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Preface

The six volumes of notes Quantwn Leaps and Bounds (Qlß) forrn the basis
of the i¡troductory graduaæ quantum mechanics course I have given in the
Department of Physics at the University of British Columbia at va¡ious times
since 1973.

The six volumes of QLB arc

Introductory Topics: a collection of miscellaneous topics in introductory
quantum mechanics

Scattering Theory: an introduction to the basic ideas of quantum scattering
theory by considering the scattering of a relativistic spinless particle from a
fixed target

Quannm Mechanics in Fock Space: an infoduction to the second-quantization
description of non¡elativistic many-body systems

Relativistic Quannm Mechanics: an introduction to incorporating special
relativity in quantum mechanics

Some Lcsrentz Invaríant System.si some examples of systems incorporating
special relativity in quantum mechanics

Relativßtíc Quannm Field Theory: ãÍt elementary introduction to the relativis-
tic quantum field theory of spinless bosons, spin ] fennions and antifermions
and to quantum electrodynamics, the relativistic quantum fie1d theory of elec-
trons, positrons and photons

@.'B assumes no familiarity with relativistic quantum mechanics. It does
assume that students have taken undergraduate courses in nonrelativisúc quantum
mechanics which include discussion of the non¡elativistic Schrodinger equation



and the solutions of some stånda¡d problems (e.g., the one-dimensional harmonic

oscillato¡ and the hydrogen atom) and pernrrbation theory and other approximation

methods.

QIB assumes also that students will take other graduate courses in condensed

matter physics, nuclea¡ and particle physics and relaúvistic quanû¡m field theory.

Accordingly, our purpose n Ql,B ls to introduce some basic ideas and fo¡rnalism

and thereby give students sufûcient bacþround to reâd the many excellent texts

on these subjects.

I am happy to have this opportunity to thank my friends and colleagues

R. Ba¡rie, B. Bergersen, M. Bloom, J. Feldman, D.H. Heam, W.W. Hsieh,

R.I.G. Hughes" F.A. Kaempffer, P.A. Kalyniak, R.H. Landa¡, E.L' Lomon, A.H.
Monahan, W. Opechowski, M.H.L. Pryce, A. Raskin, P. Râst¿ll, L. Rosen, L'
Sobrino, F. Tabakin, A.W. Thomas, E.W. Vogt and G.M. Volkoff for sharing

their knowledge of quantum mechanics with me.

I also thank my wife, Henrietta, for suggesting the title fo¡ these volumes

of notes. Quite conectly, she found my working ttrle Eletnents of Intermcdiate

Quantum M echanics a bore.
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4.

Chapter 1 INTRODUCTORY REMARKS

As discussed n QLB: Relativßtic Quantum Mechanics, in orde¡ to describe a

Lorentz i¡variant physical system using quantum mechanics one must:

l. specify a set of fundamental dynamical va¡iables for the syst€m;

specify the fundamental algebra ofthe set of fi¡ndamental dynamical variablerr;

select a complete set of compatible observables for the system;

specify the Hilbert space of the sysæm through spectral resolution of the
complete set of compatible observables;

5. determine the Poincare generators H,F,¡,R for the syst€m in terms of the
fundamental dynamical variables.

For convenience we give some elements of relativistic quantum mechanics
in Section 1.1.

We give a number of examples of Lorentz invariant systems in this volume
of QI,B. We follow the above steps in each case. This procedure differs f¡om
the historical one fo¡ the Dirac particle discussed in Chapær 4 but it yielals all
the usual results.

We consider a single spinless particle in Chapær 2, a particle with spin in
Chapter 3, a Dirac particle in Chapær 4, a syst€m of particle" with spin in Chapûer
5 and a simple system involving particle c¡eation and annihilation in Chapter 6.
Lists of selected refe¡ence books, journal articles and theses follow Chapær 6.



1.1 Some relativistic quantum mechanics

In this section we give some elements of relativistic (and nonrelativistic)
quantum mechanics which a¡e used late¡ in this volume and which are discussed

more fully n QLB: Rel.ativistic Quantum Mechanics.

Poincåre Generators

The Hermitian opsrato$ H,, F , i,, R a¡e the Poinca¡e genemtors for a Lo¡entz

inva¡iant physical system. f1 is the Hamiltonian; P is the total momentum; J is
the totÂl angular momentufn; É it the Lorentz booster. These operâtors gene¡ate

time translations, spatial displacements, rotations and Lorentz boosts, respectively.

Poincare Algebra

The Poinca¡e Algebra is the following set of commutation relations fo¡ the

Poincare generators:

[r',ro] : o

lri ,nl : o

(1.1)

(1.2)

ltt rn) = ir¿ej*tPl

Pi,nl-o

ltt,tr"l=ifi.e¡*rJt

(1.3)

(1.4)

(l.s)



[xt,rh]: -iñ6*Htc2

lxi,,ul: -¿1pt

[*o,tr]: iñej¡tKt

[*t , **] : -ir¿,jttJt 1.2

(1.6)

(1.7)

1r.8)

(l.e)

where ñ. - lzl2tr, /¿ is Planck's constant, c is the speed of light, á¡¡ is the
K¡onecke¡ delta symbol and e;r¡ is the Levi-Civita perrnutation symbol.

Galilei Algebra

The Galilei Algebra is a set of commution relations appropriaæ for describing
a Ga-lilei invarìant physical system. The Galilei Algebra is identical to the Poincare
Algebra except for (1.6) and (1.9) which are the only equations in the Poincare
Algebra which involve the speed of light c. More specifically, the Galilei Algebra
is identical to the Poinca¡e Algebra except in having (1.6) and (1.9) replaced by

lut,rn): -ikm6¡*

lxi,xkl: o

(r.10)

(1.1 1)

where r¿ is the

boosts.

mass of the sysæm. The Galilei boosær I? generates Galilei

5



Unitary Poinca¡e operators

The unitary Poinca¡e operators for a Lorentz invariant system ítre

As discussed tn QLB: Relativßtic Quantum Mechanícs, these operators cor-

respond to space-time transformations in a fixed inertial frame as follows:

We consider a ståte | ú > of the system prepared by a preparation apparatus

in a fixed inertial frame 5 at time zero.

t/(t) is the evolution operator for the system. The state

l,þ(t) >: u(t) l,þ > (1.16)

is the state of the system in ,9 at time ¿. It follows from (1.16) that

H l,þU)r=or#1,þþ)> il.17)

II(t) - e-iHílñ

Di @) - "-iPtø/It

PL (E : e-iriêlñ

Lr (u) : 
"-icKialñ

(1.12)

(1.13)

(1.14)

(1.1s)



(1.17) is the Schrodinger equation for the system.

¿i1a) is the displacement operator along the j-axis of 
^9 

for the sysæm. The
state

l rÞa;"p >: Dt (") l rþ > (1.18)

is the staæ of the system prepared in .9 at time zero by the appamtus displaced
by a along the j-axis of ,9.

¿i(d) is the ¡otation operator about the j-axis in S for the system. The state

l'þ,o, >= Rj (o) l'þ , ( 1.19)

is the state of the sysæm prepared in ,9 at time zero by the apparatus ¡otated
by d about the j-axis of ,9.

7i (u) is the Lo¡entz boost operator along the j-axis in ,9 for the system.
The state

l rþuoa ): Lt (") l,þ > (1.20)

is the staæ of the system prepared in ,9 at time zero by the apparatus boost€d
with rapidity z along the j-axis of 

^9.

The states I ,þa¿"o >, I ú"ot > arrld I úooo"t ) evolve unde¡ the influence of the
Hamiltonian I/ and at time ú in .9 are



I l:a;"n(t) >- U(t) l,þa*e >

l,þ,,t(t) >: U(t) l1þ,ú >

l rþn.*þ) >: U(t\ l1þuo"t >

(1.21)

(1.22)

(1.23)

It follows f¡om the Poincare Algebra (1.1) to (1.9) that the above st¿tes ¿tre

related to the state I r/(J) > as follows:

where

¡t :1(a - ut)

t =r(,_i)

(r.27)

(1.28)

lúta*e(t) >: Dt (") l'þ(t) >

l,Þ,"r(t¡ ,-- nl (q | t¿(¿) >

oi (,\ l rÞuo"r(t') >: Û fu)ni @) | ,r(¿) >

(1.24)

(t.2s)

(1.26)

where "y = cosh z.



Space inversion and time reversal

As discussed in QLB: Relatívistic Quantum Mechanics, the Poincare genera-

to¡s transforrn under space inversion and time ¡eversal as follows:

where the linear operalor P is the space inversion operato¡ and the antilinear
operato¡ T is the time reversal ope¡ator for the system.

P and T correspond to space inversion and time reversal in a fixed inertial
frame as follows:

PHPÏ : H

pFpt : -F

PJ.PI : -i

pRpt : -R

(t.2e)

(1.30)

(1.31)

(1.32)

.1H"1T : H

rFTt : -F

TJ\+ : -i

rÈrt : R

(1.33)

(1.34)

(1.35)

(r.36)



We consider a staæ | ry' > of the system prepared by a preparation âpparatus

in a ûxed inertial frame ,9 at time zero.

The state

lrþ¿"">:Pltþ> (1.37)

is the state of the system prepared in S at time ze¡o by the space-inveræd

apparatus and the state

l1þ,"">:Tltþ> (1.38)

is the state ofthe system prepared in ,9 at time zero by the time-reversed apparafus.

The states I ,þ¡,o > úd I ,þ,"o > evolve unde¡ the influence of the Hamiltonian

H and at time f in S a¡e

l rþ¿",(t) >- U(t) l rþ¿no >

1,,þ,""(t\ >- U(t\ l1þ,.o )

(1.3e)

(1.40)



It follows from (1.29) and (1.33) that the above states are related to the state

| ,ltft) > as follows:

l,þ¡,"(t) >: P | ú(¿) >

l'þ,*(t) >: T I ú(-¿) >

(1.41)

(1.42)

Inva¡iant mass

The invariant mass M of a Lorentz inva¡iant system is

l-
u - |t/P.P

c
(r.43)

That is-

M.2-JEz-p|¿ (1.44)

Pauli-Lubanski four-vector

The Pauli-Lubanski four-vector WP for a Lorenø invariant system is

w, : -Trp'o' p,Mo, (1.4s)



whele eþvo' is the unit antisymmetric tensor. That is,

WO: i.F

-1W::HJ*cKxP
c

(t.46)

(1.47)

Cenhe of mass position

-:
The cenEe of mass position X of a Loren¿ invaria¡rt system is

a ]/i - -i\i : -il+R . ii+) - @TiaWF xù (r 48)

E:^/Hr:JPrrP+M%4 (1.4e)

Centre of mass velocity

The centre of mass velocity ú of a Lorentz invariant physical sysæm is
defined as

;nt:l*,nl (1.50)



a: h(#*-ffipwe) (1.s2)

It follows from (1.48) that

Internal angular momentum

a
The inæmal angular momentum ,9 of a Lo¡entz ilrvariant system is

It follows from (1.52) that

î is a const¿nt of tlle motion *¿ ã ã is a Lorentz invariant.

13

¡ "2F
H

(1.51)

ls.Hl:0L'J

w.w : -(Mò'zã.â

(1.53)

(1.54)



Helicity

The helicity À of a Lo¡entz inva¡iant system is

t'=-'-=
where /' : \/P.P.

It follows from on calculation that

Á is a Lo¡entz i¡variant for a system with M : 0.

3.F
P

(1.5s)

[^,H]:0

[,r,F] 
: o

fn, "'-l 
: o

fn,,(] 
: tnu"(râ-É)

(1.s6)

(1.s7)

(1.58)

(1.se)



Ghapter 2 SPINLESS PARTICLE

In this chapter we consider a Larentz invariant physical system consisting of
a single spinless particle.

We follow the sæps given in Chapær l: we specify the physical sysæm by
a set of fundament¿l dynamical variables a¡d we construct Poincare generators
in te¡ms of these variables.

Fundamental dynamical va¡iables for the system are given in Section 2,1,
Poi¡ca¡e generatots are given in Section 2.2, va¡ious space-time tansformation
operators are given in Section 2.3, coordinate- and momentum-space wave fr:nc-
tions are given in Section 2.4, some transformed coordinate-space wave functions
are given i¡ Section 2.5, the inægro-differential equation for the coordinate-space
wave function is given in Section 2.6 and the Klein-Gordon equation for the
coordinate-space wave function is given and discussed in Section 2.7. Some
derivations are given in Section 2.8.

2.1 Fundamental dynamical variables

Fundamental dynamical variables for a physical system consisting of a spinless
particle of rest mass m ue the Caræsian coordinates and momental

x\ ,x2,x3,P1 , P2, p3 (2.1)

(2.16) sbows tbat Pr is a Poincare geDefator. We have auticipated this resutt i¡ order Dot to trrrolif€rate
the number of s¡'mbols.

t5



which satisfy the fr¡ndamental quantum conditions

["',"*] : o

fri,rÈ] : o

lxi,ek) -- md¡t

(2.2)

(2.3)

(2.4)

The operators

Xl ,x2,XJ

Pl ,,P2,P3

(2.s)

(2.6)

each form a complete set of compatible observables. We denote thei¡ simult¿neous
eigenkets by

| í >:l x,g, z 2:l ,1 ,x2.,x3 >

I i >:l pt,p2,p3 >

(2.7)

(2.8)

These eigenkets may be used as bases for the Ililbert space. That is,



xi: la3,li>xi <a1

P¡ : I ¿"li> f <Pl

(2.e)

(2.10)

and

r : I a'" I i >< i t= I o'oli>< il

<a1í,>:dþ-;)

<Fti >:t(ø_r,)

(2.11)

(2.12)

(2.13)

wtrere á (ã - ,;) aro O (ø - /) are 3-dimensional Dirac delr¿ functions.

It follows f¡om (2.2) to (2.4) that

< i ti>: (h¡r ",u,,,
(2.14)



2.2 Po¡ncare generators

We require the particle to be a Lo¡entz invariânt system. We must, therefore,

construct the Poincare generators n, F,¡', Ê in tEfms of (2.1). We quote the final
¡esults. The Poinca¡e Algebra (l.l) to (f.9) is satisfred when

H: Jpr., +nlc4

F:F

J':*xF

- 1 ¡- +\K--.zcrlxH+Hx)

(2.1s)

(2.16)

(2.17)

(2.18)

Comments

l. Spectral decomposition of the Hamiltonian

11 is a function of momentum so

,: I o'oli>,o<Fl (2.19)

whe¡e



2. Comparison with the nonrelativistic c¿se

The Galilei Algebra is satisfied when

The Hamiltonian 1{ and the boosær -É are different in ¡elativistic and non-
relativisúc.. quantum mechanics. The tot¿l momentum F and total angular
momentum ,/ are the same.

