44) satisfies the Klein-Gordon equation (2.89).

3.4 Helicity eigenkets

It follows from (1.55) and (3.21) that the helicity A of the particle is

(3.45)

A is the projection of the intrinsic spin of the particle along the direction of
the momentum of the particle.

The eigenvalues of A are Ak where A = 5,5 —1,--+,~s.
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When expressed in terms of the eigenkets | pm, >

?

+s +s .
A= >0 > /dsplﬁms'> (s"-:’?»")mm,<ﬁm;| (3.46)
m5=-——3m;:_s silfis

where 7 is the unit vector 5/v/7- p and s', 52, s% are (2s + 1) x (2s + 1) matrices
satisfying

[sj,sk] = ihieus' (3.47)

with s3 diagonal.

~ For a particle with spin 1,

o %n& (3.48)

2

where the ¢!, 02, o3 are the Pauli matrices, in which case,

- : —ip '
&'-fi:( cosf sin fe ) (3.49)

sinfe**  —cosé

where (6, ) are the spherical polar coordinates of j'in the fixed inertial reference
frame. :
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The operators

Pl P2 P A (3.50)

are a complete set of compatible observables. We denote their simultaneous
gigenkets by

| BB > (3.51)

These eigenkets may be used as a basis for the Hilbert space. That is,

fﬁﬂﬂm>ﬂ<ﬂ@l (3.52)

A=—s
A= Z/d3p|h*‘m>xﬁ<h*(ﬁj| .(3.53)

A=—s

and

1= i /d3p|h’\(ﬁ) ><Ah*(p)] (3.54)

A=—3s
<@ |1 (F) >= (-7 ) (3.55)
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Furthermore,

< Pmg | @) >= 6(5— 7 ) b, () (3.56)

which defines the functions hﬁls (p), and, using (3.18),

3
< #m, | @) >= (ﬁ) CePEARA () (3.57)
- _

. The functions k7, (p) are determined by solving the eigenvalue problem for
A in the | g, > representation. For a particle with spin % this yields

T
= =
1+ 4+ +
Bt 13 st d s B |
Vo o
ST
e )
1+
B b pto= b [
S P
33
\--——-'/
|
N
m!'i
6 Q
w. B
2wl
I
]
I
s )
& <
> &,
=
b2}
N
P
w
th
=
S

That 1is,

- _
hon, (7) = D _,(,6,0) (3.59) |

where Dfn,m(a, B,7) is the rotation matrix given by Rose (1957), page 234.
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For general s

k), () = D5, 5(1,6,0) (3.60)

3.4.1 Momentum-space/helicity wave function

The momentum-space/helicity wave function ¢*(5,¢) for the particle is de-
fined as

P(F 1) =< BMND) | () > (3.61)

and

| 9251} | 2d®p (3.62)

is the probability that the particle has momentum in the volume d®p about p
at time ¢ with helicity A.

Helicity is a Lorentz invariant for a system with M = 0, that is, a particle
with zero rest mass. In this case, where the Hamiltonian (3.19) is invariant under
space inversion,

Y N5 ) =0 unless A=s or —s (3.63)
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It follows from (3.56) and (3.59) that the momentum-space/spin and
momentum-space/helicity wave functions are related according to

+38

Y, (58) = D Dip(,0,0)43(5,%) (3.64)
A=—s
-+8

VF ) = D Dim (0,8, 00m,(51) (3.65)

It follows from (3.52) that

B (p, 1) = e M < WA p) | > (3.66)

The coordinate-space/spin wave function (3.44) may be written as

v,bms(:z',t)z( ) f BreiFE-ot) ps. (cp,e,())zp*(ic’) (3.67)

A=—s

where 11)’\(1"5) =< KNE) | P >.

¥m.(z,t) given by (3.67) describes a wave packet in terms of the probability
amplitude for having prepared the particle at time zero with momentum %% and
~ helicity Ak, '

51







Chapter 4 ' DIRAC PARTICLE

In Chapter 3 we considered a Lorentz invariant system consisting of a particle
of rest mass m and spin s where s is any positive integer or positive half-odd
integer. We showed that inclusion of spin was simple and straightforward; we
also showed that the energy of the particle was independent of spin and always

nonnegative.

In this chapter we consider the physical system to be a Dirac particle of rest
mass m. The quantum mechanics of this system was first considered by Dirac
Dir 1

(1928). As will be shown, the _;Di:_ac particle has spin 5 and p(_)ssesses both

positive and negative energy states. Dirac assumed the particle to be an electron,

The negative energy states have no physical interpretation in a one-particle
theory. Dirac’s bold interpretation of these states (hole theory) predicted the
existence of antiparticles and led to the invention of relativistic quantum field
theory. It is one of the greatest achievements in the history of quantum physics.!

Dirac’s hole theory, as brilliant as it was in 1930, is not the modern view
of antiparticles. In QLB: Relativistic Quantum Field Theory we construct a
relativistic quantum field theory of electrons and positrons where particles and
antiparticles appear on equal footing and with positive energies.

Some of the ideas of ho}c,. theory do, however, appear in a modified and
correct form in the modern view of many-body physics as discussed in QLA:
Quantum Mechanics in Fock Space.

As in Chapters 2 and 3 we follow the steps given in Chapter 1. we specify
the physical system by a set of fundamental dynamical variables and we construct

! Nonrelativistic quantur: mechanics was invented by Heisenberg and Schrodinger in 1925. Dirac

proposed his Hamiltoniank(df.l’()) in 1928. He was 25 at the time. Dirac proposed his interpretation of
the negative energy states in 1930. The positron was discovered by Anderson in 1932. Relativistic
quantum field theory was invented by Pauli, Jordan and others between 1933 and 1935.
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Poincare generators in terms of these variables. This differs from the usual
procedure for the Dirac particle but it yields all the usuval results.

Fundamental dynamical variables for the system are given in Section 4.1 and
Dirac’s expressions for the Poincare generators are given in Section 4.2. The
Pryce-Foldy-Wouthuysen transformation is given in Section 4.3 and zitterbewe-
gung is discussed in Section 4.4. It is shown that the Dirac particle has spin %
in Section 4.5. Dirac’s discovery of the Dirac Hamiltonian is described in Sec-
tion 4.6. Some properties of Dirac matrices and y-matrices are given in Section
4.7. The coordinate-space wave function of the particle and the Dirac equation
are given in Section 4.8 and the momentum-space wave function is discussed in
Section 4.9. Space inversion and time reversal are considered in Section 4.10.
Energy/helicity eigenkets are defined in-Section 4,11 and a transformation simi-
lar to the Pryce-Foldy-Wouthuysen transformation is given in Section 4.12. The
role of the negative energy states in zitterbewegung is discussed in Section 4.13.
Energy/helicity spinors are given in Section 4.14 and the most general solution
of the Dirac equation is given in terms of these spinors in Section 4.15. A Dirac
particle in a electromagnetic field is discussed in Section 4.16. The g factor for a
nonrelativistic Dirac particle is derived and the energy eigenvalues for the Dirac
hydrogen atom are given. Dirac’s interpretation of the negative energy states is
given in Section 4.17. Finally, some derivations are given in Section 4.18.

4.1 Fundamental dynamical variables

'Fundamental dynamical variables for a physical system consisting of a Dirac
particle of rest mass m are the Cartesian coordinates and momenta and the four
Dirac operators!

X1, x% X3 P, P2, P%a) 2,0, 8 (4.1)

' (4.11) shows that P/ is a Poincare generator. We have anticipated this result in order not to proliferate
the number of symbols. ' .
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which satisfy

[XJ',X’“] —0 (4.2)
[Pf,P’“] =0 4.3)

[XJ' ,Pk] = ik, (4.4)
{aj,ak} = 26 4.5)
{98} =0 | .56)
gr=1 4.7)
[af,xk] = [af ,Pk] =0 @.8)
[8.x*] = [8,P*] =0 “9)

‘4.2 Poincare generators

We require the Dirac particle to be a Loren.z invariant system. We must,
therefore, construct the Poincare generators H, P, J, K in terms of (4.1). We
quote the final results. The Poincare Algebra (1.1) to (1.9) is satisfied when
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H=c& P+ pmc (4.10)

P=F (4.11)
J=XxP+§ (4.12)
R= —-2-}:—2—(X'H+HX') (4.13)
where
g %ﬁ)f (4.14)
3 = -%a X & (4.15)
Comments

i. Comparison with the spinless particle and spin partic_le Cases

We recall from Chapter 3 that comparison of the Poincare generators (3.20)
to (3.22) for a particle of spin s with the Poincare generators (2.16) to (2.18)
for a spinless particle shows that the former are arrived at from the latter by
modifying J and K. This corresponds to the point form of dynamics defined
in Dirac (1949).)

Comparison of the Poincare generators (4.11) to (4.13) for a Dirac particle
with the Poincare generators (2.16) to (2.18) for a spinless particle shdws_
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that the former are arrived at from the latter by mbdifying H and J. This
corresponds to Dirac’s instant form of dynamics.

We leave it to the reader to construct Poincare gencrators corresponding to
Dirac’s front form of dynamics. :

. Energy spectrum

It follows using (4.5) to (4.7) that

H? = P2 + m?c* § (4.16)

The spectrum of H? is continuous in the interval (m2c*, co). The spectrum
of H is continuous in the intervals (—oco, —~mc?) and (mc?, 00).

That is, the Dirac particle possesses negative energy states.

