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Preface

The six volumes of notes Quantum Leaps and Bounds (QLB) form the basis
of the int¡oductory graduate quantum mechanics course I have given in the
Department of Physics at the Univetsity of British Columbia at various times
since 1973.

The six volumes of Ql,B ue

. IntroductÒry Topics: a collection of miscellaneous topics in introductory
quantum mechanics

. Scattering Theory: an introduction to the basic ideas of quantum scattering
theory by considering the scattering of a relativistic spinless particle from a
fixed target

. Quanrwn Mechanics in Fock Space: an introduction to the second-quantization
description of non¡elativistic mâny-body systems

. Relatívísti.c Quantum. Mechanics: an int¡oduction to incorporating special
relativity in quantum mechanics

. Sune Lorenl2 Invariant Systems: some examples of systems inco¡po¡ating
special relativity in quantum mechanics

. Relativistic Quantutn Field Theory: an elementary introduction to the relativis-
tic quantum field theory of spinless bosons, spin f fermions a¡d antifermions
and to quantum electrodynamics, the relativistic quantum field theory of elec-
trons, positrons and photons

pZlì assumes no familiarity with ¡elativistic quantum mechanics. It does
assume that students have taken undergraduate cou¡ses in non¡elativisúc quantum
mechanics which include discussion of the non¡elativistic Schrodinger equation



and the solutions of some standard problems (e.g., the one-dimensional harmonic

oscillator and the hydrogen atom) and perturbation theory and other approximation

methods.

QLB assumes also that students will take other graduate courses in condensed

matter physics, nuclea¡ and particle physics and relativistic quantum freld theory.

Accordingly, our purpose n QLB is to introduce some basic ideas and formalism

and thereby give students suf6cient background to read the many excellont texts

on these subjects.

I an happy to have this opportunity to thank my friends and colleagues

R. Barrie, B. Bergersen, M. Bloom, J. Feldman, D.H. Heam, W.W. Hsieh'

R.l.G. Hughes, F.A. Kaempffer, P.A. Kalyniak, R.H. Landau, E.L. Lomon, A.H.

Monahan, W. Opechowski, M.H.L. Pryce, A. Raskin, P. RastâìÌ, L' Rosen, L.

Sobrino, F. Tabakin, A.W. Thomas, E.W. Vogt and G.M. Volkoff for sharing

their knowledge of quantum mechanics with me.

I also thank my wife, Henrietø, for suggesting the title for these volumes

of notes. Quite correctly, she foun<i my working itle Elements of Intermediate

Quantunt Mechanics a bore.
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Ghapter 1 INTRODUCTORY REMARKS

This volume of plB gives a introduction to incorporating special relativity in
quantum mechanics. That is, desc¡ibed here is a theory which includes Einsæi¡'s

with Heisenberg's

How does relativistic quantum mechanics differ from non¡elativistic quântum
mechanics'? That is, what new feature does special relativity bring to quantum
r¡echanics? The answer lies in (1.1), the possibility of converting energy to mass
'¡:nd vice versa.

In nonrelativistic quantum mechanics one deals with physical systems where
the total mass is fixed a¡d inva¡iate for all time. One solves the one-body problem,
the two-body probÌem, and so on. And one says, for example, that the hydrogen
atom consists of a proton and an electron and the deuteron consists of a proton and
a neutron. These are non¡elativistic statements. These composite particles (and
others) consist of these two-body configurations to be sure, but they a.lso consist
of other multiparticle configurations. That is, there is a nonzero probability that
the state of the hydrogen atom has components corresponding to a proton and an
electron and also, for example, to a proton and an electron and any number of
photons, electron-positron pairs and pions. The state of the deuteron has simi_la¡
components as do the states of all composiæ particles. Relativistic quantum
mechanìcs incorporates these effects.

Relativistic effects a¡e numerically sma.ll at the atomic and molecular levels.
One can unde¡stand all of biology and chemistry, and much of physics, without
incorporating special relativity into quantum mechanics.

lt : m,c-

LxA,p > fi.12

( 1.1)

(1.2)



Fol example, nonrelativistic quantum mecha¡ics predicts that the lowest
energy state of the free hydrogen atom is the IS1¡2 state with an energy of

-13.58 
eV, and that the 2,91¡2, 2P112, 2P372 states are degenerate with an energy

of 
-3.40 

eV. This is experimentally true at that level of accuracy. Measurement

of transition energies at the pev level using high precision laser spectroscopy,

however, shows that these states are not degenerate in energy: the 2Ps¡2 and

2,5172 levels lre 42.2¡LeY and 4.38peV, respectively, above the 2P1¡2 level. The
splitting oî the2P1¡2 and 2,91¡2levels is câIled the Lamb Shift. lt was discovered

in 1947 by W.E. Lamb a¡d R.C. Retherford.

The Dirac equation for the hydrogen atom, which was invented by P.A.M.

Dirac in 1928 (and is discussed rn QLB: Sotne Lorentz Invaríant Systems) incor-
porates special relativity into quantum mechanics without particle creation and

annihilation. It gives an improvement over nonrelativistic quartum mechanics for
the fine structure of the energy levels but it does not predict the Lamb Shift. It
predicts that lhe 2,9112 and 2P1¡2 states ale degenerate and that lhe 2P3/2 staþ
has a higher energy by 45.2peY.

Quantum electrodynamics, the relativistic quantum ûe1d theory of electrons

rd photons, which was invented in the 1930's and refined by R.P Feynman,

J. Schwinger and S. Tomonaga in the 1940's (and is discussed briefly ín QLB:
Rel.arivistic Quanrunz Field Theory), incorporates special relativity into quantum

mechanics including particle creation and annihilation. It yields the Lamb Shift

irnd gives perfect agreement with all electron-positron-photon experiments per-

fiumed to daæ.

Relativisúc effects a¡e not small at the subatomic level. Fo¡ example, it is

clearly essential to include particle creation a¡d annihilation effects when one tries

t(¡ inßrpret experimentrl dat¿ for the ¡eactions

p+p--d+T'

p+p"n p+p+ tr ' + n

and

(1.3)

(1.4)



These ar.e the basic ¡eactions for the production of positive pions at the TRruMF
¡Iccelùto¡ and for the production of positive and negative kaon beams in ploton-
proton collisions.

Quite apart f¡om the largeness o¡ smallness of relativistic effects, the study of
lelativistic quantum mechanics forces one to consider what are the fundamental

entities in terms of which one describes the physical world. Searching for these

fundamental entities ¡emains a sûong human quest. The reason perhaps lies in
the statementl

"Once we figure out how the dice are made, we may be able to figure out
who i.s th¡owing them."

The basic equations of relaúvistic quantum mechanics are a set of commu-

tation relations called the Poinca¡e Algebra. We present the Poi¡care Algebra
in Chapter' 2.

The basic equations of non¡elativistic quantum mechanics are a set of com-

mutation relations called the Galilei Algebra. We present the Galilei Algebra in
Chapter 2. The Galilei Algebra is a special case of the Poincare Algebra.

Lo¡entz invariance of a physical system is defined in Chapter 3; the Poinca¡e

Algebra is derived in Chapter 4; space inversion and time reversal are discussed

in Chapter 5; and the centre of mass position, centre of mass velocity and intemal
angulal' momentum of a Lo¡entz inva¡iant system are discussed in Chapter 6.

The Appendix gives some matrices which arise in previous chapters. The

volume concludes with lists of selecæd reference books, journal articles and

theses.

Att¡ibùted to c;raeme Ross, FrederictoD, New BruEswick, by StepheD SÉauss, GLobe and MaiL, 1990.





Chapter 2 INTRODUCTION TO THE
PO¡NCARE ALGEBRA

ln orde¡ to describe a Lorentz inva¡iant physical system using quantum

mechanics it is necessary to determine the Poinca¡e generators of the system

in te¡ms of the fundamental dynamical va¡iables of the system. In this chapter we

present and comment on the the Poincare generators and the Poinca¡e Algebra.