3. Invariant mass

It follows from (1.44) that

M:M (2.2s)

4. Centre of mass position and intcrnal angular momentrm

It follows from (1.48) and (1.52) that

19

D2
H::_

2m

F:F

¡':ixP
È : -,,i

(2.21)

(2.22)

(2.23)

(2.24)



X:X

s:0

(2.26)

(2.27)

The centre of mâss position of the particle is the Cartesian position; the

intemal angulâr momentum of the particle is zero.

5. Centre of mass velocity

(2.15) corresponds to the classical exprcssion for the energy of a particle in
terms of ils momentum. It follows from (1.51) and (2.15) that the velocity

of the particle is

^zn

' - {FrA +æ7
(2.28')

-mVD.- 

-

' - Jt=Tr7V
t

_ fnc-

{t - v2 lcz

(2.29)

(2.30)

Furthermo¡e,

(2.30) is the quartal version of Einsæin's equation in classical special æla-

tivity.



6. Particle with zero rest mass

It follows from (2.15) nd (2.28) that when r¿ : 0

A particle with zero rcst mass travels at the speed of light.

2.3 Space-time transformation operators

In this sectìon we give expressions in terms of position and momentum
eigenkets for the unitary Poincare operators (1.12) to (1.15) and for the space
inversion and time reversal operators.

Unitary Poincarc operatons

The evolurion opemtor (1.12) is

uþ) = | #pli> 
"-iect/ñ'. ¡1

(2.34)

The displacement operator (1.13), rotation operâtor (1.14) and boost operator
( L 15) may be written as

H-Pc

ü -"FP

V:C

(2.31)

(2.32)

(2.33)

21



Di@) : l #,l ip, >< i l

Pi! (o): I a3* ¡ tp, >< ã l: I d'p I iu ,. Fl

rilu¡: I rrrlTtFt,><it

(2.3s)

(2.36)

(2.37)

where, fo¡ example,

I i D' >:l ,7 4 o, 12 , t3 > (2.38)

| ,¡' >:l ,7,x2 cosl - z3sind,ø2sin 0 + x3 cos 0 > (2.39)

lp¡, >:l 7|,p2 .o" g - p3 sin d,p2 sin 0 + p3 cosÎ > (2.40)

,1
I it' >:l pl cosh z + :eosithu,,p2,p3 > (2.41)

lLr : €p cosh u * cPl sinh z (2.42)

(2.35), (2.36) nd (2.37) give a direct correspondence with transfo¡mations of
space-time points; they also allow simple proofs of



Di 1a¡xk oit ç"¡ : xk - a6 j* (2.43)

alçe¡xl n1t 1e¡ : yt

R1 (o)x2 Rlt @) : X2 cos o + x3 sin d

R1(0)xi Rlt (q -- -X2 sì:nl + X3 cos d

il 1u¡n ilt 6¡: t/ cosh z - cpj sinhu

Li @)cri t it 1"¡ : cPi cosh u - fI sinh z

Lilu¡.PhLiI1u¡:"pr e +k)

(2.47)

(2.48)

(2.49')

Space inversion and time reversal operators

The operator P corresponding to space inversion is

Y - | a'"1 -d>< ¡ e I ¿'ol -p-><F.l (2.50)



The operator T corresponding to time reversal is

where | / > is any vecto¡ or ket in the Hilbert space.

It follorvs f¡om (2.50) and (2.51) that for any linear operator ,4

Thus,

PAPt : A (2.s4)

T,ATi : I a3ra|r' I i >< i I Al ; ;< ;' I

r: 
J 

a3ra3r' li>< -il Al -il ; < F I

(2.s3)

r I ø>: I o',t, >< óli r: I o'ol-i>< ólp> (2.st)

(2.s2)

pAPr : [ #rd3r' l'->< -i I Al -;' >< ; I

J

-- .l o'oo"r'lp->< -11 Al-i ><F 
I



<-ilAl-rlt:. ilAlã> (2.ss)

a¡d

TAT+ : A (2.s'7)

<ilAli j:< ilAl; > (2.s8)

< -il A | -pi j:. Fl,qlF > (2.s9)

<-ilAl-i >:<ilAlil > (2.s6)



In particular, if

< i I A l"-, >= 
"i'-¡o (e - i) (2.60)

then (2.55) and (2.58) become

a(-d): a(í)

a* (i) : a(i)

(2.61)

(2.62)

(2.62) is satisfied if .4 is Hermitian; accordingly, a local observable is inva¡ia¡t
under time-¡eversal, as follows also from (2.66).

Finally, (2.52) and (2.53) allow simple proofs of

p-fpt: -.f

p4pt : -F

PHPI : H

(2.63)

(2.64)

(2.6s)



rirt : -i

rÉr+: -F

rnrt:a

(2.66)

(2.67)

(2.68)

2.4 Wave functions

The coordinate-space wâve function tþ(i,t) for the particle is defined as

tþ(i,t) :< i l,þft) > (2.69)

where I r/(f) > given by (1.16) is the staæ of the particle at time f, and

I tþ(i,t) | 2d3x (2.70)

is the probability that the particle is in the volume d3ø about z- at time ¿.

The momentum-space wave function tþ(f,t) for the particle is defined as

.þ@,t) -< F l rþft) > Q.7L)



I 'þ(i,,t) I 
2 

d.3 p (2.72)

is the probability that the particle has momentum in the volume Êp about f
at time ¿.

It follows from (2.14) that

ú(i,t) - (*)' f aspein'ã/h,¡1¡,t¡

,þ(p',t) : (*)r I a3 e"-ií d /à,¡qr,t¡

(2.73)

(2.74)

It follows ftom (2.34) that

tþ(i,t): 
"-il,'/h < Fl rþ > (2.7s)

and the¡efore

,þ(i,t): (*)t I rr";$r-,rùç(i) (2.76)

where p- : ñ.Ë, ep : tu¿¡ and ,,þ(Ë) :. p l,þ >.



Comments

l. Plane wave

The function

"i(É..i-to*) e.77)

desc¡ibes a plane sine wave moving witl phase speed u¡f k and group speed

du¡ pcz

dk Jp2c2 ¡ rnz ca
(2.78)

in the direction fu.

2. Wave packet

(2.76) describes a wave packet; its shape is determined by the probability
amplitude for having prepared the particle at time z o with momentum ñ,b.

2.5 Some transformed wave funct¡ons

In this section we give expressions fo¡ some space-time transformed
coordinate-space wave functions which follow using the space-time transfor¡na-
tion operators given in Section 2.3.

Displaced wave function

The displaced coordinate-space wave function tba*r(i,t1 for the particle is
at time ¿ is defined as

,Þa*r(i,t¡ :< i I tþ¿*p(t) > (2.79)



whe¡e, following (1.21),

l1Þa;"p >- D(ã) l rþ > (2.80)

D@) : D1 (a1) D2 (a2) n3 (a3) (2.81)

It follows from (2.35) that

tÞa;",(i,t¡ :1þ(i - ã,t) (2.82)

Space-inverted wave function

The space-inverted coordinaæ-space wave function ,þ¿"r(d,t) for the particle

is at time I is defined as

1þi,*(i,t) :< i l rþ¿""(t) > (2.83)

where | /¿,,,(f) > is given by (1.39). It follows f¡om (2.50) that

,þ;",(d,t) :lþ(-i,t) (2.84)



Time-reversed wave function

The time-reversed coordinate-space wave function ,þ;",(ã,¿) for the particle
is at time f is deÊned as

,þ,",(i,t) --< í l rþ,"u(t) > (2.85)

where | 'y'"",(l) > is given by (1.a0). It follows from (2.51) that

,þ,"u(i,t) - 1þ- (i,, -t) (2.86)

The complex conjugated wave function appears on the right side of (2.86)

because the time reversal operator is antiunitary.

2.6 Equation for the coord¡nate-space wave function

We show in Section 2.8 that the coo¡dinate space r¡/ave function ry'(d,f)
satisfi es the following integro-differential equation:

(*)' I a3"'a3n eeeií(r-;')/ñ1þ(i,t) = maú@'Ð- e.s.)



Nonrelativistic Schrodinger equation

The non¡elativistic limit of (2.87) follows on replacing e, by p2 f 2m. TIilLs

replacement yields

-fiv'a6,t7 : ¿ñ*,þ@,t) (2.88)

(2.88) is the non¡elativistic Schrodinger equation.

2.7 Klein-Gordon equation

As is seen from performing the required differentiations, the wave packet

(2.76) satisfies

f'. (Ð'] ú@,t):o (2.89)

"= i# -"' (2.e0)

(2.89) is the Klein-Go¡don equation. We derive (2.89) directly in Section 2'8.
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l.

2.

Comments

Negative enerqy solutions

The coo¡dinate representation of every solution of the Schrodinger equation
(1.17) satisfies (2.89). The conve¡se, however, is not true. This follows since
the derivation of (2.89) involves the square of 1l so (2.89) could also have
been derived by taking H to be equal to -JFîA +æ7. One says that
(2.89) possesses both positive energy solutions and negative energy solutions.

The negative energy solutions of (2.89) have no sensible inærpretation in a
one-panicle theory.

Lorentz invariant solutions

The d'Alembertian (2.90) is invariant under all Poinca¡e transformations.
That is.

n': n Q.9T\

where
,-ì, 1 ô2 t_!2 1 ð2 ô2 02 ô2r': ¿aF-v'" _Aðø- ôæ- ðP_ ap Q.e2)

where

¡ttt = ¡t" ,av ¡ qF (2.e3)

is a Poinca¡e transformation. It follows that rt f @,y, z, ú) is a solution of
(2.89) then sois f (rt,,yt ,zt,ft). One can construct solutions f(x,y,z,t) o1
(2.89) which satisfy

f (x',y', "',t') 
: f (x,g,, z,t) (2.e4)

Such solutions are called Lo¡entz invariant solutions of the Klein-Cordon
equation.

Lorentz invariant wave-packet solutions



where

The wave packet (2.76) is a Lorentz inva¡iant solution of (2.89) if

,,r,,þ(Ë,) : 
"r,þ(Ë)

¡rrt : |¡e ,lcu

and

ko : u¡ lc
A manifestly covariant form fo¡ this wave packet is

where 0(È0) is the positive step function and

(2.es)

(2.96)

(2.e7)

(2.9e)

4. Quantizing fhe Klein-Gordon equation

(2.98) is the traditional starting point for the development of the relativistic
quantum field theory of uncharged bosons with zero spir.

The function a(kø) is reinærpreted as an annihilation operâtor for a boson
with energy-momentum kp and (2.98) is reinterpreæd as an expression for a
field operator in the Heisenberg picture. The freld operiltor obeys the Klein-
Gordon equation (2.89)..

The above reinterpretation is called quantizing the Klein-Gordon equation.

The negative energy solutions of (2.89) are reinterpreted æ ûeld operators for
particles with negative charge.

a(kp):r(fi)+ *'ø(i)

,þ(i, t) : I a" nd (r,.r, - (T)') t 6,) "ik 
" oçt,¡ (2.98)



We develop the ¡elativistic quantum field theory of spinless bosons from
flrst principles n QLB: Relativístic Quantum Fiel.d Theory. The traditional
approach of quantizing the Klein-Gordon equation will not be followed.

2.8 Some derivations

Derivation of (2.E7)

ty'(z-, f) satisfies

< i I H l,þ@ >: ffry+? (2.100)

(2.87) follows using

<,lH l,þ(t)>: Ior*,.ElH lã >1,(ã,,t) (2.101)

. and

< il H I ì, >: I a'ea'n' . ilFr. il H lF r. F li,
(2.102)

(*)' I a3 P'n"in- 
(t-í') r n

which yields (2.87).

Derivation of (2.E9)

Operating on both sides of (1.17) with fI yields

H2 l,þþ) r= -u,# 1.,þ(L) > (2.103)

'' 
the coordinate representation of which is

< i I H2 l,þft) >: -h"ryiÐ (2.t04)



Using (2.15), the left side of (2.104) is

"2 
<E1p2l1þ(t)>+m2c4ú(Ê,t) (2.105)

and since

< i I F l,þþ) >: -irliú(i,t) (2'106)

it follows that

< i I Hz l rþ(t) >- -ñ2c2v2r¡'1i,t¡ + m2c4r¡'1i.,t) (2.107)

(2.89) is (2.104) in morc compact form.



Chapter 3 PARTICLE WITH SPIN

In this chapær we extend the material of Chapær 2 to consider a I-oreniz
inva¡iant physical systÊm consisting of a single particle with spin s where s is
any positive integer or positive half-odd inæger. As we shall see, inclusion of
spin is simple and straighforward.

We follow the steps given in Chapter 1: we specify ttre physical system by
a set of fundamental dynamical variables and we construct Poincare generators

in terms of these variables.

Fundamental dynamical va¡iables for the system are given in Section 3.1,

Poincare generators are given in Section 3.2, coordinaæ- and momentum-space

wave functions are given in Section 3.3 and helicity wave functions are given

in Section 3.4.