The negative energy states have no physical interpretation for a one-particle
system. We outline Dirac’s interpretation of these states in Section 4.17.

Other sets of senerators

We refer to the generators H ,'_ﬁ, f, K given by (4.10) to (4.13) as the Dirac
generators. They are not a unique solution to the Poincare Algebra (1.1) to
(1.9).

The Poincare Algebra is s_a}tisﬁed by the generators- (3.19) to (3.22) for a
particle with spin where S is given by (4.14). This set of generators is
not unitarily related to the Dirac generators because the energy spectra are
different.

The Poincare Algebra is also satisfied by the Pryce-Foldy-Wouthuysen (PFW)
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generators given in Section 4.3. The PFW generators are unitarily related to
the Dirac generators.

Invariant mass

It follows from (1.44) that

M=m 4.17)

Centre of mass poSiﬁon and internal angular momentum

It follows from (1.48) and (1.52) that

2 o iheBa c ~ = thc S\

_ _ e o(a 4.1

X=X+% E(E+mcz)l5xp+2E (a P)P] (4.18)
b thef o c? — o
[ L N FE — 4.1
§=§-=FaxP E(E+mCZ)Px(SxP) (4.19)

where

E = /P22 4+ m2ct (4.20)

That is, X is not the centre of mass position and § is not the spin. Indeed,
one finds on calculation that
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[X"H] = ihed 4.21)

[5‘,}1] £0 (4.22)

That is, 5 is not a constant of the motion, and interpreting X as the position
of the particle implies that the speed of the particle is equal to the speed of
- light.

The above results may seem disturbing. The situation will be clarified in
Section 4.3 when we view the Dirac particle in the Pryce-Foldy-Wouthuysen
picture. We note here, however, that the numerical differences between matrix

~ elements of X and X , and S and §, are small; they are of the order of the
Compton wavelength #/me of the particle.

4.3 Pryce-Foldy-Wouthuysen picture

We recall that the physical content of quantum mechanics is unchanged if
each state | ¢» > is replaced by U | ¢» > and each observable A is replaced by
[/AUY where U is a unitary or antiunitary operator. Every U provides a picture
of quantum mechanics.

_ So far in this chapter we have used the Dirac picture of the Dirac particle. We
now consider the Pryce-Foldy-Wouthuysen (PFW) picture of the Dirac particle.
This picture is provided by the unitary operator!

! The PFW picture of the Dirac particle was introduced by Pryce (1948) and Foldy and Wouthuysen

(195G). It is usvally called the Foldy Wouthuysen picture,
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E+pH 4.23)

F=—
2E(E + mc?)

If | 4» > is a state of the particle in the Dirac picture and A is an observable of
the particle in the Dirac picture, then

Fld> (4.24)

- FAFt (4.25)

are the corresponding state and observable of the particle in the PFW picture.

It follows on calculation that

FHFT = 8/ P22 + m2ct | (4.26)
FPFi=PF (4.27)
FXFt =X (4.28)
FSFt=§ (4.29)
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Comments

1. Hamiltonian
The Hamiltonian in the PFW picture is Bv/ P2c? + m2ct.

The PFW picture thus shows the relationship between Dirac’s Hamiltonian
(4.10) and the Hamiltonian (3.19) for a particle of rest mass m and spin s.

By introducing the operator 8, which has eigenvalues are 41, Dirac seems

merely to have introduced negative energy states along with positive energy
states.

2. Centre of mass position and internal angular momentum

The centre of mass position in the PFW picture is X and the internal angular
momentum is 5.

~As pointed out above, unphysical effects follow if one interprets X as the
centre of mass position and 5 as the internal angular momentum in the Dirac

picture.

One such vnphysical effect, zitterbewegung, is discussed in Section 4.4.

4.4 Zitterbewegung

We view the Dirac particle in the Dirac picture, that is, using the Dirac
generators (4.10) to (4.13).

The centre of mass position X (t) of the particle in the Heisenberg picture is
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2y =X+t (4.30)

where

_ @p
R 431
|4 77 | 4.31)

where H is the Dirac Hamiltonian (4.10).

We show in Section 4.18 that the Cartesian position X (t) of the particle in
the Heisenberg picture is

X=X +Vt+2(1) (4.32)
where
- : Hi\ Rk o
— iHt[h HEANRf -
Z(t) = ity ( = ) = (ca V) (4.33)
Comments

1. Zitterbewegung operator

Z(t) is the zitterbewegung (“jitterihg motion™) operator. It describes a high
frequency, small amplitude displacement.
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2. Zitterbewegung: not an observable position operator

Zitterbewegung is not an observable position of the Dirac particle because
the Cartesian position is not the position operator in the Dirac picture.

3. Negative energy states

We show in Section 4.13 that nonzero matrix elements Z (t) arise only if a
state has both positive and negative energy components.

4.5 Spin

S is the internal angular momentum of the particle in the Dirac picture and S

is the internal angular momentum of the particle in the PFW picture. S5.-5and 5.8
have the same eigenvalues because they are related by a unitary transformation.

it follows on calculation that

5.8 = s(s+1)A? (4.34)

where

(4.35)

DO b

A Dirac particle has spin 1.
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Comments

1. Value of spin

The value of the spin of the Dirac particle has been derived from properties
of &; it has not specified ab initio as was the case for the particle with spin
discussed in Chapter 3.

This was considered the most remarkable feature of Dirac’s approach to the
Lorentz invariant description of a single particle when it was invented in 1928,

2. Electron

“Dirac considered the particle described by his Hamiltonian to be an electron.

4.6 Dirac’s discovery of the Dirac Hamiltonian

The Poincare Algebra approach had not been invented when Dirac discovered
his wave equation for the electron in 1928. How then did he proceed?

The Kiein-Gordon equation (2.89) was considered to be the appropriate
relativistic wave equation for a particle with zero spin. Dirac sought to derive
a relativistic wave equation which would describe the electron, that is, a spin %
particle.

He started with the coordinate representation of the Schrodinger equation for
a single particle with spin
P, (Z,1)

< Fm, | H | (1) >= i = (4.36)

- and determined a form for H such that space and time would be on equal footing
in (4.36).] Since (4.36) is a first-order partial differential equation in time and

! “Equal footing” was imposed because of the mixing of space and time variables by a Lorentz boost.

The Poincare Algebra, however, does not imply “equal footing”.
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since
< Fms | P | 9(t) >= —ikVipy, (7, 1) (4.37)

Dirac therefore sought a form for H which was linear in P; he also required that
H* = P22 4 mict (4.38)
in order to incorporate the classical relationship between energy and momentum.

Dirac generalized

N2
(5-P} = p? (4.39)

where o1, 0%, 0% are the Pauli matrices by writing (4.10) where o!, o2, o®, 8 are
to be determined such that (4.38) holds. That is, such that

i 2
(c&- P+ ﬂmcz) = P22 4 et (4.40)

(4.40) holds provided !, a?, a3, 8 satisfy (4.5) to (4.7).

4.7 Matrix representation

We give some properties of Dirac matrices and -y-matrices in this section.
Further properties are given in QLB: Relativistic Quantum Mechanics,

Dirac matrices

The Dirac algebra (4.5) to (4.7) is satisfied by n x n matrices, the smailest
value of n being n = 4. The Dirac representation of 4 x 4 matrices @ and 3 is
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&= (9 ") (4.41)
g 0
1 0
8= (0 _1) (4.42)
In this representation,
-+ 1 g 0
S =- - 4.43
2 ﬁ( 0 o ) ¢ )
Comments

1. Dimension of matrices
It is necessary to use 4x4 matrices to describe the spin of a Dirac particle

because the particle has up and down spin states for both positive energy
states and negative energy states.

2. Diagonal matrices

The matrices 3 (4.42) and 53 (4.43) are diagonal. We use this fact in Sections
4.8 and 4.9 to construct simultaneous eigenkets of sets of compatible operators
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~y-matrices

The four ~-matrices

7' =8 (4.44)

v = o’ (4.45)

transform as components of a contravariant vector under Lorentz boosts and
rotations. That is,

S(AY AR S(A) = AP 4 (4.46)

where S(A) is a 4 x 4 representation of SL(2, ¢) and the A¥, characterize rotations
and Lorentz boosts.

Constructing the Lorentz scalar

v.P =mc (4.47)

yields (4.10). This procedure provides an alternative derivation of (4.10).

' 51L(2,c) is the group of complex 2x2 matrices with determinant equal to unity; SL(2,c) is the covering
group for the restricted Lorentz group.
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4.8 Position eigenkets

In this section we construct eigenkets appropriate for describing the
coordinate-space wave function of a Dirac particle.