Derivations and some deñnitions are given later: a Lorentz invariant physical

system and Poincare transformations are defined and discussed in detail in Chapter

3 and the Poinca¡e Algebra is derived in Chapter 4.

The Poinca¡e generators are a set of ten Hermitia¡ operators: the Hamiltonian
alld the three components of the total momentum, total angula-r momentum and

Lorentz boostel for the system. As discussed in Chapær 3 these operators

-qenefate time translations, spatial displacements, rotations a¡d Lorentz boosts,

The Poinca¡e Algebra is a set of commutation relaúons satisfied by the Poincare

generators; these commutation relations a¡e the basic equations of relativistic
quântum mechanics.

We also present and comment on the Galilei gene¡ators and Galilei Algebra
which are appropliate for describing a Galilei invariant physical system. The

Galilei generators are the Hamiltonian and the th¡ee components of the totaÌ

momentum, total angular momentum and Galilei booster fo¡ the system. These
()perators generate time translations, spaúal dispiacements, rotations and Galilei
boosts. The Galilei Algebra is a set of commutation relations satisfied by the

Galilei generators; these commutation relations a¡e the nonrelativistic approxima-

tion of the Poíncare Algebra and are the basic equations of non¡elativistic quantum

mechanics. Non¡elativistic quantum mecha¡ics is arrived at as a nonrelativistic
approximation to relativisúc quantum mechanics.

2.1 Poincare Algebra

In order to desc¡ibe a physical system which is Lorentz invaria¡t one must



construct from the fundament¿l dynamical va¡iables for the system ten Hermitian
ope.rators ¡1 , 

pi 
, ¡i , ¡¡i (where j : 1,2,3) satisfy.ing

lri,erl: o

lpi,H):o

(2.1)

t1 1\

lt' ,rol : ikeittPt

lti,ul:o

l,ti,tk): iñ.e¡xrrl

(2.3)

(2.4)

(2.s)

lxi , r,kl : -ih6i*H lc2

Ir<i,nl:-;nri

irr, "ro] : ifi.e jrtr{t

l*t ,**l : -ike j*tJtlc2

(2.6)

(2.7)

(2.8)

(2.9')

where fi. : hl2r, l¿ is Planck's constant, c is the speed of light, ó¡¡ is the
K¡onecker delta symbol and e1u is the lævi-Civita permutation s¡.rnbol.



2.2 Comments on the Poincare Algebra

l. Lorentz invariant physical system

A Lo¡entz invariant physical system is defined and discussed in some detail
in Chapter 3.

Examples of Lorentz inva¡iant physical systems are given in QLB: Some

Lt¡rentz Invarianf Systerns.

2. Poincare Algebra: the basic equations of physics

(2.1) t() (2.9) a-re the Poincare Algebra. The Poircare Algebra is the Lie Al-
gebla for the Poincare group.

The appearance of Planck's constant l¿ and the speed of light c in (2.6) and
(2.9) indicates explicitly that the Poincare Algebra involves quantum me-

chanics and special relati vity.

The Poincare Algebra was fust derived i¡ the i930's. The central ¡ole it
plays in relativistic quantum mechanics is emphasized in Dirac (1949).

The conesponding equations for a Galilei invariant (or nonrelativistic) phys-

ical system, the Gaiiìei Algebra, are given in item 8.

(2.1) to (2.9) are the basic equations of ¡elativistic quantum mechanics. In-
deed, since non¡elativistic quantum mechanics and classical mechanics a¡e

approximations to relativistic quantum mechanics, (2.1) lo (2.9) are the basic

equations of physics.

3. Poincare generators

The ten Hermitian operato¡s H,Pi,Ji,,äi are the Poinca¡e generators for



the physical sysæm.

IJ is the Hamiltonian for the system.

¡,i , .7 i , Iil are the jth component of the total momentum, total angular

momentum and Lorentz booster, respectively, for the system.

As discussed in Chapter 3, these operators generate time translations, spatial

displacements, rotations and Lorentz boosts.

4. Symmetry in the Poincare Algebra

(2.1) tt¡ (2.9) a¡e invariant under the replacement

H,I(r '-- -H,-Iir (2.10)

With one exception, the Hamiltonians in the examples in QLB: Some I'orentz

Invariant Systems arc chosen to have positive spectral values.

The Hamiltonian for the Dhac particle discussed in QI'B: Some Lorentz

Invaríant Sysrerrs is the one exception: it has both positive and negative

spectral values. The negative energy states of the Dirac particle have no

physical interpretation in a one-particle theory. We outline in QLB: Some

Lorentz Invariant Systems how Diac's brilliant interpretation of these states

in 1930 predicted the existence of antiparticles and led to the invention of

relativistic quantum field theory.

5. Constants of the motion

(2.2) and (2.4) show that ail components of the total momentum and the total

angular momentum are constants of the motion. It is often convenient to

desc¡ibe a system using eigenkets of the total momentum and eigenvectors

of the total angulal momentum.

(2.7) shows that none of the components of the Lo¡entz booster are constants

of the motion. It is generally not convenient to desc¡ibe a system using the

eigenkets of the Lorentz boosters.

IO



6. Equations (2.1) to (2.5): the equations not involving 1{.r

These equations a¡e derived without involvin g Loreniz boosts. They are the
same in nomelativistic and relativistic quantum mechanics. (See item 8.)

Equations (2.6) to (2.9): the equations involvinq 1(j

These equations involve ths speed of iight c.

'I'lre equations are in two pairs: one pair couples H and Pi and the other
couples Jr and I{i.

We show in Chapter 3 that the coupling of H a¡d pi yields a mixing of
energy and momentum under a Lorentz boost. This mixing is familiar from
classical mechanics.

We show in Chapter 6 that the coupling of Jj and ¡-j yields a Wigner
Iotation of intemal angular momentum under a Lorentz boost.

The nonrelativistic limit: the Galilei Algebra

The Galilei Algebra is a set of commution relations appropriate for describing
a Galilei invariant physical system. The Galilei Algebra involves the Galilei
generators which are the Hamiitonian and tho three components of the total
momentum, total angular momentum and Galilei booster for the system. As
discussed in Chapter 3 these operators generate time translations, spatial
displacements, rotations and Galilei boosts.

Since non¡elativistic quantum mechanics is the special case of relativistic
quantum mechanics corresponding to taking the speed of light c to be infinite,
the Galilei Algebra is identical to the Poincare Algebra except for (2.6) and
(2.9). These are the only equations in the Poincare Algebra which involve c.

'Ve show in Chapter 3 that the Galilei Algebra diffe¡s from the Poincare
Algebra only in having (2.6) and (2.9) replaced by

8



[r.r, "o] 
: -irtm6¡n

lr<i,rÈ] 
: o

(2.11)

(2.12)

(2.1)to (2.9) with (2.6) utd(2.9) reptaced by (2.11) and(2.12)' respectivelv,

¡¡e the basic equations of nonrelativistic quantum mechanics.

9. Comparison of the Galilei and Poincare Algebras

a Ngtâtien

We use the same symbols for the Galilei and Poincare generators for

notational convenience. It will be clea¡ from the context when we are

dealing with non¡elativistic or relativistic quântum mechanics.

b. Mass

The parameter n. n (2.11) is tho mass of the system. It follows from the

Galilei Algebra that every Galilei inva¡iant system is characærized by its

mass. This implies that mass is conserved for Galilei inva¡ia¡t systems.