3.1 Fundamenta¡ dynamical variables

Fundamental dynamical variables for a physical system consisting of a particle
of ¡est mass rrz and spin s whe¡e s is any positive inæger or positive half-odd
integer are the Ca¡tesian coordinaæs, momenta and spinl

xt , x2, x3 ., Pl ,, P2 ., P3 , sl., s2 , sJ (3.1)

which satisfy

(3.20) sbows tbat Pr is a Poincare generator. We have aDticipated this resr¡lt i¡ order not to prolife¡ale
tbe Du!¡ber of symbols.
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1",,"*] =o

fri,rn] - o

lxi,ekf :;no¡t

(3.2)

(3.3)

(3.4)

[tr,to] : ike¡nst

.í. ^í: s(s + i)ñ2

(3.s)

(r.6)

[r,,"n] : ls,,rÈ] 
:o (3.7)

The ope¡ators

x1 , x2,, x3, sJ

P1 ,P2,P3,,s3

(3.8)

ß.9')

each forrn a complete set of compatible observables. We denote their simultaneous
eigenkets by



| ãm" >-l :x)y, zltr¿s >:l x7, 12,x3,rn" )

I F*" >:l pr ,,p2,p3,m" )

(3.10)

(3.1 l)

These eigenkets may be used as bases for the Hilbert space. That is,

(3.12)

(3.13)

(3.14)

a¡d

1= I lasrld*,><im"lL-r I

: Ë [¿rpri,n"><ph"r
*-.--, J

(3.15)



< irnslJ*'">: t(t - J)U"*1

< í*" I i*," >: a(t - i)U,*,,

(3.16)

(3.17)

It follows from (3.2) to (3.4) that

3.2 Poincare generators

We require the particle to be a Lorentz invariant system. We must, the¡efore,

construct the Poincare generators H,,P,J,K in te¡ms of (3.1). We quote the final

results. The Poinca¡e Algebra (1.1) to (1.9) is satisfied when

< Èrn, I Fm;" > : (*)' "nu 

u, u o* 
"*,"

(3.18)

H _ 1/ p2¿2 17n2¿t

F=F

¡':*xF+É
, 1 ', -\ 1 /-
K : -rplxH + H x) + E aæ\s x r¡

(3.1e)

(3.20)

(3.2r)

(3.22)



Comments

I . Comparison with the spinless particle c¿se

¡1 is the same as in the spinless particle case: fI does not depend upon,í.

(3.21) is the obvious generalization of (2.17);.É therefore depends upon ,9
because of the Poinca¡e Algebra equation (1.9).

Modifying J' nd È f¡om the spbless case and leaving H nd F unchanged
corresponds to the point form of dynamics defined by Dirac (1949).

2. Comparison with the nonrelativistic case

The Galilei Algebra is satisfied when

Only -/ depends upon S itt the non¡elativistic case.

3. Energy spechunr

11 is a function of momentum so

D2
H::-

2m

F:F

¡':i"F+B

R: -*i

(3.23)

(3.24)

(3.2s)

(3.26)
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, : i 
"l 

o'p lf*"> e, < fin"l (3.27)

where eo is given by (2.20).

4. Invariant mass

It follows from (1.44) that

M:m (3.28)

5. Centre of mass position and internal anEular momenûrm

It follows from (1.48) and (1.52) that

X_X

,9: ,9

(3.2e)

(3.30)

The cenre of mass position of the particle is the Cartesian position; the

intemal angular momentum of the particle is the Caræsian spin.

6. Centre of mass velocity

It follows from (1.51) that
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' - Jø7¡ffij

F:_L
1/t - v2 lc2

- ,tra2
" - JT=TT¡7

(3.31)

(3.32)

(3.33)

(3.33) is, for a particle with spin, the quantal version of Einsæin's equation
in classical special relativity.

7. Wigner rotation of spin

The dependence of E upon 51 in the Poincare case yields a rotation of spin
under Lo¡entz boosts. This is the Wigner rotation for a particle of spin s.

The Wigner rotation is a purely relativistic effect. There is no Wigner rotation
in the Galilei case because, according to (3.26),.Ë it t¡"t case does not

:.|
depend upon 5.

8. Particle with zero rest mass

It follows from (3.19) and (3.31) that when m:0
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H--Pc

û:"F
P

V--c

(3.34)

(3.35)

(3.36)

A particle with ze¡o rest mass and spin s travels at the speed of light.

3.3 Wave functions

The coordinate-space/spin wave function ,Þ*.(t,,t¡ for the particle is defrned

,þ^"(i,t) :1 Étns l rþ(t) > (3.37)

where I t/(t) > given by (1.16) is the st¿te of the particle at time t, arìd

| ç*"(i.,t) | 2 
d3 x (3.38)

is the probability that the particle is i¡ the volume d3c about d at time f with
3-component of spin equal to rn,.

The momentum-space/spin wave function tlt^,(¡,t¡ for the particle is defined

a.s



,þ*,(F,t) :1 Frn" l rþ(t) > (3.3e)

a¡d

l,Þ*"(f,l | 2a3p (3.40)

is the probability that the particle has momentum in the volume d3p about f
at time f with S-component of spin equal to rn".

The coo¡dinate-space/spin and momentum-space/spin wave functions a¡e re-
lated according to

It follows from (3.77) that

tÞ*.(i, t7 : (*)r I as o";n't / 
ñ ç*"ç¡,t¡

tÞ* 
"(p-, 

t) : (*)t | # ue-il t / r,,r^ 
"(i, t)

(3.41)

(3.42)

and the¡efore



,þ* 
"(d, 

t) : (*)r I a3 r,"i(É't-'rt),/,'" (Ë) (3.44)

where p-: hË, ,o : ñ.t:¡ and rþ^"(Ê) -< F*" l rþ >.

(3.44) clescribes a wave packet in ænns of the probability amplitude for having

prepared the particle at time zero with momentum ñ.ft and 3-component of spin

equal to rn".

þ^"(i.,t) given by (3.44) satisfies the Klein-Gordon equation (2.89).

3.4 Helicity e¡genkets

It follows from (1.55) and (3.21) that the helicity Â of the particle is

¡\ is the projection of the intrinsic spin of the particle along the direction of
the momentum of the particle.

The eigenvalues of ,4, a¡e Àä whe¡e À = s, s - 1, "' , -s.

^_ s.F
VP.P

(3.4s)



^ -- Ë Ë [ ¿,p r i*"r 1.ç.ã) < i*,. r

^-.-- " -'.--"J 
\ '/ 'n"m"

ß.46)

where f is the unit vector p] t/F-. i nd s1, s2, s3 are (2s f 1) x (2s + 1) matrices
satisfying

l"i 
,, 

"kf 
: ;n,¡t"r"t (3.47)

with .s3 diagonal.

For a partìcle with spin ],

s: lna
2

(3.48)

When expressed in terms of the eigenkets I F*" >,

where the o1 ,o2,o3 a¡e the Pauli matrices, in which case,

where (d,9) are the spherical polar coordinaæs of lin the fixed inerti¿l ¡efe¡ence
frame.

- a I cnsîo'p: 
\sinderr

sin úe-i9 \
- ro"e )

(3.4e)
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The operators

Pl , P2, P3, L (3.s0)

are a complete set of compatible observables. We denote thei¡ simultaneous

eigenkets by

lh^(Ð > (3.51)

These eigenkets may be used as a basis for the Hilbert space. That is,

+s
pr_ t l¿'pln^(Ð>f <h^@)l

.-J

A : t I ¿tp ln^61 > 
^rù 

<h^(Ðl

(3.s2)

(3.53)

a¡d

r= ï [¿rpln^(Ð><h^(Ðl

< h^(Ð I r¿¡'þr) >= a(r-- l)o^^,

(3.54)

(3.ss)



< F*" I h^(Ð >- t(¡ - t)nlø (3.s6)

which defines the functions n1.16, alrrd, using (3.18),

< zrn, lå)1pl ,: (*)+ ",r¿/ñn!,,(Ð
(3.s7)

The functions nl"ç¡¡ ue deænnined by solving the eigenvalue problem for
A in the I pn 

" > representation. For a particle with spin I this yields

Furthermore,

That is,

ù^"@) = oi"^1e,o,o¡ (3.se)

(3.58)-e-tç sin * \
,o"$ " )(:iil3 i:l',i):Gäi,

wherc Dr.,,,.(a,8.,1) is the rot¿tion matrix given by Rose (1957), page 234.



For sene¡al s

hL"(Ð -- D",."¡@,0,0) (3.60)

3.4.1 Momentum-space/helicity wave function

The momentum-space/helicity wave function 1þ^(i,t) fol the particle is de-

fined as

,þ^(f,t) :< h^@) l,þ(t) > (3.61)

I ,þ^ (F,t) I 
2 ¿'p (3.62)

is the probability that the particle has momentum in the volume d,3 p about f
at time f with helicity ).

Helicity is a Lorentz inva¡iant for a system with M :0, that is, a particle
with zero rest mass. In this case, where the Hamiltonian (3.19) is i¡va¡iant under

space inversion,

,þ^(i,t):o unless ì=s (3.63)



It follows from (3.56) and (3.59) that the momentum-space/spin and

momentum-space/helicity wave functions are related according to

It follows from (3.52) that

,þ^(p,,t): 
"-ierlñ' 

. n^@) l rþ > (3.66)

The coordinate-space/spin wave function (3.44) may be written as

,þ,*,(i,t):(+")tþ_"lo,r"ur'-,ot)D;.^1e,0,0),1,^(¿) (3.67)

wrrere øÀ(ã) :< h^(Ð l'þ >.

,þ^"(",t) given by (3.67) describes a wave packet in ærrns of the probability
amplitude for having prepared the particle at time zero with momentum ñË and

helicity )ñ.

*s
,þ,""@,t) : Ð o"*"^(r, o,qq^@,q

À=-¡

,þ^ (i,t) : Ð n:;"^@, o,o),þ^.(F,t)
mr=-s

(3.64)

(3.6s)





Chapter 4 DIRAC PARTICLE

In Chapær 3 we considered a Lorentz invari¿rnt system consisting of a particle
of rest mass rn and spin s whe¡e s is any positive inæger or positive half-odd
integer. We showed that inclusion of spin was simple and staighforward; we
also showed that the energy of the particle was independent of spin and always
nonnegâtive.

ln this chapter we conside¡ the physical system to be a Di¡ac particle of rest
mass m. The quantum mechanicS of this sysæm was fi¡st conside¡ed by Dirac
(1928). As will be shown, the Dirac particle has spin I and possesses both
positive and negative energy states.' Dirac assumed the particle to be a¡ electron.

The negative energy stat€s have no physical inærpretation in a one-particle
theory. Dirac's bold interpretation of these staæs (hole theory) predicted the
existence of antiparticles and led to the invention of relativistic quantum field
theory. It is one of the greatest achievements in the history of quântum physics.l

Di¡ac's hole theory, as brilliant as it was in 1930, is not the modern view
of antiparticles. ln QLB: Relativistic Quannm Fielì Theory we construct a
¡elativistic quantum freld theory of electrons and positrons where particles and
antiparticles appeâr on equal footing and with positive energies.

Some of the ideas of hole theory do, however, appear in a modified and

correct form in the modern view of many-body physics as discussed in QLB:
Quantum Mechanics in Fock Space.

As in Chapærs 2 atd 3 we follow the sæps given in Chapter 1: we specify
the physical sysæm by a set of fundamental dynamical va¡iables and we construct

I Noo¡elativistic quatrtur meha¡dcs was i¡vented by HeiseDbe¡g aad Scbrodiager i¡ 195. Dirac
proposed his HaEiltoniaD (4.10) in 1928. He was 25 at the time. Dirac proposed his intery¡etation of
the ùegative eùe¡gy states in 1930. The positon waÁ discovered by A¡d€rson iD 1932. Relarivistic
quantum ûeld theory was iDvetrtÊd by Pauli, Jordaù a¡d others between 1933 aod 1935.
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Poincare generators in terms of these variables. This differs from the usual

procedure fo¡ the Dirac particle but it yields all the usual results.

Fundament¿l dynamical variables for the system are given in Section 4.1 and

Dirac's expressions for the Poincare generators are given in Section 4.2. The

Pryce-Foldy-Wouthuysen transformation is given in Section 4.3 and zitterbewe-

gung is discussed in Section 4.4. It is shown that the Dirac particle has spin I
in Section 4.5. Di¡ac's discovery of the Di¡ac Hamiltonian is described in Sec-

tion 4.6. Some properties of Di¡ac matrices and '¡-matrices are given in Section

4.'7. The coordinate-space wave function of the particle and the Di¡ac equaúon

are given in Section 4.8 and the momentum-space wave function is discussed in
Section 4.9. Space inversion and time revetsal are considered in Section 4.10'

Energy/helicity eigenkets are defined in Section 4.11 and a transfonnation simi-

lar to the Pryce-Foldy-Wouthuysen transformation is given in Section 4.12. The

role of the negative energy states in zitterbewegung is discussed in Section 4.13'

Energy/helicity spinors are given in Section 4.14 and the most general soluúon

of the Dirac equation is given in terms of these spinors in Section 4.15. A Dirac

particle in a electromagnetic field is discussed in Section 4.16. The g factor for a

nonrelativistic Dirac particle is derived and the energy eigenvalues fo¡ the Di¡ac

hydrogen atom are given. Dirac's interpretation of the negative energy states is

given in Section 4.17. Finally, some derivations are given in Section 4.18.

4.1 Fundamental dynamical variables

Fundamental dynamical va¡iables for a physical system consisting of a Dirac

particle of rest mâss m Lre Íhe Cartesian coo¡dinates and moment¿ and the fou¡

Dirac operatorsl

xl ,x2,x3,P7,,P2,P3,al ,a2,a3, B (4.1)

(4.1I ) shows tbat Pj is a Poincæe geoerator. We bave ârticþated this result i¡ o¡der ¡ot to p¡oliferate

the number of symbols.
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which satisfy

4.2 Poincare generators

We require the Dirac particle to be a Lore¡,¿ inva¡iant system. We must,
therefore, construct the Poinca¡e gene¡ators H,F,J',,Ê in ænns of (4.1). We
quote the final results. The Poi¡care Algebra (1.1) to (1.9) is satisfied when

{"'i,ou}:zs,n

loj,pj :o

02 :1

(4.s)

(4.6)

(4.7)

1",,"0] - [',,rÈ] :o

lB,tnl: lo,erl: o

(4.8)

(4.e)

[x:,xå] :o

[r',rÈ] : o

lxi,rkl - m¡r,

(4.2)

(4.3)

(4.4)



¡7-cã.F+B*"2

,) t)

t':*xF+S
- 1 /- -\K:--¡a¡7*¡1*,

2c¿ \ /

(4.10)

(4.11)

(4.12)

(4.13)

where

Commenfs

l. Comparison with the spinless particle and spin particle c¿ses

We recall from Chapter 3 that comparison of the Poincare generators (3.20)

to (3.22) for a particle of spin s with the Poincare genemtors (2.16) to (2.18)

for a spinless particle shows that the former are arrived at from the latær by
modifying J and I{ . This corresponds to the point fonn of dynamics defined

in Dirac (1949).)

Comparison of the Poincare generato$ (4.11) to (4.13) for a Dirac particle

with the Poincare generators (2.16) to (2.18) fo¡ a spfuless particle shows

-ls ::ht
2

-iIl:--¡ixri
2

(4.r4)

(4.1s)



that the former are arrived at from the latter by modifying fI and J. This
corresponds to Dirac's instant form of dynamics.