The operators

x! x% x% 53 8 (4.48)

form a complete set of compatible observables. We denote their simultaneous
eigenkets by

| &d >=| x,y,2,d >=] z!,2%,2%,d > (d=1,2,3,4) (4.49)

These eigenkets may be used as a basis for the Hilbert space. That is,

68




4
X'=Y f Pz |2d>a! <@d] (4.50)
d=1
o = Z fd% | £d > o)y, < 7' | (451
d‘ dl_
8= Z: /d3$ | Zd > Bag < Zd [ (4.52) |
d,d'=
5 = ﬁ Z /d% | 2d > £, < Zd | (4.53)
dd'=
and
4
1= Zfd% | #d >< 2d | (4.54)
d=1
<#d|2d>= 5(5— Q)add, (4.55)

where o), 844 and I, are elements of the matrices (4.41), (4.42) and (4.43),
dd dd

The correspondence between the values of d and the eigenvalues of $3 and

A is given in the following table:
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Table 1 Values of d and the eigenvalues of S* and g

Value of d Eigenvalue of S® Eigenvalue of 8
I _1_% % +1
1
2 —1h | +1
3 +%ﬁ -1
4 —ih -1

Coordinate-space wave function

The coordinate-space wave function $4(Z,¢) for the particle is defined as

Pa(F,1) =< #d | (1) > | (4.56)

where | v(¢) > given by (1.16) is the state of the particle at time ¢, and

| va(@,t) | 2Pz (4.57)

is the probability that the particle is in the volume &z about # at time ¢ with
values of $* and § corresponding to the value of 4 in Table 1.
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Dirac equation

We show in Section 4.18 that

(=0 + -Tl;if)mf, £ =0 4.58)
where
"l)l(f, t)
oo | (&)
W(&, 1) = ha(Z, 1) (4.59)
"[’4(51]5)

0 =70, (4.60)
. a

Ou= 57 . (46D
Comments

1. Dirac spinor

The matrix (4.59) is called a Dirac spinor.
We will generally call a column matrix of the form (4.59) a Dirac spinor.
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2. Dirac equation

(4.58) is the Dirac equation; it is a first-order partial differential matrix
equation for _the Dirac spinor (4.59).

3. Klein-Gordon equation

In view of (4.38), it follows that every solution of the Dirac equation (4.58)
is also a solution of the Klein-Gordon equation, that is,

[lj + (E) 2}-%(5, £)=0 (4.62)

4. Form invariance of the Dirac equation

The Dirac equation (4.58) is form invariant under a Lorentz transformation.
That is,?

(—i@' n EE) (') = (4.63) |

where

z' = AP 2” (4.64)

In the following =z stands for =, y, z,1
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is a restricted Lorentz transformation and

¥ (a') = S(A)p(Az) (4.65)
& =+"%0, (4.66)
9
%= 5o (4.67)
¥ = S(A) RS (A) = AF (4.68)

4.9 Momentum eigenkets

In this section we define a momentum eigenket | pd > analogous to the

position eigenket | Zd >.

The operators

P, P? P3 5%

(4.69)

form a complete set of compatible observables. We denote their simultaneous

eigenkets by

| pd >=|p',p*,p°,d > (d=1,2,3,4)

@70
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These eigenkets may be used as a basis for the Hilbert space. That is,

4
szzfd3p|ﬁd>pj<ﬁd| 4.71)
d=1" . '
. 4 .
o = Z fd3p | pd > oy < pd' | 4.72)
d,d'=1
4
=) / Bp| pd > Baa < 7d' | (4.73)
d,d'=1 '
1, « :
v 3 — b
§ =3k 3 /d p|pd >, <pd | (4.74)
dd'=1
and
4 .
- Z/d3p | 5d >< 7| 4.75)
d=1
<pd|pd >= 6(13'— p"‘) Sai (4.76)

It follows from (4.4) that

3
2 =
< 7d | pd >= (Q;—ﬁ) PRy 4.77)
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L.

Comments

Dirac Hamiltonian

The Dirac Hamiltonian (4.10) is expressed in terms of momentum eigenkets
as

4
H= Y f &Ep | pd > hea(F) < pd’ | (4.78)
d,d'=1
where
me? o p
(haa(B)) = (ca‘ 7 _mcz) (4.79)

The matrix k(p) is not diagonal; | d > is not an eigenket of the Dirac -
Hamiltonian (4.10),

Comparison with the spin parti_cle case

The Hamiltonian (3.19) for a particle of arbitrary spin is a function of
momentum independent of spin. It follows that every eigenket of momentum
is also aneigenket of (3.19).

| #d >, on the other hand, is not an eigenket of the Dirac Hamiltonian (4.10)

because (4.10) depends upon & and 3 as well as upon momentim,

Eigenkets of the Dirac Hamiltonian (4.10) will be the subject of Section 4.11.
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4.10 Space inversion and time reversal

In this section we express the space inversion operator P and time reversal
operator T for a Dirac particle in terms of position and momentum eigenkets.

Space inversion

The space inversion operator P is linear and the Poincare generators transform
under space inversion according to (1.29) to (1.32).

We show in Section 4.18 that

P = 8P (4.80)

where

4 4
P = dz:fd% | ~Fd >< 2 |=_Z/d3p |—fd><pd| (481

Time reversal

The time reversal operator T. is antilinear and the Poincare generators trans-
form under time reversal according to (1.33) to (1.36).
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We show in Section 4.18 that

T = ;22T (4.82)

where

4 4
T’|¢>=Z/d3m|:E’d><<;5|Ez'd>:2_/d3p|—ﬁd><¢|ﬁd>
d=1 d=1
(4.83)

4.11 Energy/helicity eigenkets

We have seen from (4.78) that the momentum eigenket | pd > is not
an eigenket of the Dirac Hamiltonian (4.10). In this section we construct an
energy/helicity eigenket | u"() > which is an eigenket of (4.10).

The operators

PLP: PP AH (4.84)

are a complete set of compatible observables where A is the helicity (1.55) and
H is the Dirac Hamiltonian (4.10). A has eigenvalues :I:%fz.
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It follows from (4.19) that

§-F (4.85)

*vl

When expressed in terms of the momentum eigenkets,

4

1 3 - = 2 — 3f
=2 Y - - 4.86
! Qﬁ“’ﬂ/dp]pd>(2 p)dd'<pd| (4.86)

-+
o~

where the 4 x 4 matrix )ff-pis

3!

—

Y.

WH

0 ) (4.87)

_5.
“\ 0

where o - 5 is the 2 x 2 matrix (3.49).

Q
S

We denote the simultancous eigenkets of (4.84) by

| u' (p) > (r=1,2,3,4) | (4.88)

These eigenkets may be used as a basis for the Hilbert space. That is,
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. 4 .
Pf=2/d3p|uf(m>p7<u’@!

(4.89)
r=1
4
A=Y / &p | w"(7) > Mk < v (5) | (4.90)
=]
4
H= Z/d% | " (5) > epr < u"(F) | (4.91)
r=1
and
4
=3 / P | o () >< u"(7) | 4.92)
r=1
<" () | u" (ﬁ) >= 5(;3'- p”?) Bres 4.93)
. where
A1 +-§—)
M| |-
o ]| 49
Ad -3/
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€pl €p
=] % (4.95)
€p4 —€p
where ¢, is given by (2.20).
. Furthermore,
< pd|u (;;7) >= 5(5_ ﬁ)u;(ﬁ) (4.96)
which defines v} (5), and, using (4.77),
1 \% ...
< Zd | u"(F) >= (ﬁ) PRyt () (4.97)

The functions u}(p) are given in Section 4.14.

The correspondence between values of » and spectral values of A and H is
given in the following table:

Table 2 Values of r and the spectral values of A and H

Value of r Eigenvalue of A Spectral value of H
1 +3h +ep
2 . ,__.%ﬁ +€p
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Table 2 (Continued) Values of r and the spectral values of A and H

3 +3h ~€p

4 —%ﬁ | ~Cp

Energy/helicity wave function

The energy/helicity wave function «,(p,¢) for the particle is defined as

e (B,1) =< u™(7) | (1) > | (4.98)

where | 1/(t) > given by (1.16) is the state of the particle at time ¢, and

| . (7,t) | 2d°p (4.99)

is the probability that the particle has momentum in the volume d®p about §
at time ¢ with values of helicity and energy corresponding to the value of r as
in Table 2.

It follows from (4.91) that

() = etorrt/ B uw'(p) | ¥ > (4.100)
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Negative energy components

A physical particle has positive energy. The negative energy compaonents (the
r = 3 and r = 4 components) of | 1»(¢) > are discussed in Section 4.17.

4.12 Pryce-Foldy-Wouthuysen picture revisited

We have constructed momentum eigenkets | pd > and | " (§) >. The unitary
operator (7 defined by

4
G = Z/d% g ><uT() ] (4.101)
r=1

transtorms one eigenket to the other, that is,

| pd >= G | vd(p) > (4.102)

|u" (7)) >= G| pr> (4.103)

It follows from (4.91) that

4
GHG =3 [ @46 10 > 6 < ()] 6
r=1

(4.104)
: 4
=3 [#1ia> <)
d=1 '
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That is,

GHG' = gy/P22  m2ct (4.105)

Similarly, it follows from (4.90) that

GAGH = &8 (4.106)

1.

3.

Comments

Pryce-Foldy-Wouthuysen transformation

(4.101) is similar (but not identical) to the Pryce-Foldy-Wouthuysen transfor-
mation operator (4.23),

Pryce-Foldy-Wouthuysen Hamiltonian

(4.104) provides a simple derivation of the Hamiltonian 3/ P2c% + m2ct,

Matrix elements

In the | pd > representation,

<7 | G | P >= 5(;3'— ﬁ)u;(m (4.107)
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4.13 Energy projectors

We define a complete set of orthogonal projection operators Ty and T_ which

project onto the positive and negative energy states, respectively:

Ty = ng/(ﬁp LT () >§ u"(7) | (4.108)
r_=>" /d3p | w"(F) >< u"(F) | (4.109)
r=3,4 |
| Altcmatively,
Fi=%(1ﬂ:ﬁ) (4.110) |
A general state | 3» > of the Dirac particle can be written as
| >={s >+ |- > | (4.110)
where
| e >=T1 [¢ > (4.112)
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| ¥ii > and | 4_ > are the positive and negative energy components of | ¢ >,
respectively.