There is no mass parameter in the Poincare Algebra and consequently no

requirement that Lorcntz invariânt systems conserve mass. Indeed, the

Poincare Algebra allows the conversion of mass to energy and více versa'

The nonappearance of mass in the Poinca¡e Algebra raises the question

of why each fundamentai particle in Nature (the electron, the photon,

¿¿c.) is labelled by its rest mass. We show in Chapter 4 that the Poincare

Algebra allows construction of a Lo¡entz invariant operator which fo¡ a
single particle is the rest mass of the particle.

t2



Relative simplicity of the Galilei Älgebra

The equations in the Galilei Algebra involving /fj do not couple Ë/ and

Pj or Ji and 1lr. There is no mixing of energy aJrd momentum or rota-
tion of angular momentum under a Galilei boost

The ¡elative simplicity of the Galilei Algebra makes nonreladvistic quan-

tum mechanics simpler then relativistic quantum mechanics.

10. Determining the Poinc¿re and Galilei generators

The mathematical problem to be solved in order to describe a Lorcnrz
invanant ol Galilei invariant physical system is to construct the Poinca¡e or
Ga-lilei ,eenerators in terms of fundamental dynamical variables for the system.

These vuiables satisfy a fundamental algebra which is usually anothe¡ set of
commùtation ¡elations o¡ anticommutation relations. That is, the mathematical
problem is solve a coupled set of commutation relations in terms of given

operators which satisfy given algebraic relations. There are, unfortunately,
no well-developed mathematical methods for doing this.

Fu nonrelativistic quantum mechanics, the problem can be ¡educed to solving
partial differential equations fo¡ which there are well-defined mathematical
methods. For relativistic quantum mechanics, however, one must generally

work directly with the Poinca¡e Algebra. The methods for doing this a¡e less

systematic ard often i¡volve t¡ia.l urd error and intelligent guessing.

t3





Chapter 3 POI NCARE TRANSFORMATIONS

The basic equations of ¡eiativistic quantum mechanics, dre Poincare Algebra,
u'e presented and discussed in Chapter 2 a¡d de¡ived in Chapter 4. In this

chapter we set the stage for the derivation in Chapter 4 by discussing Poi¡care
tansfbrmations and defining what is meant by Lorentz invariance of a physical
system.

Poincare tlansformations of preparation and measurement apparatuses are

defìned in Section 3.1, Lo¡entz inva¡iance of a physical system is defined in
Sectìon 3.2, Poinca¡e transformations in Hilbert space are given in Section 3.3,
three- and four-vecotr operators are discussed in Sections 3.4 and 3.5, Poinca¡e
transfbrmations of some operatoß are given in Section 3.6 and derivations of
some lesults are given in Section 3.7.

3.1 Poincare transformat¡ons of apparatuses

An apparatus used to prepare a state | ú > of a physical system is placed in
a fixed inertial f¡ame ,5. The placement of the apparatus in ,9 is specified by ten

real numbers which may be chosen to be

the time it was switched on (one number)

the position of a fixed point on the apparatus (three numbers)

the urgles axes fixed to the apparatus make with the axes in ,9 (three numbers)

the velocity of a fixed point on the appâratus as measured in .9 (tfuee numbers)

The placement of the apparatus in 5 is now changed '"vithout chânging its
intrinsic structure. The changed apparatus prep¿ues a state I ty't >. The change

15



in placement of the apparatus involves changing one ot more of the above ten

numbers; it ca¡ be characterized by

rþ --+ r'1"

r'þ:LFrr'+oþ

(3.1)

(3.2)

where ¡r : 0,1,2,:J and where

(ro, 11, 12, 13) : (ct, x,y, z) : (ct, i) (3.3)

â.r e the space-time coordinates of a point on the appa-ratus before the chalge
(f being the time the apparatus was switched on) and

(r'o,r'1 ,r'2,r'3): (ct',r',y' ,z'): ("',;) (3.4)

ûe the space-time coo¡dinates of the same point on the appatatus after the change.

The quantities Âr, and aP in (3.2) are independent of ¿p and rtt" and

cllù'acterize the change in placement of the apparatus. The Âp, correspond

to fotâtions and Lorentz boosts; the ør' correspond to time trânslations and

displacements.

Simila¡ considerations ca¡ be given to a second apparatus which measures

tl,e value of some observable of the system. We denote the observable measured

in the fu'st placement by ,4 and the obse¡vable measured in the second placement

by ,4'. Then, for example,

<rl, lAl,þ> (3.s)

i.s the average value of results of measurements of the observable ,4 for the system

when it has been prepared in the state | ú > and

< ,þ' I A' 1.,þ' > (3.6)

is the average value of results of measurements of the observable ,4t for the system

when it has been prepared in the state I ry'l >.



t.

Comments

Active view

We consider the active view of space-time transformations in the above. That
is, we conside¡ a single fixed intertial f¡ame 

^9 and we imagine preparing
states and measuring observables by moving apparatuses in this fixed frame.

¿/' and r;/r' in (3.2) ate space-time coo¡dinates in ,9 of a point on an apparatus
before and after a change of the placement of the apparatus in ,9.

I /, > anO | ,þ' > at" the srates prepared by a preparation apparatus before
and afær a change of the placement of the preparation apparatus in ,9.

A and At a¡e the observables measured by a measurement apparatus before
and after a change of the placement of the measurement apparatus in 5.

Passive view

A second view of space-time transfomations is the passive view. In this
view one conside¡s a second f¡ame ,9/ which is ûxed to an apparatus and
moves with it. In this view one does not move apparatuses around; instead,
one conside¡s states and observables in two frames 5 and S/.

Passive view: interpretation of ¿P

As with the active víew, r.tp in (3.2) are space-time coordinates in S of a
point on an ûpparatus after a change of the placement of the apparatus in ,g.

In the passive view, zr in (3.2) arc space-time coordinates of the same point
on the apparatus in ,9/.

That is, in the passive view, (3.2) relates the space-time coordinates of the
same point in two diffe¡ent frames: ¿p a¡e tlte coordinates in ^9/ and rtp arc
the coordinates in ,9.

l7



4. Passive view: interpretation of I ;t > and Al

As with the active view, I ry' > and ,4 refer to a state and observable in ,5.

In the passive view, I ry'l > is the state which the state-preparation apparatus

prepares in ,5/ and ,4i is tle observable which the ,4-measuring apparatus

measures in ,9/.

,5. Another notation for (3.1)

The change (3.1) wiÌl also be written as

/J \

(r-. t) --- (r', t') (3;7)

It will be clea¡ from the context which notation is being used.

6. Notâtion

Transformation (3.2) will be denoted as (,4.,o).

7. Homogeneous and inhomogeneous transformations

(Â. ø) is homo-{eneous lf aP :0 and inhomogeneous if ¿p I 0.

8. Time translation

The change

describes a time translation. It corresponds to an apparatus in ,9 being

switched on ¡ seconds earlier.

(i,t) -n (;,t) : (ì,t - r) (3.8)

l8



9. Displacement

The change

(r,r) -- (;,,t) : (r j a,y, z,t) (3.e)

describes a displacement of an apparatus in 5 along the ¿-axis by a distance
a.

10. Rotation

The change

(J,f) --+ þ',t') : (z,ycos 0 - zsin0,ysing ¡ zcos0,t) (3.10)

describes a ¡otation of an apparatus in ,9 about the ¿-axis by an angle 9.

ll. Lorentz boost

The chanse

(i,t) -- (,-,,t) : (t@ + ut),u,","þ -5Ð (3.11)

where



,: l' - 4l-å
\ c"/

(3.12)

describes a. Lorentz boost of a¡ apparatus in ,9 along the ¿-axis by speed u;

c is the speed of light and 7 is tlre Lorentz factor of the boost.

(3.1l) may also be expressed as

(rr') + (r/t') : (z0 cosh u 1rl sinhz,z0 si rz* rt .o"1'r u., x2 , 13 ) (3.13)

?)tanhz:-
(.

(3.14)

u is the rapidity of the boost.

12. General transformati on

Every transformation (3.2) can be expressed as a product of one o¡ more

one-parameter transformations of the form (3.8), (3.9), (3.10), (3.13).