We leave it to the reader to construct Poinca¡e generators corresponding to
Di¡ac's front form of dynamics.

2- Energy spectrum

It follows using (4.5) to (4.7) thât

H2 = P2c2 + rn2 c4 (4.16)

The s pectrum of H2 ts continuous in the inærval (rnz ca , *) . The spectrum
of ll is continuous in the intervals (-æ, -rnc2) and (rnc2, oo).

That is, the Dirac particle possesses negative energy states.

The negative energy states have no physical interpretation for a one-particle
system. We outline Di¡ac's interpretation of these states fur Section 4.17.

3. Other sefs of generators

We refer to the generator s n,F,i,,Ë given by (a.10) to (4.13) as the Dirac
generators. They are not a unique solution to the Poincare Algebra (1.1) to
( I .e).

The Poincare Algebra is sæisfied by the generators (3.19) to (3.22) for a
panicle with spin where 5 is given by (4.14). Tl¡js set of generators is

not unitarily relaæd to the Di¡ac generâto¡s because tle energy spectra are

dífferent.

The Poinca¡e Algebra is also satisfied by the Pryce-Foldy-Wouthuysen (PFW)



generators given in Section 4.3. The PFW generators are unitarily relaæd to

the Dirac generators.

4. Invariant mass

It follows from (1.44) that

M --m (4.1',7)

S. Qntre of mass posidon an¿ internal angt¡l

It follows f¡om (1.48) and (1.52) that

E = Jp%, +rnrc4 (4.20)

That is, i is not the centre of mass position and 5 is not the spin. Indeed,

one finds on calculation that

i- ç. ihcttã --l--rls,ø* fio(a a)n] (4.r8)2E E(E +n

a - iñ,cß . c2 - /- +\.ç:.ç- îr" P -E@T;qr x (sx rJ (4.1e)



l*,n) -;n"a

ls,nl + o

(4.21)

(4.22)

That is, ,í is not a constant of the motion, and inærpreting -f as the position

of the particle implies that the speed of the particle is equal to the speed of
light

The above results may seem disturbing. The situation will be cla¡ified in
Section 4.3 when we view tl¡e Dirac particle in the Pryce-Foldy-Wouthuysen
picture. We note herc, however, that the numerical differences between matrix

elements of X and X, and S and ,9, a¡e small; they are of the o¡de¡ of the
Compton wavelength fif mc of the particle.

4.3 Pryce-Foldy-Wouthuysen p¡cture

We recall that the physical content of quantum mechanics is unchanged if
each state | ú > is replaced bV U l rþ > and each observable ,4 is replaced by
[/ AUt where [./ is a unitary or antiunita¡y operator. Every U provides a picture

of quantum mechanics.

So far in this chapter we have used the Dirac picture of the Dirac particle. We
now consider the Pryce-Foldy-Wouthuysen (PFW) picture of the Dirac particle.

This picture is provided by the unitÂry operatorl

The PFW picture of the Dirao particle was i.Dtroduced by Pryce (f948) aDd Foldy and Vy'outhuy$eD

(1950). It is usually called the Foldy-r'VoutbuyseD pictu¡e.



. E+þH
1/28(E + mcz)

(4.23)

lf I ,þ > is a st¿te of the particle in the Di¡ac picture and ,4 is an observable of
the particle in the Di¡ac picture, then

F l',þ >

FAFI

(4.24)

(4.2s)

are the conesponding staæ and observable of the particle in the PFW picture.

It follows on calculation that

''.....-....--_'.......-FHFI: p\/ p2c2 + m¿c4

PFrt : F

FXFl: X

râet - S

(4.26)

(4.27)

(4.28)

(4..2s)



Comments

1. Hamiltonian

The Hamiltonian in the PFW picture is B^F7Tææ.

The PFW picture thus shows the relationship between Di¡ac's Hamiltonian
(4.10) a¡d the Hamiltonian (3.19) fo¡ a particle of rest mass rn and spin s.

By inuoducing the operator B, which bas eigenvalues are t1, Dirac seems

merely to have introduced negative energy states along with positive energy

states.

2. Centre of mass posifion and internal anEular momentrm

The centre of mass position in the PFW picture is i and the internal angular
momentum is ,9.

As pointed out above, unphysical effects follow if one interprets -f as ttre
centre of mass position and 3 as the intemal angular momentum in the Di¡ac
picture.

One such unphysical effect, zitterbewegung, is discussed in Section 4.4.

4.4 Zitterbewegung

We view the Dirac particle in the Dirac picture, that is, using the Di¡ac
generators (4.10) to (4.13).

The centre of mass position ip¡ of rfrc particle in the Heisenberg picture is



ftç¡: ft +it (4.30)

ü -"'FH (4.3r)

where 11 is the Dirac Hamiltonian (4.10).

We show in Section 4.18 that the Ca¡tesian position -i(t) of the particle in
the Heisenberg picture is

i<r¡: * +it+ Elt¡ (4.32)

where

z p¡ : 
";n, 

ft 
"i" (#) * (", - t) (4.33)

l. Zitterbewegung operator

Z(l is tne zitærbewegung CJittering motion") operator. t, ¿"t.¡5g5 a high

frequency, small amplitude displacement.



2. Zitt€rbervegung: not an observable position operator

Zitterbewegung is not an observable position of the Dirac particle because
the Caræsian position is not the position operator in the Dirac picture.

3. Negative energy states

We show in Section 4.13 that nonzero matrix elemenß È 1t\ arrs" only if a
state has both positive and negative energy components.

4.5 Spin

5 is the i¡temal argular momentum of the particle in the Dirac picture and 5
is the intemal angular momentum of the particle in the pFW picture. ,9.3 anO ,í.,í
have the same eigenvalues because they are related by a unitary transformation.

It follows on calculation that

^í.,í:s(s+t)ñ2 (4.34)

whe¡e

1

t (4.3s)

A Dirac particle has spin ].



Comments

1. Value of spin

The value of the spin of the Dirac particle has been derived from properties

of d; it has not specified ab inítio as was the case for the particle with spin

discussed in Chapær 3.

This was considered the most remarkable feature of Dirac's approach to the

Lorentz invariant description of a single particle when it was invenæd in 1928.

2. Electron

Di¡ac conside¡ed the particle described by his Hamiltonia¡ to be an electron.

4.6 Dirac's discovery of the Dirac Hamiltonian

The Poincare Algebra approach had not been invented when Di¡ac discovered

his wave equation for the electron in 1928. How then did he proceed?

The Klein-Gordon equation (2.89) was considered to be the appropriaæ

relativistic wave equation for a particle with ze¡o spin. Dirac sought to derive

a relativistic wave equation which would describe the electron, that is, a spin I
particle.

He started with the coordinate representation of the Schrodinger equation for
a single particle with spin

< im" I H l,þU) 2: ¿f'þ*".(i't)
ôt

a¡d determined a form fo¡ f1 such that space and time would be on equal footing

in (4.36).1 Since (4.36) is a fi¡st-orde¡ partial differential equation in time and

"Equal footing" was imposed because of tbe mixiDg of space a¡d time variables by a IrreÀtz boost

Tbe Poilcõe Algebr4 however, does not imply "e4ual footing".

(4.36)



. Ëm" I F l,t'@ >: -ir¿iú^"(i,t) (4.37)

Di¡ac therefo¡e sought a fonn for I/ which was linea¡ in F; he also required that

H2 : P2.2 ¡*z"t (4.38)

in o¡der to incorporate the classical ¡elationship between energy and momentum.

Dirac generalized

l ',2
lô ' P\ : P'z (4.3e)

where or , o2 , oJ are the Pauli matrices by writing (4.10) where at ,, a2 ,, o3 ., B are
to be determined such thât (4.38) holds. That is, such that

(.a. F + 0,n"')' : P2 c2 + rnzca (4.40)

(4.40) holds provided al ,a2,a3,8 satisfy (4.5) to (4.7)

4.7 Matr¡x representat¡on

We give some properties of Di¡ac matrices and 7-matrices in this section
Further properties are gíven n QLB: Relativistic Quannm Mechanícs.

Dirac matrices

The Di¡ac algebra (4.5) to (4.7) is satisfied by r¿ x ?? matrices, the smallesr
value of n betng n -4. The Dirac representation of 4 x 4 matrices d and B is



': (3

,: (å

;)

:,)

(4.41)

(4.42)

': å'(i 3) (4.43)

ln this representation,

Comments

l. Dimension of matrices

It is necessary to use 4x4 matrices to describe the spin of a Dirac particle

because the particle has up and down spin states fo¡ both positive energy

st¿æs and negative energy states.

2- Diagonal matrices

The matrices P (4.42) and ,93 (4.43) are diagonal. We use this fact in Sections

4.8 and 4.9 to construct simult¿neous eigenkets of sets of compatible operators



7-matrices

The four "v-matrices

lo:þ

^1" : lrd:

(4.44)

(4.4s)

transfonn âs components of a contrava¡iant vector under Lorentz boosts and
rotations. That is,

S(Á)-1tø51¡¡ : /\P,.t' (4.46)

where 5(À) is a 4 x 4 reprcsentation of S L(2,, c) and the ÀP, characterize rotations
and Lo¡entz boosts.l

Constructing the Lorentz scalar

1.P = rnc (4.47)

yields (4.10). This procedure provides ân alternative derivation of (4.10).

' Sl1Z, 
"¡ 

i" tl" ¡goup of cômplex 2x 2 Eat¡ices witb dete¡mi¡aot equal to unity; S¿(2, c) is tbe covering
group for the reshicþd Lo¡etr¿ group.



4.8 Position eigenkets

In this section we constÍuct eigenkets appropriaæ for describing the

coordinate-space wave function of a Dirac particle.

The operators

x\ ,, x2, x3, s3, íJ (4.48)

form a complete set of compatible observables. We denoæ their simultaneous

eigenkets by

I irl >--l r,g,,z,d,s:1 11,,x2,x3,d, > (d : 7,2,,3,4) (4.49)

These eigenkets may be used as a basis for the Hilbert space. That is,



4"
xr-)ì lfrlid>,i <id¡z----t ,

d,=7 
r

4^
01 : )- | Êrlia> d¿¿, <id, I¿----t I

¿-¿t=1"

4^
ij: )] la3xlil>þ¿¿,<idl

à.à'=1 "

-4
s', : +ñ Y. I ¿t, I id>rrdd, < id 

I2 ¿-r I
d,¿' =1 "

(4.50)

(4.s 1)

(4.s2)

(4.53)

t:f,lr,tid><idl

< idl;d>: d(t - ì,)du,

(4.s4)

(4.55)

where doo,, þ¿a, and Etoo, arc elements of the matrices (4.41), (4.42) and (4.43).

The conespondence between the values of d and the eigenvalues of ,S3 and
B is given in the following table:



Table 1 Values of ¿ ard the eigenvalues of 53 aad B

Coordinate-space \üave function

The coo¡dinate-space wave function tþ¿(É,t) for the particle is defined as

tþ¿(i,t) :< id | 1þ(t) > (4.s6)

where I r/'(f) > given by (1.16) is the staæ of the particle at time ¿, and

| þ¿(i,t) | 
2 dr r (4.s7)

is the probability that the particle is in the volume dru about d at time ú rvith
values of 53 urd B corresponding to the value of ¿l in Table l.

Value of d Eigenvalue of 53 Eígenvalue of p

I ++rL +1

2 -# +1

J ++f¿ I

4 -In I



(-n +ff),t'ti,t):o (4.s8)

Dirac equation

We show in Section 4.18 that

where

Comments

l. Dirac spinor

The matrix (4.59) is called a Dirac spinor.

We will generally call a column matrix of the form (4.59) a Dirac spinor.

7t

\iir:iiù
1þ(È,t) - (4.se)

ò : 1Pðp

..4
* iJxþ

(4.60)

(4.61)



2. Dirac equation

(4.58) is the Di¡ac equation; it is a fust-order partial differential matrix
equation for the Di¡ac spinor (4.59).

Klein-Gordon equation

In view of (4.38), it follows that every solution of the Di¡ac equation (4.58)

is a-lso a solution of the Klein-Gordon equation, that is,

4. Form inyariance of fhe Dirac equation

The Di¡ac equation (4.58) is form invariant unde¡ a Lorentz transfor¡nation.

That is,2

(-n'+ff)ø'{t):o (4.63)

whe¡e

1". (T)'lr¿@,t):s (4.62)

*rt" __ ¡1" ,au (4.64)

' In tb" followiug ø staDds for ,. gr, 2, ¿



is a restricted Lorentz Eansformation and

,Þ'(x') : s(À)ú(^r) (4.6s)

ô, : .,t,, dt"

d-:#

t'P : S(1¡)-1tPS(lr): ttø ,^,'

(4.66)

(4.67)

(4.68)

4.9 Momentum eigenkets

In this section we define a momentum eigenket I p? > analogous to the
position eigenket | ãrJ >.

The operators

P1 ,, P2,, P3, s3, B (4.6e)

form a complete set of compatible observables. We denote their simultaneous
eigenkets by

I id >-l pt ,p2,p3,d > (d - 1,2.,J,4) (4.70\



These eigenkets may be used as a basis for the tlilbert space. That is'

It follows from (4.4) that

i:i /¿', lid><pd.l¿-.¿ |
d=\ '

<idlF¿, ,--o(ø-iþ*,

(4;7s)

(4.76)

< Edlid, ,: (]r)È ",u,r^ooo,
(4;77)

pi:i [¿rpli¿>f <id.l
¿.=1J

",= í [ a'plø¿> d¿d,<pd' I

¿Étr

p: í [¿'pli¿>þ¿a,<fdlul
d,¿t:1 '

14r
si : :rr l. I ¿tp I oa > >!oo, < íd; l

" ¿ÉrJ

(4.71)

(4.72)

(4.'t3)

(4.74)



4-
ä : )- I d'pli¿> h¿¿,(p) <íd 

I
(4.78)

Commenß

l. Dirac Hamiltonian

The Dirac Hamiltonian (4.10) is expressed in terr¡s of momentum eigenkets
as

The matrix h(p] is not diagonal; I p? > is not an eigenket of the Di¡ac
Hamiltonian (4. l0).

2. Comparison with the spin particle case

The Hamiltonian (3.19) for a particle of arbitrary spin is a function of
momentum independent of spin. It follows that every eigenket of momentum
is also an eigenlet of (3.19).

I p-rl >, on the other hand, is not an eigenket of the Dimc Hamiltonian (4.10)

because (4.10) depends upon d and B as well as upon momontum.