Comments

I. Projection of velocity

It follows on calculation that

lyealy = CLVIL (4.113)

where V is the velocity operator (4.31).

2. Zitterbewegung

It follows from (4.32) and (4.113) that

I+ Z(#)l: =0 (4.114)

and therefore that

<o | Z() |0 >=<b_ | Z(t) |y >+ <y [ Z(t) |- > (4.115)

As discussed in Section 4.4, zitterbewegung is an unphysical phenomenon
associated with regarding the Cartesian position as the centre of mass posi-
tion in the Dirac picture. Zitterbewgung arises because the Dirac Hamiltonian
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- (4.10) allows both positive and negative energy states; there is no zitterbewe-
gung if { ¢» > possesses only a positive energy component or only a negative
energy component,

-4.14 Energy/helicity spinors

In this section we specify the 16 functions uj(p) defined in (4.96). The
functions are given as four Dirac spinors v’ (5) = (u7(p)); the derivations are
given in Section 4.18. We quote the final results:

Positive energy, positive helicity

e feptme? [ RI(P)
W) = ,,/——QEP (Ch%(ﬁ')) 4.116)

Positive energy, negative helicity

w2(F) = M( A (p) ) @.117)

2ey
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Negative energy, positive helicity

wl—

sy _ ot me (—Ch3(F)
=4 iy @18

Negative energy; negative helicity

e [atme (hHp)
u(p) = %, ( b3 (5) ) (4.119)
'where
R (@) |
Aren — 3
R (p) = (hi%(ﬁ')) (4.120)
N
¢= €p + me? “.121)

The functions &, () are given by (3.59); A}, (p) is the probability amplitude
for a particle with spherical polar coordinates of momentum equal to (6, ) and
helicity A to have 3-component of spin equal to ..
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Comments

1. Energy/helicity spinors

Matrices (4.116) to (4.119) are called energy/helicity spinors.

2. Eigenvalue equation

The energy/helicity spinors satisfy the eigenvalue equations:

(¥ — meyu"(p) = 0 (r=1,2) (4.122)
(p+ meju'(=p) =0 (r=23,4) (4.123)

where
= (%p,pl,pz,pg) (4.125)

(4.122) and (4.123) follow directly using (4.47) and the eigenvalue equation
for PF.

3. Normalization
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(4.116) to (4.119) are normalized such that

4
> ul (F)uf (5) = Snre (4.126)
d=1

4 .
> "l (Bub(P) = baar (4.127)
r=]

4. Properties of ¢

It follows from (4.121) that

0<(<1 (4.128)
Cli_nolo(_f =0 | (4.129)
7}31_1}0(: = (4.130)
¢ <1 when m # 0 (4.131)

5. Nonrelativistic imit

It follows from (4.116), (4.117) and (4.129) that
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lim u"(f) = (h?_g@) (r=1,2) @.132) |

The two positive energy spinors reduce to the appropriate two-component
spinors in the nonrelativistic limit.

Large and small components

In view of (4.131), when » = 1,2, components of «"(p) proportional to { are
called the small components and components of «"(p) not proportional to (
are called the large components.

Dirac particle with zero rest mass

It follows from (4.116) to (4.119) and (4.130) that

lim ' (5) = %(:%) (4.133)
i = (442
lim W} (p) = % ( _'1’2;2(]%?) ) (4.135)
- H(8)




4.15 Most general solution of the Dirac equation

It follows from (4.92), (4.98) and (4.100) that a general state P (t) > of a

Dirac particle may be written as

4
90 >= 3 [ @ 1w > ey, 0
r=1

(4.137)

from which it follows using (4.97) that the Dirac spinor (4.59) may be written as

P(Z,t) =

N |

r=1,

1 . .
-, (E) /dgp {e"w.x/ﬁuf(};')?/)r(m + elp.x/ﬁur-i-?(_ﬁ»)q’br_i_z(_ﬁ)jl

(4.138)

where

¥e(P) =< u'(7) | ¢ >

(4.139)

is the probability amplitude that the Dirac particle at time zero has momentum P
and values of helicity and energy corresponding to the value of » in Table 2.

91




Comments

1. Most general solution of the Dirac equation

(4.138) gives the most gencrél solution of the Dirac equation (4.58).

2. Quantizing the Dirac_equation

(4.138) is the traditional starting point for the development of the relativistic
quantum field theory of electrons and positrons.

The functions v, () and ¥, 12(~—p) are reinterpreted, respectively, as annihi-
lation operators for electrons and creation operators for positrons and (4.138)
is reinterpreted as an equation for a field operator 1(Z,¢) in the Heisenberg
picture. The field operator obeys the Dirac equation (4.58).

The above reinterpretation is called quantizing the Dirac equation.
We develop the relativistic quantum field theory of electrons and positrons

from first principles in QLB: Relativistic Quantum Field Theory. The tradi-
- tional approach of quantizing the Dirac equation will not be followed.

4.16 Electron in an electromagnetic field

In this section we explore some consequences of the interaction of the Dirac
particle with an external electromagnetic field. In QLB: Relativistic Quantum Field
Theory we characterize the electromagnetic field in terms of photons; here we
describe it in terms of potentials which are functions of the Cartesian coordinates
X1 X? X% and the time ¢. We assume the Dirac particle to be an electron.

Electromagnetic field

We specify a scalar potential @ ()? ,t) and a vector potential A (ff ,t) in
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terms of which an electric field £ and a magnetic field B are defined by

S 184
ihE = [P,cp] — = (4.140)
ihB=—-Px A (4.141)
Comments
1. Coordinate-space representation
It follows using (4.191) that
< Zd| B | v(t) >= E(Z,)q(F,1) (4.142)
< Zd | B | p(t) >= B(Z,t)pa(F,1) (4.143)
where
., . 1 DA(#,1)
E(Z. 1) = —V®(F. 1) — - 4.144
(Z.1) (£,1) P ( )
B(Z,t) =V x A(Z,1) (4.145)

2. Maxwell’s equations
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(4.144) and (4.145) ensure that

(4.146)

V- B(#1) =0 (4.147)

that is, Faraday’s Law holds and there are no free magnetic poles. It is re-
quired also that

V x B(,t) = %fc(f,t) - %aEéf’t) (4.148)
V- E(Z,1) = 47pe(E, 1) (4.149)

that is, Gauss’ Law holds. p.(Z,{) and J_;(ﬁ:‘,t) are the coordinate represen-
tatives of the charge density and current density, respectively, of the source
of the electric and magnetic fields.

(4.146) to (4.149) are Maxwell’s equations.

Lorentz condition; wave equations

Maxwell’s equations (4.146) to (4.149) hold if the potentials ®(#,¢) and
A(Z,t) satisty the Lorentz condition

o oo 100(,1)
V- Al )+ -————==0 4.150
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and the inhomogeneous wave equations

O®(Z,t) = 4mp(Z, 1) (4.151)
- dr = |
OA(Z,t) = —J.(%,1) (4.152)
C
Electrodynamics

The Hamiltonian for the electron in the electromagnetic field is

H = cd - (ﬁ _ f,&') + Bmc? + ed (4.153)
C

~where m and e are the mass and charge of the electron (ni = 0.511 MeV/ c?
and ¢ = —1.60 x 10719C).

The electromagnetic field exerts a force F and a torque T on the electron
where

ihE = [ﬁ _£ ,H] (4.154)
C

T = [f, H} (4.155)
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It follows using (4.153) that

ﬁ:%é+&x§) (4.156)

Lorentz force

(4.156) is the guantal version of the Lorentz force of classical electromag-
netism. The Lorentz force takes its more customary form when & is replaced by
- its positive energy projection ',V /el as per (4.113).

Nonrelativistic Schrodinger equation

We assume that the potentials do not depend explicitly upon time.

The coordinate representation of the eigenvalue problem for the Hamiltonian
(4.153) is

me? 4+ ed - b é
( o -1 —mcz—i—e(1)>(x>_f(x) (4.157)
where
i = —ikV — ZA(2) (4.158)
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1]le>

2| e>

306> (4.159)
4]ex>

&y &y

-

where | ¢ > is an eigenvector of (4.153) and ¢-is the corresponding eigenvalue.

AN AN AN
8 8y

We show in Section 4.18 that for motion in a homogeneous magnetic field
the nonrelativistic limit of (4.157) is

v? =
(_‘___ +ed— - B>¢ = €l¢ (4.160)

7= (E+g§) 4.161)
2me
g=2 (4.162)
Comments

1. Dependence on the magnetic field

Dirac’s Hamiltonian (4.153) predicts the presence of a 7 - B term in the
nonrelativistic equation (4,160)

The expression —f - B is used in QLB: Introductory Topics for the interaction
- for a magnetic moment with a magnetic field.
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2. Magnetic moment and ¢ factor of the electron

i (4.161) is the magnetic moment operator for a nonrelativistic electron.
. g is the ¢ factor of the electron.

Dirac’s Hamiltonian (4.153) predicts that the ¢ factor of the electron is 2.

3. ¢ factor: experiment and quantum electrodynamics

The experimental value g.., and value g,.q¢ calculated using quantum elec-
trodynamics for the g-factor of the electron are!

2P — 1.0011596521 (93 + 10) (4.163)

3

%i = 1.001159652190 (4.164)

The Dirac prediction (4.162) is a remarkable result.