13. Homogeneous Lorentz transformation

The lp and r/ satisfy



(r'o)' - (r")' - (''')' -

: ('"J - (,'J - (.'J

¡ 13r2(r /:

- (r'J
(3. l5)

when (3.2) is homogeneous. (À,0) is a homogeneous Lorentz transformation.

14. Lorentz group

The (,{,0) form the Lorentz group. A subgroup of the Lorentz group is the
rotation group.

15. Restricted Lorentz transformation

(Â.0) excludes space inversion and úme reversal. The determinant of the .{p,
equals unity and .{00 ) 1. That is, (^,0) is both proper and orthoch¡onous.
(^,0) is a restricted Lo¡entz transformation.

Space inversion and time reve¡sal a¡e considered in Chapter 5.

I 6. Poincare transformation

(Ä, a) is a resûicted Lorentz transformation combined with a space-time
translation. (.4,, a) is a Poinca¡e transformation. The (.4, a) form the Poinca¡e
group. The Poinca¡e group is a Lie group.

3.2 Lorentz invariance of a physical system

A physical system is Lorentz invariânt if the same average is obtained fo¡
the results of measurements of every observable of the system in every state of

21



the system when the same Poinca¡e transfomation is ca¡ried out on both the

preparation apparatus and the measuring apparâtus.

That is, a physical system is Lo¡entz invariant if

< rll I A' l,li >:< ,l'l A l rþ > (3. 16)

lor every observable ,4 and every state | Îy' > of the system and for every Poinca¡e

transformation (3.2) of both preparation and measuring apparatuses.

(3.16) holds if the states I rll > and I ú > ând the observables At and A

at'e ¡elated according to

l,l/ >-* o l',þ >

A' -- OAO|

(3.17)

(3.18)

where O is either a linear unitary operator or an anúlinear antiunitary operator.

It follows from iæm 12 of Section 3.1 that each operator O corresponding

to a Poincal'e ttansfotmation (4, a) can be written as the product of one or more

of ten one-parameter operators

o rþtt), ozþtz),"', oro (nro) (3.19)

where 4 labels the real parameter for a one-paramete¡ Poincare tra¡sformation.



These operators satisfy

o"(0) : 1

o"(nt)o"(nz) : o"(nt-t nz)

(3.20)

(3.2r)

Since the square of a unita¡y operatot or an antiunitary opemtor is a unitary
ope.rator, it follows from (3.21) that each O"(ri) is a unitary operator. It follows
fr<rm (3.20) and (3.2I) that O"(q) can be writren in the form

On(t¡; = p-;c"'t (3.22)

where (ln. is a Hermitian operator. The ten unitary operators (3.19) are thus
determined by the ten Hermitian operâtors

C1,C2,"' ,(lv (3.23)

Comments

l. Poincare generators

(3.23) a¡e the generators of the Poinca¡e group o¡ the poinca¡e generators

2. Labels for the Poincare generators



The Poincare generato¡s (3.23) u'e labelled as follows:

H ffi generatss a time translation.

Pi ffr generates a displacement along the j-axis.

Ji ffL generafes a rotation about the j-axis.

clii fh genentes a boost along the j-axis.

3. Labels for the unitary Poincare operators

The unitary Poincare operâtors (3.19) a¡e labelled as foliows

4. Form invariance of the Poincare Algebra

In the passive view of space-time transformations (3.18) relates obse¡vables

II(t): e'iHt/r"

Di þ) : "-íPjalk

Ri @) : e-iJto/Í¿

t j t^,t - --iclij u/k

(3.24)

(3.2s)

(3.26)

G.n)



measuled in two diffe¡ent inetia-l f¡ames. That is, ,4/ given by (3.18) is the
observable which the ,4-measuring apparatus measures in ,9r.

In view of the unitarity of O the Poinca¡e Algebra (2.1) to (2.9) has the same
form when written in terms of the unprimed or prirned generators. That is, the
basic equations of relativistic quantum mechanics are form inva¡iant unde¡ a
general Poincare transformation. The speed of light c and Planck's constant
ñ have the same value in all reference f¡ames.

3.3 Unitary Poincare operators

The unitary Poinca¡e operators (3.24) ta (3.27) are the operators in Hilben
.space which correspond to the Poincare transformations given Section 3.1. That
is, (3.24) to (3.27) give Poilcare transformations in Hilbet space. We comment
on these operators in this section. We generaliy conside¡ the active view of
space-time transformations; the passive view is considered when convenient.

Comments

l. Evolution operator

{,'(l) defined by (3.24) is the evolution operator for the system

{1(f) conesponds to the time translation

(ø-, f¡) --+ (i,to - t) (3.28)

The time labels in (3.28) refer to the times an appa¡atus was switched on; we
label the evolution operator by the difference in these times.

Correspondingly, we label a state by the time it has evolved since the time
the preparation appamtus was switched on. If I r/ > is the state of the system
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in ,9 at time zero (that is, which has evolved for zero time) then

l,þ(t) >: u(t) l,þ > (3.29)

is the state of the system ,9 at time ¿ (that is, which has evolved for time l).
A state prepared earlier has evolved for a longer time.

2. Schrodinger equation

It follows on diffe¡entiating (3.29) with respect to I that

H | 1þ(t) >=
d

i.h--
d.t

I ,¿(1) > (3.30)

(3.30) is the Schrodirger equation for the system.

3. Displacement operator

,i(¿) define¿l by (3.25) is the displacement operator along the j-axis of 5
for the system.

,l (,?), for example, corresponds to the displacement (3.9).

If I r/(f) > is the state prepared by a preparation apparatus in ,9 at time I then

Dr(a) | þ(t) > (3.31)

is the state prepared at time f by the same apparatus displaced in S by ø

along the j-axis for the system.
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4. Displacement operator for a general displacement

The operator

D@): ot1"¡p'@)n'Q) (3.32)

is the displacement operator for a general displacement of the system in 5.
It foÌìows using (2.1) that

Dçi¡ = "-;F 
t¡n (3.33)

D(rí) conesponds to the Poincale transformation

(3.34)

lf I r/(f) > is the søæ prepared in 5 by a preparation appaÍatus at the origin
at time I then

D(i) | 1þ(t) > (3.3s)

is the state prepared in ,9 by the same apparatus at (r,y,z) at fime t.

,5. Space-time displacement operator

The operator



D(i,t): D(i)U(t) (3.36)

is the space-time displacement operator for the system in.9. It follows using
(2.1) and (2.2) that

D(Ê,t): 
"-;(F 

*at)/a (3.3'7)

D(za.t) corresponds to the Poinca¡e transformation

(0,0,0, ¿o) --+ (r,, y,: ,t¡ - t) (3.38)

If I t¡ > is the søæ prepared in S by a preparation âpparatus at the origin
ât time zero then

D(í,t) | 1þ > (3.39)

is the state prepared in ,9 by the same apparatus at (r,y,z) at time t.

6. Rotation operator

¿r(d) defined by (3.26) is the rotation ope¡ator about the j-axis in ,9 for the

system.

.R1(á), for example, corresponds to the rotation (3.10).



If | ,¡(¿) > is the staæ prepared in ,5 by a preparation apparatus at time ¿ then

H(0) I1þ(t) > (3.40)

is the state prepared i¡ ,9 at time ¿ by the same apparatus rotated by d about
the j-axis for the system.

7. Rotation operator for a general rotation

The operator

R(n . ¡J. r ) -- n3 61n2 ç91n3 ç1¡ (3.41)

is the rotation operator for a general rotation of the system ir ,9.1

R(a, ll,l conesponds to the Poinca¡e transformation

(i,t) -- (i¡,t) (3.42)

whele o, p, 1 are the Euler angles corresponding to the rotation of i to i p.

lf i ?¡(1) > is the state prepaled in 5 by a preparation apparatus at time ¿ then

R(", þ,t) l,þft) > (3.43)

is the state prepared in ,5 at time ¿ by the same apparatus rotated through
Euler angles a, B,7.