Eigenkets of the Di¡ac Hamiltonian (4.10) will be the subject of Section 4.11.

/ t - r\

(h¿¿,(p^ì:(#".u * o) (4.7e)



4.10 Space inversion and time reversal

In this section we exp¡ess the space inversion operator P and time ¡eversal

operator T for a Di¡ac particle in ærms of position and momentum eigenkets.

Space inversion

The space inve¡sion operator P is linear and the Poincare generators transform

under space inversion according to (1.29) to (1.32).

We show in Section 4.18 that

P: þP' (4.80)

4"4.
p':)- I Êrl-i,t><ídl:)- /¿to l-id><id,l¿-r I z-.t I

¿:1 " d.=1 "

(4.81)

fime reversal

The time reve¡sal operator T is antilinear and the Poincare generators trâns-

form under time ¡eversal according to (1.33) to (1.36).



We show in Section 4.18 that

T : iD2Tl (4.82)

whe¡e

4.1 I Energy/helicity e¡genkets

We have seen from (4.78) that the momentum eigenket I p-d > is not
an eigenket of the Di¡ac Hamiltonian (4.10). In this section we construct an

energy/helicity eigenket I "'(f) > which is an eigenket of (4.10).

The operators

Pl ,P2,P3,L,H (4.84)

are a complete set of compatible observables whe¡e Â is the helicity (1.55) and
.11 is the Di¡ac Hamiltonian (4.10). r\ has eigenvalues +*ä.

r' | ó r:f. I o', I id.>< ó | id >:r. I o', I -F¿ >< ó I íd >z-r Id=.tr l_J 
(4.83)



s.F
P

(4.8s)

It follows from (4.19) that

When expressed in terms of the momentum eigenkets,

where the 4 x 4 matrix Ð. þ'is

whe¡e ã. f is the 2 x 2 mautx (3.49).

We denote the simultaneous eigenkets of (4.84) by

| "'(p) > (, : 1,2,3,,4) (4.88)

f, Io',,r0,
¿d'=1"

r: ln
2 (Ë.õ)00,.¡o'l (4.86)

r ø= (ã;õ
'Îo)

(4.87)

These eigenkets may be used as a basis fo¡ the Hilbert space. That is,



4f
Pi - t I d'pl"'(Ð > f <u,(fi I

--J

4^

^ 
: D I dtp I u,(û > À,k < u,(p-) |

-- 
.t

4r
H : t I dtpl",þ.1 > eo, < u,(fl 

|

(4.8e)

(4.e0)

(4.91)

, : Ð I f p I u, (p1 >< u, (p.) 
I

-. 
.l

(4.e2)

(4.93)< u, (p) | ",' (F) ,: {t - F) d,,,

where

(t)(ii) (4.e4)



(ii) e,)
(4.9s)

where €p is given by (2.20).

Furtherrno¡e,

< id | ", (i) ,: d(ø - n)"216 ø.96)

which defines ui(f¡, alird, using (4.77),

¡ ¡ rå
< id. I u'lfl ,: l*ù- e;í'd/ñuî¿(i) (4.e7)

The functions ui(p) are given in Section 4.14.

The correspondence between values of r and spectral values of ,4, and 11 is
given in the following table:

Table 2 Values of r and the spect¡al v&lues of 
^ 

and ,g

Value of r Eigenvalue of l\ Spectral value of H
I ++h *€p

2 -*n teP



Table 2 (CoÌrtiùued) Values of r and tbe spectral values of Â and IJ

J ++rL -ep

4 -In

Energy/helicity wave function

The energy/helicity wave function tþ,(i,t) for the particle is defined as

whele ] r/'(f ) > given by ( Ll6) is the state of the particle at time ¿, and

I ,l',(f.,t) I 2 
d3 p (4.ee)

is the probability that the particle has momentum in the volume d3 p about f
at time I with values of heliciry and energy conespondir'g to the value of r as

in Table 2.

It follows from (4.91) that

,þ,@,t) : ,-it,'tf ñ' < "'(p) l rþ > (4.100)

,þ,(i,t) :<,u'(i\ | {;(1.) >



Negative energy components

A physical panicle has positive energy. The negative energy components (the

r' : ìJ and r :4 components) of | ,/r(¿) > are discussed i¡ Section 4.17.

4.12 P ry ce-Foldy-Wouthuysen p¡cture rev¡sited

We have constructed momentum eigenkets I p-d > and | "'(Ð >. The unitary

operator' G defined by

tl'anst'ol'ms one eigenket to the other, that is,

lt f'olk¡ws fì'om (4.9 I ) that

4Ì
(;Hd : f / ¿tpC I""(Ð> rr, <u'(ÐIGt

'¿----J I

À

=t / d'pli,l>t¿,<p-dl
^L-J ,'.,)d:l

(4.104)

__L r(;:).ld'pli,><u'(pll
'--.t

(4. r 01)

I i¿ >: (; I "o(,Ð 
>

I ""(d >= Gt I i,' >

(4.r02)

(4.103)



That is,

GHGT : ßrfpr"t +"r% (4. r 05)

Similarly, it follows from (4.90) that

GAGI :,53 (4. 106)

l.

Comments

Pryce-Foldy- Wouthuysen transformation

(4. I 01 ) is similar (but not identical) to the Pryce-Foldy-Wouthuysen transfor-
mation operator (4.23).

Pryce-Foldy-Wouthuysen Hamiltonian

(4.104) provides a simple derivation of the Hamiltonin þJPî7 +ì77.

Matrix elements

ln the I pil > representation,

< fid | (]r I i, >: d(t - n)"2f6 Ø.t07)



4.13 Energy projectors

We define a complete set of orthogonai projection operators l_¡ and l_ which
project onto the positive and negative energy states, respectively:

Alternatively,

A general state | 'ry' > of the Dirac particle can be written as

|1þ >:1 ?þ+>tlrþ_> (4.11t)

lrþ+>: l+ lú > (4.112)

r,:!(t+-=:=g-l- 2 \ u/ P2r2 ¡,,,2r4 /
(4. l l0)

T [ ¿trl ,'(p] >< ,"(pl I'-a ^ J

I [ ¿tu | ,'(pJ ><,'(p-) 
|":. J

¡r+ -

t_:

(4.108)

(4. i 0e)



I rlil ) and I r/- > a¡e the positive ard negative enorgy componena of I rþ >,
respectively.

Comments

l. Proiection of velocity

It follows on calculation that

lacdfl : l+l7l+ (4. i 13)

where i/ is the velocity operator (4.31).

2. Zitterbewegung

It follows from (4.32) and (4.113) that

r¡Z1t¡ra : s (4.114)

u.rd therefore that

<,i, I Z(Ð1,1, >:<,þ-l Z(Ðl ú+ > + <,þ*l Zþ)1,þ- > (4.1t5)

As discussed in Section 4.4, ntterbewegung is an unphysical phenomenon
associated with regarding the Cartesian position as the centre of mass posi-
tion in the Dirac picture. Zitterbewgung arises because the Di¡ac Hamiltonian



(4.10) allows both positive and negative energy states; there is no zitterbewe-
gung if | /, > possesses only a positive energy component or only a negative
enelgy component.

4.1 4 Energy/hel¡city spinors

In this section we specify the 16 functions zi(p] defined in (4.96). The
fìnctions are given as four Di¡ac spinors z"(pr] : ("â(Ð); the derivations a¡e

given in Section 4.18. We quote the final results:

Positive energy, negative helicity

,"þ,: {@-(-^,;!tr) (4.117)

Positive energy, positive helicity

,rrr,:W(#'$) (4.116)



Negative energy, positive helicity

(4.1 l8)

Negative energy, negative helicity

4t ¡'u \p): (4. I 19)

pc
(4.12t)

e .p + nlc2

The functions n)",1fi are given by (3.59)i hL,(Ð is the probability amplirude
firr a particle with spherical polar coordinates of momentum equal to (0,9) and
helicity À to have :l-component of spin equal to nz".

(#lå)¡,À(d = (4.t20)

8'7



2.

Comments

Energy/trelicity spinors

Matrices (4.116) to (4.119) a¡e called energy/helicity spinors.

Eigenvalue equation

The energy/helicity spinors satisfy the eigenvalue equations:

0i-rnc.)u'(¡\:0 (r :1,2)

(p*nlc)2"(-pl : 6 (r : 3,4)

(4.122)

(4.123)

(4.122) tnd (4.123) follow directly using Ø.a7) and the eigenvalue equation

fo¡ Pr.

3. Normalization

tt : 1'p

p': (a.,p',p',p')

(4.r24)

(4.t2s)



(4. I 16) to (4. I 19) rre normalized such that

4. Properties of (

It folìows tiom (4.121) that

5. Nonrelativistic limit

It lbllows tiom (4.116), (4.117) and (4.129) that

4

1"2.1¡,";'ç¡1 : d,"'
rl=1

4

\";.1¡¡"5,16: suo'

(4.126)

(4.127)

(<1

0<(<1

liur (: g

lirn (: 1
?n-{)

when m l0

(4.t28)

(4.12e)

(4. 130)

(4. r31)



.!å,"(ol: (t*;tt, (r : 1,2) (4.132)

The two positive energy spinors reduce to the appropriaæ two-component

spinors in the non¡elativistic Limit.

6. Large and small components

In view of (4.131), when r : 1,2, components of u'(p) proportional to ( are

called the small components and components of z"(p] not proportional to (
are ealled the large components.

7. Dirac particle with zero rest mass

It follows from (4.116) to (4.119) and (4.130) that

" /, L, - ,

ti'r urf Dì: +l :il? )m=0 \/2 \n, \p) /

1 / h-i(i;\ \
hm u"{l) : -----= I - ì". ID¡:o ,/2\-h-z(p) /

,!,-\
,. 3,+ I l-h'\P)\[r]l z tpi : ----Fl. !.- Im=0 \/2 \ n, \p) /

. /, -L - \

,rj:ì"nrrf 
:ali;i:Å)

(4.133)

(4.134)

(4.13s)

(4.136)



4.15 Most general solution of the Dirac equation

It follows from (4.92), (4.98) and (4.100) that a general staæ | ,r/(l) > of a
Dirac particle may be written as

fiom which it foilows using (4.97) rhårr rhe Dirac spinor (4.59) may be written as

whel'e

,b(p) :< "'ç, l,þ > (4.139)

is the probability amplitude that the Dirac particle af time zero has momentum p-
and values of helicity and energy corresponding to the value of r in Table 2.

9t

\) I ¿t r l,' fft >,-icrlh¡t,(f.o)
-.J

l,/,(r) >= (4.137)

à(#)' Io"L"

',þ(i,Ð:

- ¡'.., / k u, (Ð r., I û + ei?., / k u, +2 
| 
_ ii) rÞ, +zF ñ]

(4. 138)



Comments

Most general solution of the Dirac equation

(4.138) gives the most general solution of the Di¡ac equation (4.58).

Quantizing the Dirac equation

(4.138) is the traditiona-l starting point for the development of the relaúvistic
quantum field theory of electrons and positrons.

The functions rl:,(fl and ,þ,+z(-f) are reinterpreted, rcspectively, as annihi-

lation operators for elect¡ons and creation operatoß for positrons and (4.138)

is reinterpreted as an equation for a field operator tþ(i,t) in the Heisenberg

picture. The field operator obeys the Dirac equation (4.58).

The ¿bove reinterpretation is called quantizing the Dfuac equadon.

We develop the relativistic quantum field theory of electrons and posifons
fiom first principles in QLB: Relativistíc Quantum Field Theory. The tradi-

úonal approach of quantizing the Dirac equation will not be followed.

4.16 Electron in an electromagnetic field

ln this section we explore some consequences of the interaction of the Di¡ac
panicte with an external electromagnetic field. ln QLB: Relativistic Quannm Fíeld

TheorT we cha¡acterize the electromagnetic field in terms of photons; here we

describe it in terms of potentials which are functions of the Cartesian coordinates

Xl, X2, X3 and the time f . We assume the Di¡ac particle to be an electron.

Electromagnetic field

we specify a scala¡ potential t(t,Ð and a vector potential Ã(f ,) ^

92



terms of which an electric field E and a magnetic field B a¡e defined by

irr1:lF.a1-¿n!94L I còt

irtÉ: -F x Ã

(4.140)

(4.141)

Comments

l. Coordinate-space representation

It follows using (4.191) that

< ,ítI I E | ú(t) >: Èçt,t¡,¡'oçt,t¡

< i(t 1 É | ,/,(r) >: È1t,t¡,¡,0¡t,t7

(4.142)

(4.t43)

- 1 aÃ6,11
E(i.1.) : -Vo(.F, f ) - :::-:-còt

É1t,t¡: ü x 1¡;,t¡

(4.144)

(4.t4s)

2. Maxwell's equations



(4. 144) and 14.145) ensure that

ú, Ër;.t- -14É(¡'¿)cðt

ü.8(,-,¿) : o

(4.t46)

(4.14'1)

that is, Faraday's Law holds and there a¡e no free magnetic poles. It is re-

quired also that

Vx Éqt,t¡:T¡"rr,r) -:9!P
i . È1t,t¡ : 4tr p"(i,t)

(4.148)

(4.149)

that is, Gauss' Law hcrlds. p"(i,t) nd J',(i,t) arc the coordinate represen-

tatives of the charge density and current density, respectively, of the sou¡ce

of the electric and magnetic fields.

(4.146) to (4.149) arc Maxwell's equations.

3. Lorentz condition; wave equations

Maxwell's equations (4.14ó) to (4.149) hold if the potentials Õ(d,l) and

,41;,t¡ satisty the Lorentz condition

i . Ã,çr,t¡ *lu'fr"' : o (4. rs0)



and the inhomogeneous wave equations

!Õ(z-,1) :4¡rp,(i,t)

. Lî.
nA(i,t) :::J,(i,t)

(4.151)

(4.1s2)

Electrodynamics

The Hamiltonian fb¡ the electron in the electromagnetic field is

¡-1 : cã. (F - i4 + þrnê + ee (4.153)

where n¿ and e a¡e the mass and charge of the electron (nz : 0.511 MeY I c2

lncl r': -1.60 x 10-1eC).

The electromagnetic field exerts a force F and a torque i on the electron

where

ir,F -- lF - iÃ,")
- t- I

ihr : lr,H)

(4.ts4)

(4.1s5)



It foilows using (4.153) that

- /) -\F:e(E+ãxB) (4.156)

Lorentz force

(4. 156) is the quantal version of the Lorentz force of classical electromag-

netism. The Lo¡entz force takes its more customary form when ä is replaced by

its positive energy projection l¡V lc.la as per (4.1l3).