Magnetic moment: nonrelativistic projection

We give a second derivation of (4.161) and (4.162).

For motion in a2 homogeneous magnetic field it follows from (4.155) that the
torque on the electron is

T=MxB (4.165)

! The first calculation of gg.q by Schwinger in 1948 (see Schwinger (1958)) gave géed/z =1 +afir =

1.0011614 where « is the fine-structure constant (4.169).
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where

M= E(X’ x &) (4.166)

Comments

1. Magnetic moment operator

-

M is the magnetic moment operator for a Dirac electron.

2. Precession

It follows from (4.165) that the average value of the magnetic moment
precesses about direction of the magnetic field.

3. Nonrelativistic projection

We show in Section 4.18 that

=
Z

I
=

(4.167)

~ where M?“” is the nonrelativistic projection of M and i is given by (4.161).
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Hydrogen atom

We assume that the electron is subjected to the attractive Coulomb force of a
+1.60 x 1071°C charge fixed at the origin. The Hamiltonian for the electron is

2
H=cd P+pmcd— ——— (4.168)
vX-X
To fourth-order in the fine-structure constant
e? 1
S — 4.169
“ e 137.04 (4.169)
the eigenvalues of (4.168) are
V2 1 :
€nj = me> enll+ a_( — — —3~ (4.170)
n\j+ts 4n
where
1 /et atme?
Ep = -—n—z(—:z—gé-) = """27 (4171)
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n=12--- 4.172)

j= l:l:% (4.173)
1=0,1,2,---,n—1 (4.174)
Comments

Comparison with the nonrelativistic case

¢, is the energy eigenvalue of a nonrelativistic electron subjected to the
attractive Coulomb force of a +1.60 x 1071%C charge fixed at the origin.

The term

2 ’ Y
ot _ 3 (4.175)
n\j+z 4n

in (4.170) gives a fine structure to the nonrelativistic energy levels.

Cormparison with experiment .

¢n; does not depend explicitly upon [; the 2.5, ;5 and 2P, s states, therefore,
have the same energy. The 2P, state has a higher energy by 45.2 peV.

This is close to what is observed experimentally for the hydrogen atom, but
it 1$ not exact.

High precision laser spectroscopy of the hydrogen atom shows that the 2.5/,
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and 2P, levels lie 4.38 peV and 42.2 peV, respectively, above the 2P/,
level.

The hydrogen atom 2.5/ and 2P, /, states are not degenerate in energy. The

‘splitting of these levels (the Lamb shift) was first observed by Lamb and

Retherford (1947).

Comparison with quantum electrodynamics

The Hamiltonian (4.168) does not yield the Lamb shift. It should not be
surprising that there are physical effects not given by (4.168) since it does
not explicitly include particle creation and annihiliation.

A theoretical explanation of the Lamb shift is given by quantum electrody-
namics (QED), the relativistic quantum field theory of electrons, positrons

~ and photons (see, for example, Schwinger (1958).). QED explicitly includes

particle creation and annihilation; a very brief introduction is given in QLB:
Relativistic Quantum Field Theory.

The Lamb:shift arises.partly because the electron-positron system can have
intermediate states consisting of photons and electron-positron pairs. That is,
it arises partly because of vacuum polarization effects.

QED gives perfect agreement with all electon-positron-phcton experiments
pertormed to date.

4.17 Negative energy states and Dirac’s hole theory

A free Dirac particle prepared in a state with positive energy will remain in a

state with positive energy because the Dirac Hamiltonian (4.10) does not couple
positive and negative energy states. That is, if
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L (0) >=0 (4.176)

then

T_ | ¢(t) >=0 | 4.177)

for all time ¢ where I'_ is the projection operator (4.109) onto the negative
energy states.

(4.177} is not true in general for a Dirac particle in interaction. That is, if

H=ca P+ Bmc® +V (4.178)

and if (4.176) holds, in general,

Do | 9(t) > 0 (4.179)

for ¢+ > 0 since V may cbupIe positive and negative energy states.! A particle
prepared in a state of positive energy and subjected to such an interaction potential
V will give up an arbitrarily large amount of energy. This is not what is observed.

One way of overcoming the above difficulty if to restrict the class of potentials
to those which do not couple positive and negative e:_2rgy states. If

! An example is V = V()?)
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V =T,VI, (4.180)

where ' is the projection operator (4.108) onto the positive energy states, then

T+VTz =0 (4.181)

and so if (4.176) holds, then so will (4.177) for all time ¢. That is, the particle
prepared in a state with positive energy will remain in a state of positive energy
when it is subjected to a potential satisfying (4.180). '

Dirac (1930) suggested a way of overcoming the difficulty of negative energy
states which did not use the projection operator method. Indeed, his way of
overcoming the difficulty is a measure of his genius. He suggested that a particle
cannot make a transition to a negative energy state because

all negative energy states are occupied, with one particle
in each state in accordance with the Pauli Principle.

This is a remarkable suggestion.
Comments

i. Dirac’s hole theory

A bonus arising from Dirac’s suggestion is that an unoccupied negative
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energy state, that is, a hole in the filled negative energy sea, is manifested as
something with a positive energy, since to make it disappear, that is, to fill
the hole, one must add to the system a particle with negative energy.

Positrons and prediction of the existence of antimatter -

The unoccupied negative energy states were eventually assumed by Dirac to
be antielectrons, that is, positrons.

Dirac’s hole theory implies the existence of antimatter. The positron was
discovered in 1932, two years after Dirac proposed the hole theory.

Conversion of mass to energy

Dirac’s hole theory gives a picture of the conversion of mass to energy:
electron-positron annihilation occurs when the electron fills the hole.

Comparison with relativistic quantum field theory

Dirac’s hole theory is, of course, a many-particle theory since it requires the
existence of an infinite number of particles filling the negative energy sea. The
negative energy sea has infinite negative energy and infinite negative charge.

Dirac’s hole theory requires an enormous jump in logic: the single-particle
system we started with requires the existence of an invisible infinite-particle
system. The hole theory, illogical as it is, nevertheless paved the way for
the construction of relativistic quantum field theory only a few years after
Dirac invented it.

In QLB: Relativistic Quantum Field Theory we construct a relativistic quantum
tield theory of electrons and positrons where particles and antiparticles appear
on equal footing and with positive energies. No reference is made to a
negative energy sea. The theory is finite. The Dirac equation (4.58) arises
as the field equation for the fermion-antifermion field operator (&, ) in the
Heisenberg picture. This operator contains electron and positron variables.
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We show how Dirac’s hole theory results from an incorrect interpretation of

this finite field theory.

- 4,18 Some derivations

Derivation of (4.32)

We derive (4.32) by solving a first-order differential equation. Using

dX(t)

il = Ty | X ]
== = Ut [X,H]{ (t)
and (4.21) it follows that
dX(t) _ .
o = cd(t)
where
&) = UT()au(t)
Now
(1
z’ﬁ%—) = UN)[a, Hiu(t)
and

&, H)={@ H} —2H& = 2P — 2H&
50
d&(t)

i = 2cP — 2HE(t)

(4.187) is a first-order differential equation whose solution is

(1) = S+ HHE (a: - %)

Substituting (4.188) into (4.183) and integrating yields (4.32).
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Derivation of the Dirac equation (4.58)

The coordinate-space representation of the Schrodinger equation

H | 4(t) > zfi-—— | ¥(&) > ; (4.189)
” — - B 9 . a¢d(£a t)
< Zd | (ca - P+ fme ) | (1) >= zﬁT (4.190)
Now |
<& | P | p(t) >= ~inlLADD (4.191)

sO (4.190) is

3 4 .
Z Z { ?ﬁ(add,dd + me /5dd:}1];dr(,z: t) = ?l%{uﬂ (4.192)
J=1d'=1

or, more compactly,

(—iﬁc&'- v+ [3mc )?,/) (Z,1) = zﬁdwgz .t (4.193)

where o7 and /7 are the Dirac matrices (4.41) and (4.42). Finally, (4.193) can
be written as (4.58).

Verification of (4.80)

(1.29) to (1.32) hold for the Dirac generators (4.10) to (4.13) if the funda-
mental dynamical variables (4.1) transform under space inversion as follows:

PXPl = _X (4.194)
PPPI = _P (4.195)
PaPt = — & (4.196)




PAPY =3

It follows from (4.80) and (4.81) that for any linear operator A
PAPY = 5Ap

where

4 .
A= Z f(l3;nd3:E’ | Td >< —Zd | A | —z'd >< o'd |
d,d'=1

4
=2 /d3pd3p’ | pd >< —pd | A} —p'd ><p'd |
d,d'=1

in particular,

(4.194) to (4.197) follow from (4.198) and (4.200) to (4.203).

108

(4.197)

(4.198)

(4.199)

(4.200)

(4.201)

(4.202)

(4.203)




Verification of (4.82)

(1.33) to (1.36) hold for the Dirac generators (4.10) to (4.13) if the funda-
mental dynamical variables (4.1) transform under time reversal as follows:

TXT = X

TPT =P
T&TH = —
TAT! = 3

It follows from (4.82) and (4.83) that for any linear operator A
TAT? = 2 A5?

where

4
Z/d3 P2’ | Fd>< | A|dd S<dd |

Epd*p | pd >< —pd | A | —pd > < pd' |

4
d,d'=

In particular,

M\

(4.204)

(4.205)

(4.206)

(4.207)

(4.208)

(4.209)

(4.210)

(4.211)

(4.212)




Tine
Il
o

(4.204) to (4.207) follow from (4.208) and (4.210) to (4.213).