I We follow tbe coDveDtioD for tbe seque¡ce of rotatio¡s used by Rose (195ó), equation (4.?), page 5l



8. Lorentz boost operâtor

¿j1z; Oefined by (3.27) is the Lorentz boost operaror along the j-axis in 5
1'or the sysæm.

trl (z), for example, conesponds to the Lorentz boost (3.13).

lf | /r(l) > is the stâte prepared in ,9 by a preparation appâratus ât rime Í then

Lr (u) | þ(t) > (3.44)

is tlie state prepared i¡ 5 at time ¿ by the s¿Ìme apparatus boosted with
rapidity z along the j-axis for the system.

9. Einstein addition of velocities

It follows from (3.27) that

Lr (ut)Lr (uz) : Lr (u't * uz) (3.4s)

When written in terms of velocities (3.45) is

Lr1o1)Liçu2): ¡t(- yt+uz \
Y, * urur¡ê )

(3.46)

(3.46) expresses the Einstein addition of velocities.
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3.4 Rotations and 3-vector operators

ln this section we define and discuss operators which tra¡sfonn unde¡ a

rotaúon like the components of a 3-vecto¡.

Definition and comments

l. 3-vector operators

If (At,A2,,13) satisfy

lti,eÈl -- irte ¡r,tAt (3.47)

then

ni P¡e' ail P¡ : rr,,h(qAb (3.48)

where -Rr(d) is the rotation operator (3.26) and rt"u@) are the matrix elements
of the rofation matrix rr(á) (4.4).

That is, (e1.,42,,43) transform under a rotation like the components of a

3-vector. Accordingly, we write

Ã: tli + A2i + ,q3i (3.49)

wherc i,j, À are unit voctors along the axes of ,9. A is a vector operator.
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2. Examples

It follows f¡om (2.3), (2.5), (2.8) and (3.47) that

(r1 , 12 , 13) (.t1 , J2 , J3) (x1 , x2 ., x3) (3.s0)

transform under a ¡otaúon like the components of a 3-vector.

3. Rotation of i to ri¿

It follows from (3.48) that

R(0,,àÃ.íntçe,e¡: Ã a (3.51)

whel'e

R.(0,ç): a3@)n2@) (3.s2)

ri'¿ : si¡ g cos,pî+ sin d sin g J-+ cos 0 ã (3.s3)

(3.52) conesponds in 5 to the rotation of É to n't.

It follows from (3.51) that an apparatus in ,9 which meâsures Ã'Ë wùt



measur'e A rít when rotated by angles correspondi¡g to (3.52).

Application of the above to Stern-Ge¡lach experiments for spin I and spin 1

particles is given in QLB: Introductory Topics. (A Stern-Gerlach apparatus
measures the component of spin of a particle along the direction of the gradient
of the inhomogeneous magnetic field of the apparatus.)

4. lnvariant operators

If (A1 , A2 . A3) ana (81, B2 , 83) each satisfy (3.47) it foilolvs that

lti,a al:o (3.54)

and thelefole

Rr@ Ã. E Rite):0 (3.55)

That is, ,4 . B is inva¡iant under a rotation.

3.5 Lorentz boosts and 4-vector operators

In this section we define and discuss operators which transform unde¡ a
Lo¡entz boost like components of a 4-vector.

Definition and comments

i. 4-vector operators

n (Att,A1 ,A2,A3) satisfy



frir,eol : -Ú,q¡c

lr',orl: -'Íu,roo

(3.s6)

(3.s7)

that is, if

lxi ,.ttl : !ço', oo - go, Ai) (3.58)

ùp1e'utç"1 =li',\u)A' (3.59)

where ,Lj(u) is the Lo¡entz boost operator (3.27) añ lr 
p,(u) arc the matrix

elements cf the Lorentz t¡ansformation .¿6¡ç lt (tl) (4.8).

Accor<lingly, (A0, Ar , A2, A3) transform unde¡ a Lorentz boost like the com-

ponents of a 4-vector.

2. Example

It follows from (2.6), (2.'7), (3.56) and (3.57) that

(T,'',",") (3.60)



transform under a Lorentz boost like the components of a 4-vecto¡.

3. Invariant operators

If (40,,4r, e2,e3) ana (Bo,Bt.,82,B3) each satisfy (3.58) itfollows thatr

lxi,t.a):o (3.61)

and therefore

Li @) A.B fit ç,'¡ : o (3.62)

That is, ,4..B is invariant under a Lorentz boost.

ln particular, it folìows from from (2.6) and (2.7) rhat P.P is inva¡ia¡t under

a Lorentz boost.

3.6 Transformations of the Poincare generators

In this section we prcsent some Poinca¡e transformations of Poincare gen-

erators and we interpret these transformations in the passive view of space+ime

transfofmations.

I We ¡ecall ¡6a¡ 1.þ = A|BP : At Bp = A0 Bo - A B



Time translation

Displacement

Rotation

pippnitçe1: a (3.7 r )

rl(t)Hu+þ): H

(r6qut(q: F

U(t)iut!): r'

U(t)ÊuIþ): ti + Ft

(3.63)

(3.64)

(3.65)

(3.66)

D@)HDI@): H

Dg)FDI6): F

D(i)JDI@)=J'-ixF

D@)17D|@): I7 + iHlc2

(J.O /.'

(3.68)

(3.69)

(3.70)



R1(o)P1dr@): Pl

Rl (o)P2 R1l @) : P2 cc,s o -l- P3 sin d

Ã1(P)P3A1Ì(9) : P3 cos o - P2 sÁ¡

(3.72)

(3.73)

(3.14)

and similuly for (J1 , J2 , J3) ana (Kt , K2 , Ks).

Lorentz boost

f1ç"¡n t11lu¡: 11 cosh z - cP1 sinh z

L1 (u)P1 L1t @): P1 cosh u - { ,inh,
c

" 
L1 çu¡P2 L1I @) : P2

Ll (u) P3 L1t 1u¡ : P3

(3;7s)

(3.76)

(3.17)

(3.78)

L1("¡J1 it çu¡ : ¡t

1,11u¡12 t1I1u\ -- J2 coslt u * cff3 sinhz

t1 1u1J3 L1i çu1: ,./3 cosh u - cl{2 s¡oh u

(3.7e)

(3.80)

(3.81)



Lt 1"¡Kt ilr 6¡ : x1

t 1 
1u¡ t<2 t1I çu7: 1{2 cosh, - 1J3.i,rh,

t|çu¡É rtr 6¡: 113 cosh ¿ + lJ2 ,irrl' ,

(3.82)

(3.83)

(3.84)

Lorentz boost of the space-time displacement operator

116¡n1'¡1111"): Dþ¡) (3.85)

where

D(r) : D(i,t) (3.86)

is the sprce-time displacement operator and where

(,rf.) : q,ro coshu -,rl sinhu,r0sinhu - 11 coshu,x2,13) (3.87)



Lorentz boost of an observable

111u7e1"1y'11"): Ailxt) (3.88)

where

A(x) -- D({ADI(r) (3.8e)

and

A¡(r): D(r)A;Dt(r) (3.e0)

where

At: L1 (,)AL|I(u) (3.9 r)

Comments

l. lnterpretation in the passive view

In the following items we interpref (3.63) to (3.91) in the passive view of
space-time t¡ansformations.

ln this view, for example,



HandP (3.e2)

which appear on the right sides of (3.75) to (3.78) are the energy and

momentum of a system as measured by a stationary observer in ,9 and

tl 1"¡n 11Ï 1u¡ and 11 ç"¡F t1t 1"¡ (3.e3)

which appear on the left sides of (3.75) to (3.78) a-re the energy and momentum

of the same system as measured by a stationary observer in a frame S¿ which
is Lorentz boosted along the ¿-axis of 5 with rapidity tz.