Nonrelativistic Schrodinger equation

We assume that the potentials do not depend explicitly upon time.

The coordinate representation of the eigenvalue problem for the Hamiltonian
(4. 153) is

rt:-¿ni-iÃta (4. r58)

('';lá' _,:?i "-)(i) 
: .(i) (4.1s7)



(:-[:)(i) : (4.159)

whele I e > is an eigenvector of (4.153) and e is the corresponding eigenvalue.

We show in Section 4.18 that for moúon in a homogeneous magnetic field
the nonrelativistic limit of (4.157) is

whete r' : t - ¡t¿c2 and where

? /¿i.= IL+' 2r¡¿c \

^l:J-/'

(4.161)

(4.162)

Comments

l. Dependence on the magnetic field

Di¡ac's Hamiltonia¡r (4.153) predicts the presence of a rt..Ë term in the
nonrelativistic equation (4. 160)

The expression -È. É " used in pl,B.. Introductory Topics for the interaction
for a magnetic moment with a magnetic field.

/ r-2(-å+eø-i E\ø:¿ø
\ zrtL /

(4.160)



-1.

Magnetic moment and r/ factor of the electron

¡ì (4.161) is the magneúc moment operator for a non¡elativistic elect¡on.

.g is the -g factor of the electron.

Dirac's Hamiltonian (4.153) predicts that the g factor of the electron is 2.

.¿/ factor: experiment and quantum electrodynamics

The experimental value g.,o and value gqed calculaled using quantum elec-

trodynamics for the g-factor of the electron a¡et

The Dirac prediction (4.162) is a remarkable ¡esult.

Magnetic moment: nonrelativistic project¡on

We give a second derivation of (4.161) anð (4.162).

For rnotion in a homogeneous magnetic field it follows from (4.155) that the

tolque on the electron is

Tbe frst calculation of gq.d by Scbwi¡ger in 1948 (see Scbwj¡rger 095AÐ Eave gq.¿/2 : 7 I ¡t l2r =
I .0011 614 whe¡e a is the ú¡e-structure coDstaDt (4.169).

o'ío : t.ootrrrn6521 (93 + 10)

ry:1.00115e6521e0

(4.163)

(4.164)

T:MxB (4.t6s)



n:i(x"a) (4.166)

Comments

L Magnetic momer¡t operator

,ü is the magnetic moment operator for a Dirac elecffon.

2. Precession

It f'ollows from (4. 165) that the average value of the magnetic moment

precesses about di¡ection of the magnetic field.

3. Nonrelativistic pro.iection

We show in Section 4. l8 that

ú,,:F (4.t67)

where ù,,, is the non¡elativistic projection of ,ü and y' is given by (4.16i).



,2

H : cd.P t tJntc'- -----:

'/x i
(4.168)

llydrogen atom

We assume that the electron is subjected to the attractive Coulomb force of a

-l-1.60 x 10-lsC charge fixed at the origin. The Hamiltonian for the electron is

To fourth-order in the fine-structure constant

t1c'I
fic 137.04

(4.169)

the eigenvalues of (4.168) are

€ùj = t¡¿c2+,,,lr + +(* *)] (4.170)

1 /q¿e4\ o2rrr'

":-,]\2w)---æ-
(4.17 t)



Ì¿:I)2,.- (4.172)

(4.173)

(4.174)

1

"2

I -- 0,r.,2,... ,n - 7

"'( r 3\
', \r+å an)

Ø.r75ì,

Comments

l. Comparison with the nonrelativistic case

e,, is the energy eigenvalue of a nonrelaúvistic electron subjected to the

atüactive Coulomb fbrce of a +1.60 x 10-1sC charge fixed at the origin.

The term

in (4.170) gives a fine sffucture to the noffelativistic energy levels.

2. Comparison with experiment

r,,¡ does not depend explicitly upon /; the 2fi¡2 and 2P172 states, therefore,

have the same energy. The 2fu¡2 state has a higher energy by 45.2 ¡L'eY.

This is close to what is observed experimentally for the hydrogen atom, but
it is not exact.

High precision laser spectroscopy of the hydrogen atom shows that the 251¡2
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and 2Pa¡z levels lie 4.38 peY and 42.2 pev, respectively, above fhe 2P1¡2

level.

The hydrogen atom 25112 and 2P1¡2 states are not degenerate in energy. The

splitting ()f these levels (the Lamb shift) was first observed by Lamb and

Retherford (1947).

3. Comparison with quantum electrodynamics

The Hamiltonian (4. 168) does not yield the Lamb shift. It should not be

sul'prising that there are physical effects not given by (4.168) since it does

not explicitly include particle creation ând annihiliation.

A theoretical explanation of the Lamb shift is given by quantum electrody-

namics (QED), the relativistic quantum field theory of electrons, positrons

and photons (see, for example, Schwinger (1958).). QED explicitly includes

particle creation a¡ld annihilation; a very brief introduction is given in QlIl;
Relativistic Quantum Field Theory.

The Lamb..shift arises partly because the electron-posit¡on system can have

intermediate states consisting of photons and electron-positron pairs. That is,

it arises partly because of vacuum polarization effects.

QED gives perfect agreement with all electon-positron-phocon experiments
perfÌxmed to date.

4.17 Negative energy states and Dirac's hole theory

A f¡ee Di¡ac particle prepared in a state with posiúve energy will remain in a

state with positive energy because the Di¡ac Hamiltonian (4.10) does not couple

positive and negative energy states. That is, if

t02



then

I '/-(0) >: 0 (4.176)

r- | ,á(¿) >: 0 (4.17'7)

fì)1. all time I where l_ is the projection operator (4.109) onto t]re negative
enefgy states.

(4.177) is not ûue in general for a Dirac particle in interaction. That is, if

H : cã. F + lJntc2 +V (4. r 78)

and if (4.17ó) holds, in general,

t _ 14)Q) >+ 0 (4.179)

fil f > 0 since l,' may couple positive and negative energy states.l A particle
prepared in a state of positive energy and subjected to such an interacúon potential
I¡ will give up an arbitrarily large amount of energy. This is not what is observed.

One way of overcoming the above difficulty if to restrict the class of potenúals
t() those which do not couple positive and negative e,-rrgy states. If

I An example is V : v (X)
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V : l+Vl+ (4.180)

where l+ is the projection operator (4.108) onto the positive energy states, then

llVl* : I (4.181)

and so if (4.176) holds, then so will (4.177) for all time f. 1'hat is, the particle
prepared in a state with positive energy will remain in a state of positive energy

when it is subjected to a potential satisfying (4.180).

Dilac (1930) suggested a way of overcoming the difficulty of negative energy

states which did not use the projection operator method. Indeed, his way of
overcoming the difficulty is a measure of his genius. He suggested that a pafticle

cannot make a transition to a negative energy st¿te because

all negative energy states are occupied, with one particle
in each state in accordance with the Pauli Principie.

This is a remarkable suggestion.

Comments

I . Dirac's hole theory

A bonus arising from Dirac's suggestion is that an unoccupied negative
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3.

energy state, that is, a hole in the filled negative energy sea, is manifested as
something with a positive energy, since to make it disappear, that is, to filI
the hole, ()ne must âdd to the system a particle with negative energy.

Positrons and prediction of the existence of antimatter

The unoccupied negative energy states were eventually assumed by Dirac to
be antielectrons. thrr is, positrons.

Dir'¡rc's hole theory implies the existence of antimatter. The positron was
discovered in 1932, two yea-rs after Dirac proposed the hole theory.

Conversion of mass to energy

Di¡ac's hole theory gives a picture of the conversion of mass to energy:
electr on-positron annihilation occurs when the elect¡on fills the hole.

Comparison with relativistic quantum field theory

Dirac's hole theory is, of course, a many-particle theory since it requires the
existence of an infinite number of particles filling the negative energy sea. The
Íìegative energy sea has infinite negative energy and infinite negative charge.

Di¡ac's hole theory requires an enoûnous jump in logic: the single-particle
systern we started with requires the existence of an invisible infinite-particle
system. The hole theory, illogical as it is, nevertheless paved the way for
the construction of ¡elativistic quantum field theory only a few years after
Dir'âc invented it.

In QLII: Relativistic Quantuût Fiel.d Theory we construct a relativistic quantum
fìeld theory of elecfons and positrons where particles and antiparticles appear
on equal footing a.nd with positive energies. No ¡efe¡ence is made to a
negative enelgy sea. The theory is finiæ. The Dirac equâtion (4.58) arises
as the field equation for the fermion-anrifermion field operator r/(r-, f ) in the
Heisenberg picture. This operator contains electron and positron variables.



We show how Di¡ac's hoie theory results from an incorrect interpretation of
this finite field theory.

4.18 Some derivations

Derivation of (4.32)

We derive $.32) by solving a fust-order diffe¡ential equation. Using

ouoÌ-\Ð: ¿/Ì(r)li, ä]¿/(¿) (4.182)

'tnrl (4.21) it folkrws th¡rt

(4.183)

(4. 184)

(4. 18s)

whele

Now

and

s0

d(t): irt1l¡6¿71t;

uo#: û(t)tã,Hlu(t)

lã, H): {,i,11} - 2Hã :2cF - 2Hã (4.186)

oory:2cF -zlã(t) (4.187)

(4.1tì7) is a fust-order differential equation whose solution is

ã(r):+*""u'rn(a-*\ (4.rs8)H \ ¡1l

Substituting (4.188) into (4.183) and inægrating yields (4.32).
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Derivation of the Dirac equation (4.58)

The coordinate-space representation of the Schrodinger equation

1S

Now

H l,þ(t) ,: or#,l,þ(t) >

<,i¿ I (..í F + þ,,,.2) l,i(r)>: ooffi

< id t Pi I v'(¿) >: -in|!-!ß:t)

(4. r 89)

(4. 1e0)

(4.191)

so (4.190) is

i É 1-tt'" 'uo'*! * u"''too'}'ro'tr'0: ih\!#!) ø'ß2t
/:I 'l':l '

0r', llrole compactly,

(-;n"a . fr + 1,,, "2)'/'(.i. 
I ) : oUU#! (4.193)

where or and þ ne the Dirac matrices (4.41) and (4.42). FinaIly, (4.193) can

be written as (4.58).

Verification of (4.80)

(1.29) to (1.32) hold for the Di¡ac generators (4.10) to (4.13) if the funda-
mental dynamical variables (4.1) uansform under space inversion as follows:

PiPt: -i
pFpt: -F

PdPf : -ci
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(4.19s)

(4.196)



PßPi - ß

It folkrws from (4.80) and (4.81) that for any linear operator A

(4.197)

(4.1e8)

(4.199)

(4.200)

(4.20t)

(4.202)

(4.203)

¡'tpr : þÁll

4-
,{- t l,P.rd3,,' l.i.¿>< -.î,1 lAl-,i'rt'><rid' 1t-2 I

4^

- t / ,tt p,!'p' I i,t >< -i,t I ,q I -pi ¿' >. i ¿' 
I

d.,t':1 '

ln particulu,

\'- v

P:_P

(1:lr

tt--a

(4.194) to (4.197) follow f¡om (4.198) and (4.200) ro (4.203)



Verification of (4.E2)

(1.33) to (1.36) hold for the Di¡ac generârors (4.10) ro (4.13) if the funda-
mental dynamical va¡iables (4.1) transform under time reve¡sal as follows:

wliere

r,irt - ,f

rFrt: -Þ

T.iTf : -.î

rpTl : ¡1

It follows from (4.82) and (4.83) rhar for any linear operator.4

TATi:82ÀÐ2

rt3 uI\ | ! i(t >< id I A I i,l ) <.i,A 
1

prlsp' I i,I >< -¡ía I A I -i,l' ). i ¿' I

v-v

D- D

"; , 'i+l ;(¡,r = (_J' ûJ

r09

(4.204)

(4.20s)

(4.206)

(4.207)

(4.208)

(4.209')

(4.210)

(4.21t)

(4.212\

Á=Ð t
J.,t'=1 'J

41
: \- /¿'lr I

¿ rl'=1 "

In particular,



0:tl

(4.204) to (4.207) follow from (4.208) and (4.210) to (4.213)

Derivation of (4.ll0 to (4.119)

The functions ui(p) arc determined by solving

^ 
| "'(pl >: FL^, I "'(p) >

H 1"'0\ >: 
'p, I u'(P') >

(4.2t3)

(4.2t4)

(4.21s)

(4.216)

(4.217)

(4.218)

(4.219)

(4.220)

(4.221)

in the I frl > representation. In this representation, (4.214) nd (4.215) yield

(iu to-'' 
rr ;-^.)(i:) ='

("'iu. r" -,,i:, :,,,)(i:) : t

,: (iäil)
-: eii,q,)

It folkrws from (4.217) that

/ó,\
,.1r_1: ( æj"). )

ancl r_(ffi)r"\,'frf:( x, )
Solving (4.216) completes the derivation.

when r :1,,2

when r : ìJ,4



Derivation of (4.160)

When r + nt c2 - e@ > 0, (4. 157) yields

,- ,ã'rt 
^^ r* n¿c2 -eQ''

and

/tI (,a 'ñ\- \
l;ffi+eofø:7<-'nc2)4'
\/

In the non¡elcrivistic limit,

.2 1

€+rru]_ ed ''2?n

¡ntl (4.222) nd (4.223) simplify to

ãfrx: 'zru Ó

¡¡rd

/il2 ¿ \
t-+eÒ - "'õ.É\a:!¿
\2rrr 2tnt' )

where

and where we

and

e' :e -¡nc2

have used

t -r 2

(u ¡)':rr2+iõ (fr.fr)

ihe -IlxfI: B
t",

(4.222)

(4.223)

(4.224')

(4.22s)

(4.226)

(4.227)

(4.228)

(4.229)



For motion in a constånt magnetic ûeld, the vector potentia-l is

- 1t- -\A:;\Bxx) ø.230)

from which

Ã F=F.¡:-!ø.Í Ø.23t)
2

where
L:ixF \4.232)

(4. I60) then follows when terms proportional to e2 are neglected.