Derivation of (4.116) to (4.119)

The functions ufy(p) are determined by solving
Al u™(P) >= Br [ u'(P) >

H 1 () >= e | 07(5) >

(4.213)

(4.214)

(4.215)

in the | pd > representation. In this representation, (4.214) and (4.215) yield

(i v ().
U %5" ¢ f)\_ Ar XT

me? — egr co - p N

- f —met — ey x" )

where

It follows from (4.217) that

T

u’(p) = ( caﬁ; T) when r=1,2
€p+me? q5

_f_edf T

u(F) = ( (cﬁn;cﬁ)x ) when 1 =3,4
X

Solving (4.216) completes the derivation.

and
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Derivation of (4.160)

—

. ca - 11 y
X= e+me? —ed

When ¢ + mc? — e® > 0, (4.157) yields

2

and
(c&' . ﬁy ,
D = (e —
6+?rzc2-—e<l)+€ ¢ (f me )QS
In the nonrelativistic limit,
c? 1
_) —
€ + me? — e® 2m
and (4.222) and (4.223) simplify to
_ -1 4
X = 2me
and
) H2 eh o &= '
— + e — d-Blog=¢€¢¢
2m 2me
where
¢ =¢—me

and
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(4.225)
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For motion in a constant magnetic field, the vector potential is

i %(B’xf)

from which

'E-ﬁ:ﬁ-i:%é-f
where
IL=XxP

(4.160) then follows when terms proportional to e? are neglected.

Derivation of (4.167)

Nonrelativistic projection of an odd operator

A general state of the Dirac particle may be written as

| (2 >:| 1fff’la'rg'e >+ | Ysmall >

where

| TPZurge = B+ | T,D >

l ¢3mal’l >=B_ l ?[; >
where

1 - —
B+:§(l+ﬁ)md§2|zzd><md|

Bo=>(1-f)= Y |#d><id]|

d=34

b f—

and a general observable O of the Dirac particle may be written as

0= Oeven + Oadd

112

(4.230)

(4.231)

(4.232)

(4.233)

(4.234)

(4.235)

(4.236)

(4.237)
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where

Oeve_n = B+OB+ + B.—OB_ (4.239)

Opdd = B+OB_ + B_OB+ (4.240)
By are a complete set of orthogonal projection operators. O is said to be an
even (odd) operator if O,gg (Oeyen) vanishes. An odd operator is linear in &.

Following (4.225.), we write

. (P - ”)
I 1!”smar,” = —— l T)blarge > (4-241)

2me
for a nonrelativistic Dirac particle in an electromagnetic field.

~ Approximation (4.241) yields

< | Oadd { P >=< Tl)la.wge | Onr | "/)large > (4242)
where !
-~ e =
— —_— ~ i 24
Onr QmC{Oadd’a (P cA)} (4.243)

(4.243) defines the nonrelativistic projection 0,,, of an odd operator O,4,.

(4.167) follows from (4.243) when terms proportional to e? are neglected.
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Chapter 5 SYSTEM OF n PARTICLES

In this chapter we consider a Lorentz invariant system consisting of n distin-
guishable particles with spin where n is any positive integer.

We follow the prescription given in Chapter 1 to describe a Lorentz invariant
system: we specify the physical system by a set of fundamental dynamical
variables and we construct Poincare generators in terms of these variables.

Fundamental dynamical variables for the system are given in Section 5.1 and
a system of noninteracting particles is considered in Section 5.2. A systzm of
interacting particles is considered in Section 5.3 and scattering equations for a
system of interacting particles are given in Section 5.4. Some derivations are
given in Section 5.5.

We assume that the particles are distinguishable for convenience. The methods
of QLB: Quantum Mechanics in Fock Space can be used to describe a system of
indistinguishable particles.

5.1 Fundamental dynamical variables

We consider the physical system to be a system of n particles with rest
masses mi, ma, ..., my and spins s1, sg, ..., Sy.

The Hilbert space & **"** for the system is the direct product of »n one-
particle Hilbert spaces:

B = A 0 6.0

"R]* denotes the Hilbert space for particle & and @ denotes direct product.
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The fundamental dynamical variables of the system are the Cartesian coordi-
nates, momenta and spin of the individual particles

x{,pi sl x5 i S, .. xi Pl Sl (5.2)
where j = 1,2,3. These operators satisfy

[Xf{,Xﬂ —0 (5.3)

Pl EEl =0 (5.4)

{Xg;,Pg] = ihib, 40, (5.5)
[,s'g,,s'g] = ihbage;u5) (5.6)
So - Sy = $alsq + 1) (5.7
| (5.8)

arr

X, 58] = 1#4, 58] =0
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5.2 Noninteracting particles

In this section we consider a Lorentz invariant system of » noninteracting par-
ticles. It follows from (3.19) to (3.22) that the Poincare generators Ho, Py, Jo, Ko

for the system are

n
Hy= Y H, (5.9
=1
B = Z B, (5.10)
=1
n
Jo = Z T (5.11)
: =1
Ko=) R, (5.12)
ae=1]
where
He = /P2 + m2ct (5.13)
Jo=Xo x P+ 5, (5.14)
4 1 7 -4 S:a x ﬁg
o= —— (X, WKy ) 4l 5.1
Ro=—53 (X Hy + Ho X )+ R (5.15)
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Comments

Notation

We append the subscript 0 to noninteracting system operators to distinguish
them from interacting system operators given in Section 5.3.

Invariant mass

The invariant mass My (1.44) of the system is

Moc® =/ HE — P2¢? (5.16)

_ That 1s

Hy = /P2 + MZct (5.17)

My is not equal to the sum of the rest masses of the particles in the system.

Centre of mass position and internal angular momentum

The centre of mass position Xo and internal angular momentum 3’0 of the
system are defined by (1.48) and (1.52), respectively. That is,
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2 A1 4 5 1 c? s -
Xog=——| —K — ] - 5.18
¢ 5 (Ho io-i—I{QHD) (H(;-l-MoCz)HgPOXWU { )
Go = — (W WP (5.19)
LOHMUC 0 Hy 4+ Mc? 00 )
where W' is the Pauli-Lubanski four-vector (1.45):
wo=Jy- Py (5.20)
— ]_ — — —
Wy = ;HUJ{) + ey x By (5.21)

S includes the spins of the individual particles and the orbital angular
momenta of the particles about the centre of mass position of the system.

5.3 Interacting particles

In this section we consider a Lorentz invariant system of n interacting

particles. The formalism developed in this section can be used, for example,
to describe a system on interacting nucleons below the pion production threshold.

We must construct the Poincare generators H, P, J, K for the system in terms

119

of (5.2). The coupling in the Poincare Algebra (1.1) to (1.9) requires that at least
two of H, P , f, K not be equal to the noninteracting forms (5.9) to (5.12). Dirac
(1949) discusses various possibilities for modifying the noninteracting generators;
we consider the instant form of dynamics in which the Hamiltonian and booster
- change and the total momentum and total angular momentum remain unchanged:




H = /P2 + M2t | (5.22)
P=F (5.23)
J=J (5.24)
K= —‘-2%()7?01{ + H)’?O) + 5":;22 (5.25)
where

M=tV (5.26)

where 1/ satisfies
V. Ry) = [V,?O] = {V, 50] 0 (5.27)

Comments

1. Invariant mass

M is the invariant mass of the system; M is not equal to the sum of the rest
masses of the particles in the system. '
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2. Interaction potential; internal variables

Interactions among the particles are specified entirely by the interaction
potential V.

If V =0, the system of particles is noninteracting.

(5.27) states that VV must be a function of the internal variables for the system,
that is, variables which commute with ﬁg,)? 0. §0.

3. Bakamjian-Thomas construction

Bakamjian and Thomas (1953) give 2 method for construction of internal
variables for a general n-particle system.

A readable account of the Bakamjian-Thomas construction is Kalyniak (1978).

4. Nonrelativistic Hamiltonian

it follows from the Galilei Algebra that the Hamiltonian A for a Galilei
invariant system of n interacting particles has the form

H=Hy+V (5.28)
_ where
T P2 P2 n P,Z
Hy = —a _ 0 o 5.29
0 ; 2ma 2m + azz:l 2Mq ( )

where the nonrelativistic interaction potential V' has the form
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V=V(&.8,.8) (5.30)

where
f_:r = {Xa’mP’m é’a} (5.3

where
X'o = XP’& - )?nr (5.32)
Pry=p, - T2p (5.33)

m
where
2 1o =
Xor = E ; MaXa (5.34)
m = Z Moy (5.35)
a=1

b

X »r 18 the nonrelativistic centre of mass position of the system. X! o 18 the

position of particle o with respect to the centre of mass position.
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5. Nonrelativistic internal variables
The variables specified by (5.31') are internal variables for a nonrelativistic
system. That is,
[X;;"',P’*] - [Xg,)?:;r] =0 (5.36)
P, PE| = [P, RY ] =0 (5.37)
The nonrelativistic interaction potential (5.30) is a function of the internal
variables for a nonrelativistic system.
6. Cluster separability

A requirement for a system of n interacting particles is that if the system is
partitioned into two clusters that are separated by an infinite distance then
the system must behave as two distinct systems which do not interact with

~ each other. This is known as cluster separability (or the cluster decomposi-

tion principle).

For a nonrelativistic system this is accomplished by imposing suitable restric-
tions on the nonrelativistic interaction potential (5.30).