2. lnvariance of the Hamiltonian

(3.63) fcrllows because ,f1 commutes with itself and (3.67) and (3.71) follow
lrom (2.2) and (2.4): 11 is inva¡iant under time t¡anslations, space displace-

menis and space rotations.

3. Hamiltonian in the boosted frame

(3.75) shows that 11 is not invariant under Lorentz boosts; there is a mixing
of energy and momentum under a Lorentz boost.

(3.75) to (3.78) conespond to the classical expressions.

4. Poincare generators as a rank 2 contravariant tensor

We shcrw in Section thât (3.79) to (3.84) imply that (Jl ,J2,13) ana

(cl{l ,cl{2,cli3) transform unde¡ a Lotentz boost as components of an anti-

symmetric rank 2 contravariant tensor.
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5. Lorentz boost of the space-time displacement operator

We denote the space-time coordinates of the same event measured in ,9 and

,l¿ by

(ro, r1, 
"2, 

z3) and (ro¡, xl¡, x2¡, x3¡) (3.94)

re.spectively. Then, (3.87) holds as per (3.13).

The left side of (3.85) is the space-time displacement operator in 5'¿.

(3.85) states that the space-time displacement operutor in ,S¿ has the same
f'unctional form as the space-time displacement operator in ,5 but evaluated
at the boosted space-time point (rpr).

6. Lorentz boost of an observable

(3.88) to (3.91) are interpreted as follows:

,4 is an observable measured by a stationary measurement apparatus in 5.

A¿ is the observable measured by a stationary measurement apparatus in ,5¿.

,4(::) is the obse¡vable measured by a measurement appâratus in ,9 which has

undergone a space-time displacement in S by x*.

A¡(t¡) is the observable measured by a measurement âpparatus in ,9¿ which
has undergone a space-time displacement in ,57 by rf.

It follows f¡om (3.88) that the space-time properties of a system and of a

Lorentz boosted system are the same when the boosted system is viewed in
a boosted coordinate system.
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3.7 Some derivations

Derivation of (3.48)

The derivation involves calculating

and using

.l

iniçeyl.nitle¡
du

,|rj ,t 0\
---si ;-:- : t ¡' "t'i^(o )

o.t7

(3.es)

(3.96)

Derivation of (3.59)

The derivation involves calculating

d

;Lr \u) At' Lri ( u\ (3.97)

and using

11lU t .,(tt' 
.u\u ) : oiuli| r\u) _ oot'¡ii ,qu) (3.9g)

au

Derivation of (3.E5)

The derivation uses

L1 ø) ( F ; + ar) r' t1,r; : tl 1u¡ F ir çu) i + t'1 6) n ilT @¡t' '\ / 
(3.99)

- P.it* Htt



Chapter 4 MORE ABOUT THE
POINCARE ALGEBRA

We give a further discussion of the Poincare Algebra (2.1) to (2.9) in this
chapter. The derivation of the Poincare Algebra is discussed in Section 4.1 and

the Poincare Algebra is written in a manifestly covaria¡t form in Section 4.2.

Lorentz invariants, operators inva¡iant under all Poinca¡e transformations, a¡e

constructed in Section 4.3. Section 4.4 contains some matrix representations of
the Lo¡entz Algebra, which is that part of the Poinca¡e Algebra corresponding to
homogeneous Poinca¡e transformations (rotations and boosts). Also included is a
demonst¡ation of tlre relationship beween 7-matrices and Lorentz boosts and a
4x4 matrix representation of the Poincare generators. Finally, some derivations

ue -qiven i¡ Section 4.5.

4.1 Derivation of the Poincare Algebra

Kalyniak (1978) contains a complete derivation of the Poincare Algebra. We

illust¡ate the method of derivation in this section and we give some derivations

in Section 4.5.

It follows from the group properties of Poinca¡e transformations that two
Poincre transformations in succession yield another Poincare transformation. We

consider two successive Poincare transformations followed by their inverses in the

inlìnitesimal limit of the Þoincare transformation paramete¡s; the Poincare Algebra
is derived by considering the conesponding unitary operators in the infinitesimal
limit. It is sufficient to consider the infinitesimal limit as this yields relationships

among the Poincare generators (the Poincare Algebra) which, because the unitary
Poincare ope¡ators are determined i¡ terms of the Poincare generators by (3.22),

determine relationships among the unita¡y Poincare operators fo¡ all values of the

Poincare transformation pa¡ameters.

We consider Poincare transformations (3.22¡ generated by Poincare generators

C o and C I with parameærs o and r , respectively, followed by their inverses. The
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col'responding unitâry operâtor on Hilbert space is

^i(;¿r ^iC"o ^-i('at ^-iC"o (4.1)

and expanding (4.1) in the parameters ø and r yields

"iCer 
riC).o 

"-tC'jr "-iC"o - I+ orlcd.,Cp) +. . (4.2)

The result of the âbove úansfomations is another Pclinca¡e transfornatiorì.
That is, up to a phase factor, the corresponding unitary opeÉtor is the product of
one ol more of the ten unitary operators (3.24) to (3.27). Expanding the ¡esultant

unituy operator in the parameters ø and r yields

7+or(C*p+b"pl)+... (4.3)

where (7n ¡3 is the generator of the net transformation and Û,oB is a constant

c<uresponding to the phase factor. It follows from (4.2) nd (4.3) that

lc",cal:(1^prb*BI (4.4)

The Poincare Algebra (2.1) to (2.9) is derived by considering (4.4) for all
Poincare generators. The complete derivation shows that all constants boB may

be elimi¡ated from (2.1) to (2.9): the Jacobi identity is used to show that a number

of the phase constants vanish a¡d those which are nonzero may be absorbed into
the Poincue generators.



We derive some of the equations in the Poinca¡e Algebra in Section 4.5; we
assume there that all phase constants have been been eliminated by the above

pfr)cedule.

4.2 Manifest covariance

In view of (3.75) to (3.84) we define operators P0 and Mþ" by

p0:!n
C

(4.s)

(M", Mtt, Mtt) : (J\, J2, Jr)

(A401 , l4o2 ., Mot) : (cl{1 , cli2 , cI{3)

AIp' : -M'p

(4.6)

(4.7)

(4.8)

It follows from (3.75) to (3.84) that

tt 6)rø ilI1u¡ : ¡1u,P" (4.e)

L1(u)MI', L1I@): ltro 11"u M"Þ (4. 10)

where 11þ, a¡e the matrix elements (4.8) of the Lorentz matrix (4.5).



The Poincare Algebra (2.1) to (2.9) takes the form

lPP, P'l : g

lMtlv , Ptl: ifr.(g'" PP - gt"" P')

(4.11)

(4.12)

lX4ILu ,, MîÍ1 : ifz(g'o Mp' - gpo M" I g" A4ou - gt" Mo') (4.13)

where r¡t"' is the metric tensor. I

Comments

l. Transformation under Lorentz boosts

In view of the appea-rance of the matrix elements of the Lorentz matrix (4.5)

in (4.9) and (4.10), Pp and MP" are said to transform under Lorentz boosts

¡rs a contravariant vector and a rank 2 confavariant tensor, respectively.

2. Mânifestly coyariânt form of the Poincâre Algebra

(4.11) to (4.13) are said to be a manifestly covariant form of the Poinca¡e

Algebra since they are expressed entirely in terms of four-vectors ard fou¡-

tensors.

The manifestÌy covariant fo¡m of the Poincare Algebra is convenient when

one considers Poincare invariant physical systems with quantum flelds as

fundamental dynamical variables.

' g,' i, dia¡1olal; 9oo = -gt' = -g" : -g"" = 7
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4.3 Lorentz invariants

We construct two independent operators M utd W.W which commute with all
Poincare generâtors. These operators are Lorentz invariants; they are the Casimir
operators for the Poincare group.