Derivation of (4.167)

Nonrelativistic proiection of an odd operator

A general state of the Dirac particle may be written as

l rlt >:l ,þto,g" ) I l tþs^o¡¡ > (4.233)

whele

l rho,c" ): B+ | ú >

I 1þ"n ott ): B- I ,þ >

whele

1

B* : +(t + 11) : Ð l i(t >< i¿l¡ Ø.236)' L 
¿:1.2

1

B- : +(1 - þ): Ð | id>< i(tl (4.23'1)L o:r,o

uld a general observable O of the Di.ac pa¡ticle may be written as

O = O 
",",, 

I Oo¿¿ (4.238)

(4.234)

(4.23s)



whel'e

O"ue," = B+OB+ + B-OB-

Oo¿¿: B+OB- + B-OB+

(4.239)

(4.240)

(4.242)

(4.243)

Ba ale a complet€ set of orthogonal projection operatots. O is said to be an
even (odd) ope¡ato¡ tf Oo¿a (O",",,) vanishes. An odd operator is linea¡ in d.

Ftrl.lr,wing t4.225). we w¡te

/- -\ã. lP - iAl
I ú"^o¡ ): 

-til- I úto,s" > (4.241)

fir a nonlelativistic Di¡ac pafticle in an electromagnetic field.

Approximation (4.241) yields

< rl: I Oo¿¿ I rl, >:a tþ¡o,n" I Ou, I tþ¡o,n" )

o*: *;{o"a,t,d'(F -:4}
whele

(4.243) defines the non¡elativistic projection O,," of an odd operator Or¿¿.

(4.l67) follows from (4.243) when terms proportional ta e2 are neglected.
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Chapter 5 SYSTEM OF n PARTICLES

In this chapter we consider a Loreniz inva¡iant system consisting of n distin-
guishable particles with spin where ¡¿ is any positive integer.

We lÌrllow the prescription given in Chapter I to describe a Lorcntz invariant
system: we specify the physical system by a set of fundamental dynamical
valiables and we construct Poincare generators in terms of these va¡iables.

Fundamental dynamical variables for the system are given in Section 5.1 and

a system of noninteracting particles is considered in Section 5.2. A system of
interacting particles is considered in Section 5.3 and scatte¡ing equations for a

system of intelacting particles ale given in Section 5.4. Some derivationr; a¡e

given in Section 5.5.

We assume that the particles are distinguishable for convenience. The methods

ol QLB: Quantutn Mechanics in Fock Space can be used to describe a system of
indistinguishable particies.

5.1 Fundamental dynamical variables

We con.side¡ the physical system to be a sysæm of n particles with rest
lrìlsses r)/ t. n1 2. .... n] and SpinS .ct ).c2) ...,,s¡,.

The Hilbe¡t spâce >I.st s2 s' for the sysæm is the di¡ect product of n one-
pu'ticle Hilbert spaces:

{...f'' denotes the Hilben space for particle o and I denotes direct product.

Ésrs2..sn : Èì' A*,ï" S . 6,I.,ì" (5.1)
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The findamental dynamical variables of the system are the Cartesian coordi-
nates, momenta ând spin of the .individual particles

(s.2)

where j : 1.,2,:1. These operators satisfy

lr*,tþl : ik6npe ¡rerstc

,5-" ,5t" : .s.,(.sn I I)ñ.2

(5.6)

(s.7)

l**,tþl : lP¿,sir]: o (s.8)

lx'",xþ):o

lt'¿,rþl: o

l"*,rÈl: iñ.6*t¡6¡t

(s.3)

(s.4)

(5.s)



5.2 Noninteracting particles

ln this sectiOn we consider a Lo¡entz invariant system ofn noninteracting par-
ticles. It follows from (3.19) to (3.22) that rhe Poincare generato¡s H0,F0,.io,Ro
fì)r the system ûJe

where

Ho:ÐH*

'tL4=t4
,tL

.îo:Ði"

rio:f È,

(s.e)

(s.10)

(s.11)

(s.r2)

- 1/- -\ ,í"r4
1{" : -*(X" H" r H"X")+ ffi

(5. 13)

(s.14)

(s.15)



Comments

I . Notation

Vy'e append the subscript 0 to noninteracting system operators to distinguish
them from interacting system operators given in Section 5.3.

2. Invariant mass

The inva¡iant mass M6 (1.44) of the system is

Hl - P(czM6c2 = (s. 16)

Ho: (s.17)

,44¡ is not equal to the sum of the rest masses of the panicles in the system.

3. Centre of mass position and internal angular momentum

The cenue of mass position Î6 and intemâl angular momentu. ,î] of tf,.
system are defined by (1.48) and (1.52), respectively. That is,
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r0 -

2/ j
' I t ¡:^
2 \Ho"u

,,
c',,(ì _

, ¿ 1\ c2
- Iio 

Ho) - \Ho + Mór)HoFo 
x

**(*'- a¡¡lwa)

Ws (s. r 8)

(s.1e)

whele l4rj' is the Pauli-Luba¡ski four-vector (1.45):

,Ç¡ includes the spins of the individual particles and the orbital angular
momenta of the particles about the centre of mass position of the system.

5.3 lnteracting part¡cles

In this section we consider a Lorentz invariant system of n interacting
particles. The formalism developed in this section can be used, for example,
to desc¡ibe a system on interacting nucleons below the pion production threshold.

We must construct the Poinca¡e generators H , F , ,l', E for the system in terms

of (5.2). The coupling in the Poincare Algebra (1.1) to (1.9) requires that at least
two of H, P,J,l{ not be equal to the noninteracting forms (5.9) to (5.12). Di¡ac
( 1949) discusses various possibilities for modifying the noninteracting generators;

we conside¡ the instant form of dynamics in which the Hamiltonian and booste¡
change and the total momentum and total angular momentum remain unchanged:

w3: io Fo

-l
Wo : :HoJo * clio x

c
P6

(s.20)

(s-2r)
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H=
r---

1f P(c2 + M2ca

F:FO

j: jo

(s.22)

(s.23)

(s.24)

l{ ?5ì
1 /- - \

/í: -:ì | XoH + HXolzc'\ /
,îot4- H +Mr2

M: Mo-lV (s.26)

where I,' satisfies

Comments

I . lnvariant mass

Ày' is the invariant mass of the system; M is not equal to the sum of the ¡est
masses of the panicles in the system.

In¿l : lni,] : lu,,õ,] 
:o (s.2't)
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2. Interaction potential; internal variables

Interactions among the particles are specified entirely by the inte¡action
potential Y.

If V : 0, the system of particles is noninteracting.

(5.27) states that y must be a function of thejnternal variables for the system,

that is, variables which commuæ wittr 4, Î0, ,î0.

3. Bakam.iian-Thomas construction

Bakamjian and Thomas ( 1953) give a method for construction of intemal
variables fbl a general ?¿-paúicle system.

A leadable account of the Bakamjian-Thomas construction is Kalyniak (1978).

4. Nonrelativistic H¿miltonian

It fbllows fiom the Galilei Algebra that the Hamiltonian 11 for a Galilei
inva¡iant system of n interacting particles has the fo¡m

H: HotV (s.28)

whele

tì o2 D2 n Dt2
l-l^ - \- rô 

-'o , \-'o
2ntn 2ttt ' /'t. 2,, no=l " o=1

(s.29)

where the non¡elativistic inte¡action poæntial V has the fo¡m
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v:v((',i,,- -,í,,) (5.30)

- la - -\{" : lX'",P'",,S" }
(s.3 r )

where

Xt n: Xn- Xr*

r)t n '".( f)
TIT

(s.32)

(s.33)

^l-
Xur = - ) nt"X^

'ùì.4
rr:1

'¡t

,r:lrr"n
(Y=l

(s.34)

(5.3s)

1,,, is the nomelativistic centre of mass posiúon of tÏe system. i'o is the
position of particle o with respect to the cent¡e of mass position.
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5. Nonrelativistic internal variables

The variables specified by (5.31) a¡e intemal variables for a non¡elativistic
system. That is,

lrt,r-l: [xy,î*"] :o

lr't,rr) : ln'¿ ,îi,) : o

(5.36)

(s.37)

The nonrelativistic interaction potential (5.30) is a function of the intemal
variables fol a non¡elaúvistic system.

6. Cluster separability

A requirement for a system of 1¿ interacting particles is that if the system is

partiticlned into two clusters that are separated by an infinite distance then

the system must behave as two distinct systems which do not interact with
each other'. This is known as cluster separability (or the cluster decomposi-

tion principle).

For a non¡elativistic system this is accomplished by imposing suitable restric-
tions on the non¡elativistic interaction potential (5.30).

For a relativistic system this accomplished in the context of scattering the-

ory by imposing suitable restrictions on the relaúvistic interaction potential

I¡ defined in (5.26).

5.4 Scattering theory

We give a very brief overview of scattering equaúons for a Lorentz invariant
system of rz interacting particles. Fu¡ther details are in Monaha¡ (1995); a¡
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intrcrduction to the basic ideas of quantum scattering theory is given n QLB:
Scutterin¿1 Theory.

We assume that Poinca¡e generators for the system are given by (5.22) to
(-5.2-5), that is, we assume in particular that the invariant mass M is of the form
(-5.26) and that the interaction potential V has been constructed subject to the

lestrictions (5.27). We assume further that requirements of cluster separability

are satisfied.

Potentials and Green's operators

We assume that the intemction potential V has the form

v:Ðv. (5.38)

f<¡'some rr,y' and we define the mass operator M' and potential Vo by

M.: A4olV"

M: M,lV"

(s.3e)

(s.40)

Accordingly,

M:Mo*V"+V" (5.41)
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and

,":Dru
b#a

(s.42)

Comments

l. l/Ieaning of I/", M,, and Vo

l'i. is the interaction between particles in a subsystem (subsystem a) of the
system.

11, is the invadant mass of the n-particle system when the only intemcúons
in the system a-re those between the particles in subsystem a.

l./" is the inte¡action between the particles in subsystem ø and the particles
in the rest of the n-particle sysæm.

Cluster separability means Íhat Vo --+ 0 when subsystem ¿ is ¡emoved to
inûnite separation f¡om the rest of the particles in the system.

2. Extension to include ¿ : 0

It is convenient ro exrend the values of a in (5.38), (5.40) and (5.41) to
include r¿ : 0 by defining

I/o:0 (5.43)

in which case



Vo :V (s.44)

Accordingly, the decompositions (5.40) and (5.41) include (5.26) as a special

cùse.

The decompositions (5.40) and (5.41) are the key to deriving the generalized

Faddeev equations discussed in the next topic.

3. Green's operators

We define Green's operâtors

whele ; is a complex number.

(,'o(:) is the tìee-particle Green's operator; Go(z) is the Green's operator for
the system when the only interactions in the system are those between the

particles in subsystem a; G(z) is the Green's operator for the system.

4. Lippmann-Schwinger equations

It fbllows çrom

l,';11:; = Gll(:\-V^ (s.47)

.1 1-\ 1

"ut-t - i-lM
IG(:): -: _ M

(5.45)

(s.46)
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and

G-l12¡ : G;tQ) - V' (s'48)

that G" (z) and (;(z) satisfy the Lippmann-Schwinger equations

G.(z) : l;¡(z) + Gç(z)V"G"(z) : Gok) * G.(z)VoGo(z) (5.49)

ct(z) : c;,,1'1 t G"(z)VøG(z) : G"(z) + G(z)V"G"(z) (s.sO)

Generalized Faddeev equations

We define 7 operatols

T.(z):VorVo(,]o(z)Vo

Tb'121 :v'+vb(l(z)v"

(s.51)

6.s2)

Comments

l. Physical significance of 4(:)

The on-shell matrix elements of T"(z) are relaûed to scattering c¡oss sections
for subsystem n.

2. Physicâl significance of ?à'(z)

The on-shell matrix elements of Tbo(z) a¡e related to scattering cross sections
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J.

for the n-particle system when subsystem ¿ is in the initial state a¡d subsystem

ó is in the final state.

Kato-Birman invariance principle

? operators for non¡elativistic scattering theory are defined i¡ tcrms of the

nonrelativistic Hamiltonian (5.28). The non¡elativistic T operator depends

only on internal va¡iables; there is no dependence on the total momentum

fl¡ because the centre of mass motion may be separated out of the free

Hamiltonian as per (5.29) and the noffelativistic interaction potential depends

only on internal variables.

Fol a relativistic system the centre of mass motion cannot be separated out

of the free Hamiltonian (5.9) as per (5.29). The Kato-Bi¡man invariance

principle, however, states that ? operators for relativistit: systems can be

expressed in terms of the mass operator as in (5.52); as in the non¡elativistic

case, the relativistic T operators depend only on internal variables.

Lippmann-Schwinger equation. for 7"(z)

We show in Section 5.5 that

T"(;) : V" ¡ V"G¡(z)T"(") : V' * V.T.(z)Gx(z) (5.53)

T"(z) can be determined by solving the Lippmann-Schwinger equations
(5.53); acco¡dingly, T"(z) is a known operator.

5. Lippmann-Schwinger equation for ?ðo(z)

We show in Section 5.5 that
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Tb'1"¡: v' + vbclb(z)Tb"(z) (5.54)

?òoir; cannot in general be determined by solving the Lippmann-Schwinger
equation (5.54) because there a¡e ó-function singularities in the kemel which
arise from int€mediate states consisting of the interacting subsystem and f¡ee
subsystem.s.

Indeed, it is clea¡ that attempting to solve (5.54) is not the best strategy for
cletermining ?à"(:). Since ?.(z) is known, it would appear advantageous

to use ?,(:) as irput infonnai:ion in detennining Tb"("). The generalized
Faddeev equations of the next item employ this strategy.

ó. Generalized Faddeev equations

We show in Section 5.5 that

The generalized Faddeev equations (5.55) a¡e a set of coupled integral equa-

tions for the operators Tòo(") whose input includes potentials and tnown ?
opelators Z.(:).

The mathematical attractiveness of (5.55) lies in the second term of the right
side: thele are no á-function singularities in the kernel because of the re-
süicted summation.

The Fado-ev equations were originally derived to descri'ue scattering in a

nonrelativistic three-body system; (5.55), on the other hand, is appropriaæ for
describing scattering in a relativistic system of n particles.

Tb" 1"1 : v" + ÐT"Q)(} s(z)T"" (z)
c*l¡

(s.5s)
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Three-body system

ln this topic we illustraæ the generalized Faddeev equations (5.55) by con

sidering a relaúvistic three-body system.