For a relativistic system this accomplished in the context of scattering the-
ory by imposing suitable restrictions on the relativistic interaction potential

V' defined in (5.26).

5.4 Scattering theory

We give a very brief overview of scattering equations for a Lorentz invariant

. system of n interacting particles. Further details are in Monahan (1995); an
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introduction to the basic ideas of guantum scattering theory is given in QLB:
Scattering Theory.

We assume that Poincare generators for the system are given by (3.22) to
(5.25), that is, we assume in particular that the invariant mass M is of the form
(5.26) and that the interaction potential V' has been constructed subject to the
restrictions (5.27). We assume further that requirements of cluster separability
are satisfied.

Potentials and Green’s operators

We assume that the interaction potential V' has the form

ny

V=>V, (5.38)
a=1

for some ny and we define the mass operator M, and potential V* by

M, = My+ V, (5.39)
M=M,+V" (5.40)

| Accordingly,
M=M+V,+V*® (5.41)
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and

Ve = Z v, (5.42)
b#a

Comments

Meaning of V,, M, and V¢

Vi, is the interaction between particles in a subsystem (subsystem a) of the
system,

M, is the invariant mass of the n-particle system when the only interactions
in the system are those between the particles in subsystem a.

V' is the interaction between the particles in subsystem @ and the particles
in the rest of the n-particle system.

" Cluster separability means that V* — 0 when subsystem a is removed to

infinite separation from the rest of the particles in the system.

Extension to include ¢ = 0

It 1s convenient to extend the values of a in (5.38), (5.40) and (5.41) to
include ¢« = 0 by defining

Vo =10 (5.43)

in which case
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ViV (5.44)

Accordingly, the decompositions (5.40) and (5.41) include (5.26) as a special
case.

The decompositions (5.40) and (5.41) are the key to deriving the generalized
Faddeev equations discussed in the next topic.

3. Green’s_operators
We define Green’s operators
Gofz) = — (5.45)
T M, .
Glz) = — (5.46)
s —_— z _ M .
where » is a complex number.
(fo(z) is the free-particle Green’s operator; G, (z) is the Green’s operator for
the system when the only interactions in the system are those between the
particles in subsystem «; G/(z) is the Green’s operator for the system.
4, Lippmann-Schwinger equations

It follows from
Gl ) =Gyl ()~ Va | (5.47)
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and

G H2) =G z) -V (5.48)
that (7, (z) and ((z) satisfy the Lippmann-Schwinger equations
Golz) = Gol(2) + Go(2)VoGa(2) = Go(z) + Gal(2)V,Go(2) (5.49)
Gz} = Galz) + Gu(2)VHGE(2) = Go(z) + G(2)VOGa(2) (5.50)
Generalized Faddeev equations
We define T' operators
To(2) = Vo 4+ VailGe(2)Va (5.51)
T (2) = V* + VPG(2)V*® (5.52)

1.

Comments

Physical significance of T,(z)

The on-shell matrix elements of 7,(z) are related to scattering cross sections

for subsystem a.

Physical significance of 7%¢(z)

The on-shell matrix elements of 7°(z) are related to scattering cross sections
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for the n-particle system when subsystem ¢ is in the initial state and subsystem

~ b is in the final state.

Kato-Birman invariance principle

T operators for nonrelativistic scattering theory are defined in terms of the
nonrelativistic Hamiltonian (5.28). The nonrelativistic 7' operator depends
only on internal variables; there is no dependence on the total momentum
Py because the centre of mass motion may be separated out of the free
Hamiltonian as per (5.29) and the nonrelativistic interaction potential depends
only on internal variables.

For a relativistic system the centre of mass motion cannot be separated out
of the free Hamiltonian (5.9) as per (5.29). The Kato-Birman invariance
principle, however, states that 7' operators for relativistic systems can be
expressed in terms of the mass operator as in (5.52); as in the nonrelativistic
case, the relativistic T operators depend only on internal variables.

Lippmann-Schwinger equation. for 7,(z}

We show in Section 5.5 that

To(z} = Vo + VuGo(2)Tu(z) = Vo + VaTo(2)Go(2) (5.53)

' T.(z) can be determined by solving the Lippmann-Schwinger equations

(5.53); accordingly, T,(z) is a known operator.

Lippmann-Schwinger _equation for 7% (2)

We show in Section 5.5 that
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T (z) = V* + VPG (2)T% (z) (5.54)

Tb“(z) cannot in general be determined by solving the Lippmann-Schwinger
equation (5.54) because there are §-function singularities in the kernel which
arise from intermediate states consisting of the interacting subsystem and free
subsystems.

Indeed, it is clear that attempting to solve (5.54) is not the best strategy for
determining T%*(z). Since T,(z) is known, it would appear advantageous
to use T,(z) as input information in determining T%*(2). The generalized
Faddeev equations of the next item employ this strategy.

Generalized Faddeev equations

We show in Section 5.5 that

TP(z) =V + Y Te(2)Go(2)T*(2) (5.55)
b

The generalized Faddeev equations (5.55) are a set of coupled integral equa-
tions for the operators T%¢(z) whose input includes potentials and known T
operators To(z).

The mathematical attractiveness of (5.55) lies in the second term of the right
side: there are no é-function singularities in the kernel because of the re-
stricted summation.

The Fada.ev equations were originally derived to describe scattering in a
nonrelativistic three-body system; (5.55), on the other hand, is appropriate for

describing scattering in a relativistic system of n particles.
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Three-body system

In this topic we illustrate the generalized Faddeev equations (5.55) by con-
sidering a relativistic three-body system.

We suppose that the three particles interact via two-body potentials, that is,

3
1
V=g ﬁZ_l Vg : (5.56)

~ where V,, = 0 and V,3 = Vj, and we define

V, = Vs, (5.57)

for « = 1,2,3. V, is the potential between particles /5 and + and subsystem
a consists of particles S and ~. Also,

Ve = Va,@ -+ Vﬂ")’ (5.58)

is the total potential for particle «.

We consider the special case of (58.55) when-a = b = 0 and we write
TY(z) = T(z). We show in Section 5.5 that
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T(z) =Y T%z) (5.59)
=1
where
Tz) = Tu(2) + Tu(2)Go(2) D T(2) (5.60)

b#a

Faddeev equations

(5.60) are a set of three coupled equations whose inputs are two-body T
operators. The nonrelativistic version of (5.59) and (5.60) are the original Faddeev
equations. :

5.5 Some derivations

Derivation of (5.53)

It follows from (5.49) that
| (a(2)Vy = [Go(2) + Go(2)VaGa(2)Va
(5.61)
= Go(2)Va + VaGla(2)Va] = Go(2)Tu()

al]d ¥ T 1 A
V,Gal2) = V,1Go(2) + Ga(2)VaGo(2)]

(5.62)
= [Va + VaGe(2)Va]Go(2) = To(2)Go(2)

131




Derivation of (5.54)

It follows from (5.50) and (5.52) that
G(=)V* = [Galz) + G,,(z)vba(z)} ye

= Gy(2) [va + vbG(z)Vﬂ] — Gy(2)T(2)

Derivation of (5.55)

It follows using (5. 42) (5.63) and (5.62) that

VPGV =Y VG2V =Y VeGo(2)T(2)

otb est

=Y Te(2)Go(2)T(2)
c#Eb

Derivation of (5.59) and (5.6¢)

It follows from (5.55) that
(2) ﬂV-I-ZT GozTaD(z)

s0, using (5.38), (5.59) holds where
T%(z) = Vo + Ta(2)Go(2)T*(2)
and _
Tz) =V + Y Ty(2)Go(z)T%(z)
b#£a

=Va+ Y Vi + Tz )Go(=)T*(2) )| = Va+ D T:)
ba | b#a

132

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)




Chapter 6 2 < 3 PARTICLE SYSTEM

In this chapter we indicate how to extend the considerations of Chapter 5 to
include particle creation and annihilation. The general mathematical formalism for
handling particle creation and annihilation is given in QLB: Quantum Mechanics

in Fock Space. In this chapter we consider the special case of a system of two

particles where a third particle can be created and a system of three particles
where one particle can be annihilated. We call this system the 2 « 3 particle
system. A more complete description of the quantum mechanics of this system
can be found in Monahan (1995).

The formalism given in this chapter can be used, for example, to describe
nucleon-nucleon scattering and pion production and absorption reactions on two-
nucleon systems above the threshold for single pion production and below the
threshold for two-pion production. That is, it can be used to describe the reactions

N+N< N+N (6.1)
N+NeaN+N+7w (6.2)
N4+N+re N+ N+ (6.3)

- The formalism can be extended to describe a 2 «+ 2 particle system where
the two two-particle systems are different. For example, it can be extended to
* describe the 7~ + p — K° + A reaction.

The Hilbert space for the system is described in Section 6.1, an uncoupled
interacting system is considered in Section 6.2; a coupled interacting system is
considered in Section 6.3; and some derivations are given in Section 6.4.
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6.1 Hilbert space, states and observables

We consider the physical system to be a system of two particles with rest
masses 7, and Spins sy, s, and of a third particle, with rest mass m3 and
spin s3, which can be created and annihilated.

The Hilbert space #;'"3™ for the system is the direct sum of a two-particle
Hilbert space and a three-particle Hilbert space.

MRGLO2% = ST gy g (6.4)

where ' and %§*2% are given by (5.1) and ¢ denotes the direct sum.
Fundamental dynamical variables for the system are given by (5.2).