There are only two independent Lorentz invariants for a general Lorentz
invadant system. As shown in QLB: Some Inrentz Invariant Systems this irnplies
that a single pafiicle can be labelled by its rest mass ard spin.

Invariant mass

We define the invariant mass M of a Lo¡entz invariant system by

t_
A.l : :,/P.P

c
(4.14)

Thrt is

1.

Comments

Lorentz invariant

i4 commutes with all Poincare generators; it is a Lorentz invariant.

One-particle system

AI"2:Jnz-pzrz (4.1s)



We shcrw in QLB: Some ktrentz Invaríant Systems that M is the rest mass of
a single Lorentz inva¡iant pârticle with arbitrary spin.

3. Nonconservation of mass for a many-particle system

The above comment does not imply that mass is conserved in all Lorentz

inva¡iant systems. We show n QLB: Some Lorentz Invariant Systems thar. M
is not equal to the sum of the rest masses of a Lorentz invariant many-particle

system with a fixed number of particies.

4. Interaction in a many-particle system

We show in QLB: Some Ltrentz Invariant Systens that the interactions among

the paÍicìes in a Lorentz inva¡iant many-particle system with a fixed number

of paticles may be speciûed entirely by the invariant mass M.

Pauli-Lubanski four-vector

The Pauli-Lubanski four-vector I4lr' is defined as

1ry, : -!r*o' p, ¡y7 o, (4.16)

where et"o' is the unit antisymmetric tensor. That is,

I4/o:J-.F

- H-W=:Jtcl{xP
c

(4.17)

(4.18)



It folkrws fiom (4. 16) that

Comments

l. Lorentz invariant

I4/t' transfo¡ms under Lorentz boosts as a contravariant four-vector (4.9).

I4'''.lll commutes with all Poincare generators; W.W is a Lorentz inva¡iant.

2. Pauli-Lubanski four-vector and internal angular momentum

The Pauli-Lubanski four-vector was invented independently by 1ü. Pauli and

F. Lubanski in order to construct the intemal angular momentum of a general

Lorentz invariant system.

We define the internal angular momentum of a general Lorentz invariant
system in terms of Wr in Chapæ¡ 6.

P,WP : o

lPp,w,l:0

lMlv,Wa): ik(g'"WP - gt""W')

lWt" ,IU'l : ifi.e+'o'Wo P,

(4.19)

(4.20)

(4.21)

(4.22)



4.4 Matr¡x representat¡ons of the Lorentz Algebra

In this section we consider matrix representations of the Lorentz Aigebra

which is that part of the Poincare Algebra corresponding to homogeneous Poinca¡e

transformations (rotations and boosts). The Lo¡entz Algebra is (2.5), (2.8) and

(2.9) or altematively (4.13).

In particular we conside¡ 2 x 2 and 4 x 4 matrix representations of the Lorentz

Algebla. The latter leads naturally to ?-matrices which were originally invented

by Dilac for description of the Dirac particle.

Decoupled form of the Lorentz Algebra

On defining

l:|çti +icri)

ni:|1ti _ ¿"Ki)

(4.23)

(4.24)

which vields

JJ:AJ+BJ

Ki : i(Bi - Ai) 1"

(4.2s)

(4.26)



it fbllows from (2.5), (2.8) a¡d (2.9) rhar

Comments

l. Decoupled form of the Lorentz Aìgebra

(4.27) tt¡ (4.29) arc the decoupled form of the Lorentz Algebra.

Ai md Bi satisfy the same commutation relations (2.5) as Ji .

2. Matrix representations

Tlre irreducible representations of the ¡otation group are the 2j + | by 2j | 1

rotation maúices2

Dt",'-(., þ 't) (4.30)

where j : 0, +, 1,'' ' and a, B,1are Euler angles characterizing the rotation.

It foilows from (4.27) 10 (4.29) that the frnite-dimensional irreducible repre-
sentations of the Lorentz group are direct products of two 2j -l 1 "y 2j 17

: Vy'" follo* tbe coDveDtio¡r a¡d ¡otatioD usel by Rose (1957).

lei,ekl:

lai , akl :

lot,"nl

iñ,e ¡raAt

zn( jkt ö

:0

(4.27)

(4.28)

(4.29)
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matrices. That is, they are of the form

Dii'¡¡): ¡j1,ri qe lr'1,t) (4.31)

These i¡¡educible rep¡esentations in general are not unitary because when ,4i
and BJ are Hermitian 1{r isn't.

2 x 2 matrix representat¡ ons

The Lorentz Algebra (4.27) to (4.29) is satisfied by following two sets of

2 x 2 mafüces

where o1, o2, o3 arc the Pâuli matrices (4.9) to (4.11)

¡i :!6oi

Bj :0

(4.32)

(4.33)

AJ:O

Bj :1 hoj
2

(4.34)

(4.3s)



The Poinca¡e generators corresponding fo (4.32) to (4.35) arel

.l
JJ : :FLTJ

2

..; óf, ,
2c

(4.36)

(4.37)

IJ -

Ki -_

!no¡
2

ih¡
'2co'

(4.38)

(4.3e)

Group SL(2,c)

Fo¡ a restricted homogeneous Lo¡entz transform ation, (3.2) cân be written as

tl.re lnaüix equation

Xt : OXO\ (4-40)

I We ¡ote that the LA is i¡vâriant ù¡der the replacement (Ji , Kj) - (Ji , -Kt)
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( ctt + zt rt- ig'\
\r'+ iy' ct' - z' )

I ctlz t-ig\
\.r+iy ct-z)X:

(4.41)

(4.42)

": 
(; {)

(4.43)

wlrere e, .[, ¡¡, h are complex palameters such that

det(O) : elz- f s:1 (4.44)

Comments

l. Another form

(4.42) may be expressed as

X : rlr ott (4.4s)

whe¡e ø0 ts the 2x2 identity matrix.



2. Determinants

The determinants of X/ and X are

oet (x') : (ct')2 - ,'' - a'' - "''

det (X) : \ct)2 * 12 - y2 - ,2

(4.46)

(4.47)

14.44) ensures that

(4.48)

(4.48) characterizes a homogeneous Lorentz transformation.

3. Special case: unitary matrix

V/hen (4.43) is unitary it follows that

tt :t

t)1212222¿ ty ty

(4.4e)

(4.50)

(4.49) and (4.50) cha¡acterize a rotation.

4. Groups

The group of matrices (4.43) satisfying (4.44) is called SL(2,,c).
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The group of unitary matrices (4.43) satisfying (4.44) is calted ,5U(2).

,ç¿i (2) is a subgroup of SLQ,c).

,ci L(2, c) is the covering group for the restricted homogeneous Lorentz group.

,ç¿l(2) is the covering group for the rotation group.

5. Notation for matrices

Matrices (4.43) generated by (4.36) and (4.3':-) a¡e denoted by ,å0(^).

Matrices (4.43) generated by (4.38) and (4.39) are denoted by r0å(^).

6. Example: rotation about the z-axis

For a rotation by d about the z-axis,

so (4.40) is

x' : /i3(d)xÃ31(á) (4.s2)

that is,

(J',r') : (zcosd - ysind,øsiná I y cos0,z,t) (4.53)

: (-:'' "'l''') 
(4'5r)¿r0,1 \; : H3lg) = (-ir"olk = r-i"'e¡z



as per (3.10).

7. Example: boost along the z-axis

Fol a boost with rapidity z along the z-axis,

,0å(^) : t,çu¡:._icK3ulñ : 
"a3uf2 

: ("{ ,0,,r) @.s4)

so (4.40) is

xt : L3fu)xL3r@) (4.s5)

that is,

(,rip) : (r0coshz + 13 siriltu,tl ,r2,r0 sinhz 1z3 coshz) (4.56)

as per (3.13).