We suppose that the three partìcles interact via two-body poæntials, that is,

wl.rere l,',, n : 0 and Vn¡j : V¡ln and we define

W: Vo-, (s.s7)

for a : 1.2,:t. Vo is the potential between particles þ and I and subsystem

¿ consisLs of particles /i and 1. Also,

V" =Vo|*Vot (5.s8)

is the total potential for particle a.

We consider tbe special case of (5.55) when ¿ : ð : 0 and we write
7001:¡ :7(.2). We show in Secrion 5.5 that

1iv:lLv", (5.s6)
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3

r(4:Ðr"(z) (s.se)

T" (z) : T.(z) + T,(z)G o1)lrb þ)
bl"

(5.60)

Faddeev equations

(5.60) a¡e a set of three coupled equations whose inputs are two-body ?
opentors. The non¡elativistíc version of (5.59) and (5.60) are the original Faddeev

equati0ns.

5.5 Some derivations

Derivation of (5.53)

It fbllows from (5.49) that

(| 
"(z)V" 

: [G¡ (z) + G o(z)It'G "(z)]V"
(s.61)

: C,lo(")lV" t V"G"(z)V"l : Go(z)T"(z)

and
V"G^(z) -- V"lG¡(z) -l ()"(z)V"Gs(z)l

(s.62)

: Lv" + v"G"(z)v"lcs(z) : T"(z)Gs(z)



Derivation of (5.54)

It follows from (5.50) and (5.52) that

G (z)v" : l" ut,) * c6ç")vb c þ)fv "
(s.63)

: G¡(z)lv" + vuc1"¡v') : GoQ)rb"G)

Derivation of (5.55)

It follows using (5.42), (5.63) and (5.62) fhat

vb (; (,)v' : lv"c; 1"¡v" : lv"G,1"¡T"' 1"¡

"lb "*lt
(s.64)

: \T,1,7{;ot,^\7"" t,¡
,*b

Derivation of (5.59) and (5.60)

It fìrllows from (5.55) that
3

T(z):y +\r,1"¡c;sçz¡r'01"¡ (s.6s)

so. using (5.38), (5.59) holds where

T"(z) : V" + T.(z)Cls(z)T'0(z) (5.66)

and
T"o (z¡ - v + Lrhe)G ¡()rbo Q)

b*"
(s.67)

: v" +Ðlru *,u?),to(")r'o(')] : v, +Ðrbþ)
t*" b*"



Chapter 6 2 *. 3 PARTICLE SYSTEM

In this chapter we indicate how to extend the considerations of Chapter 5 to
inclucle particle creation and annihilation. The general mathematical formalism fo¡
handling particle creation and annihilation is given in QI,B: Quantum Mechanics
in Fock Space. In this chapter we consider the special case of a system of two
particìes where a third particle ca¡ be created and a system of th¡ee particles

where one pafticle can be annihiiated. We ca.ll this system the 2 * 3 particle

system. A mole complete description of the quantum mechanics of this system

can be found in Monahar (1995).

The formalism given in this chapter can be used, fol example, to desc¡ibe

nucleon-nucleon scattering and pion production and absorption reactions on two-
nucleon systems above the threshold for single pion production and below the

threshold fo| two-pion production. That is, it can be used to describe the reactions

The formalism can be extended to describe a 2 <-+ 2 particle system where

the two two-particle systems a¡e diffe¡ent. For example, it can be extended to
describe the ?r- + p -- K0 * Â reaction.

The Hilbert space for the system is described in Section 6.1 an uncoupled
interacting system is considered in Section 6.2; a coupled interacting system is

considered in Section 6.3; and some derivations are given in Section 6.4.

lV+1ú.'lV+jV

l{+/y'*-lV+iV+r

^¡+¡/+re+1{*iVtr

(6.1)

(6.2)

(6.3)
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6.1 Hilbert space, states and observables

We consider the physical system to be a system of two particles with ¡est

màsses ??¿1,?r¿2 and spins .s1,s2 ard of a thi¡d particle, with fest mass r¿3 and

spin s3, which can be created and annihilaæd.

The Hilben space xi'j'r'" for the system is the direct sum of a two-particle

Hilbert spûce and a tbree-particle Hilbert space.

É;'jT" : ¡..;,s2 É) >!srs2s3 (6.4)

whete {.,.1'"' and 'I,;'"'"t are given by (5.1) a¡d 0 denotes the direct sum

Fundamental dynamical variables for the system are given by (5.2).

A state | y' > of the system is represented by the column matrix

whele I r¡ > is a vector in É;"' and I ty' > is a vector in Éå""'. I y', ì
rrncl I t¡ > are, respectively, the two- and three-particle components of I ,ll >.

| 1' > has unit norm

<,þ l,þ >:;,Þ 1,Þ 7 + 
"<,Þ 

l rl' 4: t (6.6)

where < ,1, l rþ > is the probability that | þ > is an rn-particle state
lll l¡L

(i;l:¡ (6.5)I /'>-
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An operator a in Xi',"'r"" is represented by the 2 x 2 matrix

^: (^; f.) (6.7)

where Av is an operator in 'I..;'"' and .4t is an operator in r¡rjrszsr. The operators
Ab and Al link rlrl'", and ¡I.;rs,s3.

In paticuÌar, the number operator for the system is

u: (2 o\
\0 :J )

(6.8)

Classification of operators

An opelator in *i'"i"' can be expressed in te¡ms of the four matrices

-b (o 1\
':\o o)

",: (? s)

rt¡,: z": (å S)

",.,: O*: (! ?)

(6.e)

(6.10)

(6. r 1)

(6.12)



which satisty

(o')' : (rr)'?: o

ps p'i ¡ ptFb _ I

(6.13)

(6.14)

That is,

A: Ae?e + Ab Fb + ¡tP! ¡ ¡4'V* (6. r s)

Pe rnd P* are a complete set of orthogonal projection operators in '!;'jT';
PP and ?* project onto *!'"' and {..;'""", respectively.

Comments

l. Two-body operator

An operator A in rlll]'?rs3 is a two-body operator if

A:?eApe : Aepe: (X" S)
(6. l6)

2. Three-body operator



A = t>*yp* _ ,*o* : (B ,i ) (6.r7)

An operator ,4 in 
'{.<ij,3". is a three-body operator if

3. Direct sum operator

An operator A in *åj1'" is a di¡ect sum operator if

4. Couplinq operator

An operator ,4 in '¡i'jr""3 is a coupling operator if it has the form (6.7) or
(6. l -5) where

Ao +o or At +o (6.19)

6.2 Uncoupled interacting system

In this section we describe a Lorentz invariant system of interacting partictes
in ùjilT' when the¡e is no particle c¡eation o¡ annihilation.

llt

A:peApe +piA".+:re.pv + Aþ".+: (1' ,i) (6.18)



The Poinca¡e generators H,F,J',I? are-Biv-en 
-bY \5.22) to (5.25) a¡d the

inva¡iant mi¡.ss M is given by (5.26) where P¡,J¡,Xs,,9s,M¡, V are direct sum

()pel'âtors and where

where ô : V,*.

The interaction po@ntial V has the form

whele

lu',F,.1 
:1".,iî] :1v.,,4Î] :' (6.20)

4

v:Dw (6.2t)

Vo:o

": ('{ s)

.: (3 å) ir a:r,2,J

(6.22)

(6.23)

(6.24)

Thùt is,



,: ('; åir)
(6.2s)

Vlv is the potential between particles 1 and 2 and, as in 15.57¡, V,* is the
potential between particles þ and 1.

The mass operator M" and potential Vu are defined by

Mo:MolVo

M -* M,,.+V'

(6.26)

(6.27)

Accordhgly,

M: Mo+W+V" (6.28)

v":Ðvu
l¡*"

(6.2e)



That is,

Scattering equations

As in Chapter' 5, scatæring theory is expressed in terms of ? operators

T"(z) : W +V"G"(Z)V"

Tb" çr1 : v" + Vb Cl(")v"

(6.33)

(6.34)

Vo:V

",: (: 
Éþ)

"": (tí ,nt.r¡) ir

(6.31)

(6.32)a: 1,2,.)

1{.;'(z)- r_*

I--\-/ 
z _ M

(6.3s)

(6.36)



Comments

l. Direct sum operators

G.(z) md ()(z) are direcr sum operators.

Accordingly, T,(z) and Tb.(z) arc di¡ect sum operators.

2. Lippmann-Schwinger equations

7a(:) is a two-body operaror and T"(z) (ø : 1,2,3) are rhree-body operarors.

7a(:)e and ?.(:)+ obey the l-ippmann-Schwinger equations

Ta(:)e : vf; +vf;c;n:'¡eTa(z)e :vf; +vf;raç,¡ecn1"¡e (6.37)

r"(.)*: vf, +vf,c;0q.1*r"e)* :vf +vf,r"p¡*c,1,¡* (e.¡a)

3. Generalized Faddeev equations

7Õ" i: ¡ is a dlect sum operator. When a, b : 1,2,:1,

Tb"(r)e : Tq(r)e (6.3e)

that is, ?åu(z)e obeys the two-body Lippmann-Schwinger equation (6.37);
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and 7ò"(:)t obeys the generalized three-body Faddeev equations

3

Tb' 1"¡+ : v"* r I r,P¡r co1')*7" (")*
c+b:1

(6.40)

6.3 Coupled interacting system

In this section we describe a Lorentz invariant system of interacting particles
in *j'J';i'" where parlicle 3 can be created or annihilated.

Particle creation and annihilation is accomplished and Lo¡entz invariance is
maintained by modifying the interaction potential (6.21) to

where l/¡. \i1,lt2,l\, Vi ue given r¿y (6.22) to (6.24) and

*: (,1* ir) (6.42)

5

v:Ðv. (6.41)

[ur,pr] : l*;Î] : l"*,;î] :' 6.43)



where | : b,f and { : 9,*. That is,

It fillows from (6.44) that

lH,Nl+0 (6.4s)

iï*
l. Coupling operators

l! is a coupling operator. More specifically,

< 4,lVs l,þ >:< ó lv: l,þ ì + ,. 4lV: l,þ ì (6.46)

Accofdingly, V and H are coupling operato¡s.

2. Particle creation and annihilation

It fbllows fì'om (6.45) that a srare of particles 1 and 2 can evolve in rime to
¿ state of particles 1,2 and 3 and.'state of particles 1,2 and 3 can evolve
in time to a state of particles 1 and 2. That is, particle 3 can be created or
annihilated.

,: (Yr
V!\

þ-'r)
(6.44)



More specifically, if at time zero

then at time I

Similuly, a three-particle state prepared at time zero can evolve to a two-
palticle state at a late¡ time.

Generalized Faddeev equations

Scatterin¡ theory is expressed in terms of 7 operators (6.33) and (6.34) where
a. Z, : 0, 1,2,:1,4,5. ?òo(z) involves the potenrials

t,/ ': (lll) (6.47)

(iili 3)
I ,/,(¿) >: tt(t) | 1þ >= (6.48)
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a : 1,2,3

(6.49)

(6.s0)

(6.s 1)

(6.s2)

Vo:V

"': ('l* "-=:t)
,.: (Yï: ,n'jr*) ir

"':(î "ti)

Comments

L Direct sum and coupling operators

G,,(:) (a: 0. 1, 2, 3, 4) a¡e di¡ect sum operators nd G5(z) and G(z) ue
coupling operators.

Accordingly, T"(z) (a:1,2,ii.,4) are di¡ect sum operators and ?5(z) and

Tbu ¡r¡ ue coupling operators.

2. Lippmann-Schwinger equations for 4(z) (¿:1.2,3,4)

?a(:) is a two-body operator and To(z) (a : 1,2,:J) are three-body operators.

?a(:)v and ?"(z)* obey the Lippmann-Schwinger equations
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Ta(z)e : vf + vf c;ol,)eTa(z)e : vf, + vf,rnç¡e cx1"1e (6.s3)

ro(z)* : vf, + vf,c;¡ç"¡+r"Q)i : vf + vlr^1"¡*c01"¡* (o.s¿)

3. Lippmann-Schwinger equation for ?s(z)

We show in Section 6.4 thlt

where 75(-:)e and ?5(z)+ obey the Lippmann-schwinger equations

TsQ)e : ue (=) + ue (')c;,)(")e r5Q)e

T, (,)+ -- u+ ( 

") + u* 
ç "¡ 

(; ¡ (l* r, þ)t

(6.s6)

(6.s7)

lv!r;o¡)tvl
\0

U(z): VsGo(z)Vs

0 \ / u(,)o
v"rco(.)evJ/ 

: \ o

0 \ (6's8)

u@t )



and where

rs(z)il : v! +v{c;01"¡ers1"¡e

T5þ)b : v! + v! c ¡1"1tr5ç"¡t

(6.s9)

(6.ó0)

4. Potenû.al U(z\

The dfuect sum operator U(z) is an effective potential in Éåjîr'".

tte l:¡ is an effective two-body potential which maps {.,;'s" to ieelf via
{.,;'"'"' ; it describes a process where a two-body system emits and reabsorbs
a third particle.

U+ç:7 is an effective three-body potential which maps tjrszss to itself via

'{<t'"' ; it describes a process whe¡e a three-body system absorbs and re-emits
a particle.

5. Generalized Faddeev equations

It f'olkrws as in Chapter 5 that

Tb'1"¡ : v" +lr"çr7c6(z)T""(z)
c*b

(6.61)

The generalized Faddeev equations (6.61) a¡e a set of coupled integral equa-
tions for the operators Tb"(z) which are appropriaæ for describing scattering
in the relativistic 2 ++ J 5y5æm.
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Tlre equations fbr ?ò"(z) (a, lr:0, 1,2,:i,4) involve V5 and T5(z) ând therc-

fore include a production contribution 2 --+ 3 --+ 2 to the two-body process

2 ---+ 2 and an annihilation contribution il ---+ 2 ---+ 3 to the three-body process

6.4 Some derivations

Derivation of (6.56) to (6.60)

It t'ollows from the Lippmann-Schwinger equation

Ts(z) : Vs -l Vs(lok)TsQ)

that (6.55) holds where

T5(z)e : v! c; oç"¡iruç¡t

T5( :)! : t j + Vrol;¡1--¡vl'r1. ;e

r5Q)b : v! +v!r;oç¡*r'ç,¡*

T s ( ")i -- v ! c; s ç " ¡e r, ç,¡b

Substitution of (6.64) into (6.63) and (6.65) into (6.66) yields (6.56) and (6.57),

fespectively.

(6.62)

(6.63)

(6.64)

(6.6s)

(6.66)
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