A state | v» > of the system is represented by the column matrix

¥ ? 6.5
| 1/’1 = | T[) = ( - )
3 :
where | ¢ > is a vector in 5172 and | > is a vector in #u%2%. | 1/)
and | > are, respectively, the two- and three -particle components of | >
| > has unit norm
<¢|¢>25¢1¢3+§¢1¢3=1 (6.6)

m

where < o | ¢ > is the probablllty that | ¢» > is an m-particle state.
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An operator A in F5'%%

is represented by the 2 x 2 matrix

AU

b
j& ) 6.7)

where A" is an operator in '™ and A® is an operator in ;' *2%. The operators

A" and A* link »E3'™ and 2%,

. In particular, the number operator for the system is

2 0

N = (0 3) (6.8)
Classification of operators
An operator in ¥45*%4* can be expressed in terms of the four matrices

p (0 1
= (0 G) (6.9)

0 0

b
F¥ = (1 0) (6.10)
bt @ 1 0

FPFr=7P _(0 0) (6.11)
g _ph (8 ?) 6.12)
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which satisfy

2 2
(Fb) - (Fﬁ) =0 (6.13)
R PR (6.14)
That is,
A= AYPY § AP EY 4 AR L A% ph (6.15)

PV and P* are a complete set of orthogonal projection operators in J5:%%%;

PV and P* project onto k5% and %%, respectively.
Comrnents

1. Two-body operator

818283

An operator A in #4173 is a two-body operator if

PN v APy Dy @ AY 0
A=PYAP = AVPY = 0 0 (6.16)

2. Three-body operator




An operator A in 51%2% is a three-body operator if

A=PrAP* = A%pH = (g Jf,,) (6.17)

3. Direct sum operator

An operator A in ¥§1°2% is a direct sum operator if

@
A=PYAPY + P*AP* = AVPY 4 A%p* = (Ao AO,,) (6.18)

4. Coupling operator

An operator A in ¥1°%* is a coupling operator if it has the form (6.7) or
(6.15) where

A"#0  or AP0 (6.19)

6.2 Uncoupled interacting system

In this section we describe a Lorentz invariant system of interacting particles
in #}!%2% when there is no particle creation or annihilation.

137




The Poincare generators H, ﬁ, J , K are given by (5.22) to (5.25) and the
invariant mass M is given by (5.26) where ﬁg, j{;, X 0, ,,Efg, My, V are direct sum
operators and where

_ L 28
[v*,P[?] - {V*,Xﬂ} - {V",SO} —0 (6.20)

where & = U, &.

The interaction potential V' has the form

4
V= Z Va (6.21)
a=0
where
Vo=0 (6.22)
_ Vf 0
Vi = ( 0 0) (6.23)
0 © ] .
V, = (0 Vf‘) if a=1,2,3 (6.24)

That is,
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ASEEN)

V= 3
0 YV
a=1

(6.25)

‘/.‘O

potential between particles 4 and .

The mass operator M, and potential V* are defined by

4 is the potential between particles 1 and 2 and, as in (5.57), V® is the

My =M+ Vg (6.26)
M= M,+V* (6.27)
Accordingly,
M=M,+V,+V* (6.28)
and
Ve=>Y "1 (6.29)

bsfa

139




~That is,

vizv (6.30)
0 , 0
Vi = 0 3 VA (6.31)
=1 *
vy 0
Ve = ( Y ) if «=1,2,3 (6.32)
0 Vim+ v

Scattering equations

As in Chapter 5, scattering theory is expressed in terms of I' operators

T, (2) = Vi + Vo Gal2)V, (6.33)
Th(z) = Vo + VG (z)V® (6.34)
where
Gul2) ! (6.35)
A\ 2 - — Ma .
G(z) = — (6.36)
i & —_ - _ M .
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Comments

1. Direct sum operators

Ga(z) and G(z) are direct sum operators.

Accordingly, T,(z) and T%(z) are direct sum operators.

2. Lippmann-Schwinger equations

T4(=) is a two-body operator and T,(z) (@ = 1,2, 3) are three-body operators.

T4(:)® and Ta(z)"' obey the Lippmann-Schwinger equations

Ta(2)” = V7 + V2Go(2)°Tu(2)¥ = VP + VPTu(2)%Go(2)°  (6.37)

To(=* = VE + VAG ()T () = VA 4 VATL()*Go(2)*  (6.39)

3. Generalized Faddeev equations

T%(z) is a direct sum operator. When a,b = 1,2, 3,

T (¥ = Ty(2)" (6.39)

- that is, Tb“(z)o obeys the two-body Lippmann-Schwinger equation (6.37);
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and TP (z)* obeys the generalized three-body Faddeev equations

3
Th(* = Vb + 3 T (2)*Go(2)4T(2)* (6.40)
c#Eb=1

6.3 Coupled interacting system

In this section we describe a Lorentz invariant system of interacting particles
in 1% where particle 3 can be created or annihilated.

Particle creation and annihilation is accomplished and Lorentz invariance is
maintained by modifying the interaction potential (6.21) to

V=> V (6.41)

where Vi, Vi, Vi, V3, Vy are given by (6.22) to (6.24) and

0 W :
_ 42
v (V;‘ 0> (042
where
- L L) o
ViR = [Vﬁ, X } = [Vs", So] =0 (6.43)
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where ff = b.f and & = O &. That is,

AN 7%
V= Vsﬁ az::l v (6.44)
1t follows from (6.44) that
[H,N]#£0 | (6.45)
Comments

1. Coupling operators

V5 15 a coupling operator. More specifically,

<¢|1/5|¢>:§¢|V;|¢§+.§¢|v§|¢§ (6.46)

Accordingly, V and H are coupling operators.

2. Particle creation and annihilation

It follows from (6.45) that a state of particles |1 and 2 can evolve in time to

a state of particles 1, 2 and 3 and - state of particles I, 2 and 3 can evolve

in time to a state of particles 1 and 2. That is, particle 3 can be created or
- annihilated.
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More specifically, if at time zero

| >= ("g?) (6.47)

then at time ¢

(6.48)

Similarly, a three-particle state prepared at time zero can evolve to a two-
particle state at a later time.

Generalized Faddeev equations

Scattering theory is expressed in terms of T operators (6.33) and (6.34) where
a,b =0,1,2,3,4,5. T%(z) involves the potentials
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viz=v (6.49)
0 1%
Vi = 3 (6.50)
2D SR %
a=1
AS vy
¢ = : f =1,2.3 6.51
v (vgi vA L ve BoaEns (61
AGEN
Ve = 3 (6.52)
0 1%
agl «
Comments

Direct sum and coupling operators

(7o(z) (a=0,1,2,3,4) are direct sum operators and G5(z) and G(z) are

coupling operators.

Accordingly, T,(z) (e =1,2,3,4) are direct sum operators and T5(z} and

T%(z) are coupling operators.

Lippmann-Schwinger equations for Ta(é) (a =1,2.3,4)

T4(z) is a two-body operator and T,,(z) (e = 1,2, 3) are three-body operators.

T4(::)O and Ta(z)"‘ obey the Lippmann-Schwinger equations

145




Tu(2)° = VO + VP Go(2)%Tu(2)° = VE + VI Ta(2)°Go(2)°  (6.53)

To(2)* = V& 4 VARG ()* T (2)* = V* 1 VAT, *Gh(2)* (654

Lippmann-Schwinger equation for 75(z)

We show in Section 6.4 that

g (T2 Tsa) |
ne= (T om) (655

where 1’“5(,-:)0 and T: 5(3)"‘ obey the Lippmann-Schwinger equations

Ts(2)" = U (2) + U%(2)Go(2) " Te(2)" (6.56)

Ts(2)® = U (2) + U (2)Go(2)*T5(2)* (6.57)

where

U(2) = VsGo(2)Vs

:<W%§)@ @%&W@>=<M?Uuéf)

146




and where

Ts(2)* = Vi + VEGo(2) ¥ Ts(2)" (6.59)

Ts(z) = V& + VP Go(2)*Ts(2)* (6.60)

4. Potential /(=)

818283

The direct sum operator {(z) is an effective potential in 515%™

U®(z) is an effective two-body potential which maps G52 to itself via
372 it describes a process where a two-body system emits and reabsorbs
a third particle.

4% (=) is an effective three-body potential which maps 312 1o tself via

8182,

5'7%; it describes a process where a three-body system absorbs and re-emits

-a particle.

Generalized Faddeev equations

It follows as in Chapter 5 that

T*(z) =V + Y To(z)Go(2)T°(z) (6.61)
ctb

The generalized Faddeev equations (6.61) are a set of coupled integral equa-
tions for the operators T7°%(z) which are appropriate for describing scattering
in the relativistic 2 « 3 system.
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The equations for T%¢(z) (a,b=0,1,2,3,4} involve V5 and T5(z) and there-
fore include a production contribution 2 — 3 — 2 to the two-body process
2 — 2 and an annihilation contribution 3 — 2 — 3 to the three-body process

3 — 3.

- 6.4 Some derivations

Derivation of (6.56) to (6.60)

It follows from the Lippmann-Schwinger equation
T5(z) = Vs + V5G{)(2)T5(Z)
that (6.55) holds where

Ts(2)° = VPG (2)*Ts(2)*

5

Ts(2)* = ViGo (=) Ts(2)’

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

Substitution of (6.64) into (6.63) and (6.65) into (6.66) yields (6.56) and (6.57),

respectively.
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