4 x 4 matrix representation; 7-matrices

The4x4matrices

satisfy the Lorentz Algebra (2.5), (2.8) and (2.9)

Comments

l. Direct sum

(4.57) is the di¡ect sum of the matrices (4.36) and (4.38).

(4.58) is the direct sum of the matrices (a37) and (4.39).

2. Reducible representation

(4.57) and (4.58) generate a reducibie representation of SL(2,c).

Tl'anstbrmation matrices generated by (a.57) and (4.58) are denoted by

¡å01¡; ç¡ ¿oà1,t; (4.se)

,j _ ( +f"oi" -\ 0

,,' : (-*

0\
trn"' )

0\
*'' )

(4.s't)

(4.58)

where €¡ denotes direct sum.



3. Spin

It follows from (4.57) that

4. Generators and .Y-matrices

It follows using (4.6) nd (4.'1) that (4.57) and (4.58) may be wriuen as

Mt":+1.1t",^/l (4.61)

where the 1-matrices ale in the Weyl representation (A.34) to (4.36).

Since (4.ól) satisfies the Lorentz Algebra (4.13) using only (4.24) it follows
thât (4.61) holds for every representation of the 7-matrices.

5. Transformation properties of ,y-matrices

It follows on calculation that

L'(u)^r' [2,31u¡1 
-t : ts (4.62)

where 
" 
:;j.j=,ç."¡lhz (4.60)



L3(uht"lL3(u)l-l : ¡3u ,r' (4.63)

as per (4.54) and (4.59) and where l3p , ate the mat¡ix elements of the Lo¡entz

tr ansfomation matrix (4.7)

That is, the 7s trarsform unde¡ Lorentz boosts generated by (4 58) as a

contravûriant vector.

ln general,

,s(Â)"ø,51¡,-t : Lr,'t' (4.6s)

wlrere ,9(A) is a 4 x 4 representation of SL(2,c) and the ÂP, chuacreize
rotations and Lorentz boosts as in (3.2).

(4.65) shows the importance of the 7-matrices in a description of spin I
systems.

6. Dirac particle

,',,,: ( I .1,, I I
o e-"12 )

0

e"lz
0

0

(4.64)



1-maÍices arise again rn QLB: Som.e lnrentz Invqriant Systen"s when we
discuss the quantum mechanics of a Dirac particle.

.y-matrices we¡e fi¡st considered by Dirac in his discussion of the Dirac
particle. We see from the above, however, that they a¡ise more generally
via the 4x4 matrix representation (4.59) of SL(2,c).

4x4 matrix representation of the Poincare Algebra

It follows using (4.24) ard (4.25) that the matrices (4.61) along with the

tìrul maÍices

pp : (1 l tt)t, (4.66)

satisfy the Poincare Algebra ( .ll) to (4.13).

Comments

l. Invariance of the Poincare

Since (4.61) and (4.66) satisfy the Poinca¡e Algebra using onty (4.24) and
(A-25), ir. follows that (4.61) and (4.66) hold for every rep¡esentation of the
-1,-matrices.

2. lnvariant mass

It follows from (4.14) that

M:0 (4.67)
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^
: -'!n'2 (4.68)

3. Helicity, chirality

It follows on ca-lculation that (6.36) holds with

where Â is the helicity.

The coefficient of .¡5 in (a.68) is related to the sign of the helicity; in this

context 75 is calted the chirality operator. The magnitude of the helicity is
unexpÌained.

4.5 Some derivations

Derivation of I J2. Pl l : -iñ. P3

The operator

€iP1 
a /ñ ei J2 0 /r¿ e-iP1 a/k e-i. J2e /ñ (4.69)

cru'responds to the sequence of transfo¡mations

(t:,'¡¡.,2.t) -- (r',y,2',t) -- (x",y,z',t) -n (t"' ,y,2" ,t) -. (x"" ,y,"",t)
(4.70)

whe¡e
rtrl: rcos 0 + zsi¡| (4.71)

zt : -xsi:n? I zcosï

,u ^t |_t -,r 
-T tt,

:t:"' : r" cos? - zt si¡î

(4.72)

(4.73)

(4.74)



ztt : rtt sill + ztcosï (4.'7 5)

r" =î -0 (4.'16)

ln the limit when ¿ and d a¡e infinitesimal, the net transformarion is

(4.77)

which is a displacement by aá along the z-axis. Expanding the corresponding
unita:y operators

e;t,t a/ Í¿ 
eiJ2e / ñ. e-i 

pr o I t e-iJ2 0 / h : 1 + * lÍ, e1) + . .- ft2L- '

^-¡p3ao/ñ _ t ìa06,-'- r'' -1 "'
yields

lt2,ell: -tne3

(4;78)

(4;7e)

(4.80)

The operator

Derivation of IKr.Pll : -ih Hlc2

"iP1 

afñ ric til u/ñ, 

"-iPt 
cL/ñ 

"-icK1r/ñ
cruresponds to the sequence of transfomations

(.r,,y,2,t) -- (r' ,y,z,t') -- (r",y,z,t') --, (r"'

where

(4.81)

,a, ",t") 
-- (x"'t,g, z,t")

(4.82)

(4.83)

(4.84)

r,t :1(x*ut)

, / ?),lf \¿':1(r+ , )\ c'/

ó3



(4.85)

(4.86)

(4.87)

(4.88)

In the limit when ¿ and u are infinitesimal, the net t¡ansfo¡mation is

(r,y, :,t) --- ( 
",y,.,1 - ry)\ c'l

(4.89)

which is a time translati on by uaf c2. Expanding the corresponding uniøry
0pertto.rs

"ir,i 
a/ft riclit tfñ. 

"_rpt 
af ñr_icA'tuf n:l +fflXt,¡t] +..

rtt :xt *a

¡ttt :1(r" -utt)

.. / . u,¿tl\,,,_r(., __7)

Í,,,, :I," _O

yields

^-¿]l uo lc2l¿ , , zuo Lr Ic - I - --;_rr -r'
c'n

lr1 , rll : -iñ.H lc2

(4.e0)

(4.91)

(4.92)

Comment

l. Comparison with the Galilei Algebrâ

Regarding the corresponding expression (2.1i) in the Galilei Algebra, in the

limit when c is infiniæ th. net transformation (4.89) is

(r, y, z,t) --+ (n, y, z,t) (4.93\



which is the identity transformation. Expanding the corresponding unitary

operators yields

It<l ,et) : -ir¿nt (4.e4)

wheLe n¿ is a phase constant.

It is not possible to eliminate the phase constant m in the Gaiilei Algebra
using the Jacobi identity or by redefining the Galilei generatols to include rn.

Derivation of I lil , Hl : -iñ. P1

The operator

,iEr/h"icKru/ñ."_iEr/ñ"_icl{tt/ñ Ø.g5)

colr'esponds to the sequence of transformation.s

(r:.y.:,1) -- (r',y,2,t,') -- (r' ,y,z,t't) -- (r.",y,z,t"') --. (2",y,z,t"'t)
(4.e6)

where
¡t :1þ ! ut) Ø.97)

, / ?),r\r'=i(t+¡) (4.e8)

ttt :tt-r (4.99)

(4. 100)

(4. i 01)

(4.102)

x't :1(rt - uttt)

,,,:r(r,_i)
, tl , ¡ ,T :T +T



In the limit when ¿' and r a¡e infinitesimal, the net transformation is

(4. 103)

which is a displacement by ur along the ¿-axis. Expanding the corresponding

unltary operators

"iHrf 
í 

"icrtu/ñ. "_iE 
r /h._icr(tulñ. : I + #lI{1 ,H) + ..

yields

-iPrurlñ, . zDT ra7e " 'i ':t- . r'1...
fL

lxt , n) -- -;nr|

Derivation of ll(t,K2l : -¡h J3 lc2

(4.t04)

(4.10s)

(4.106)

The operator

.icli2rzf lt"icKturf ñ..-rc1{2uzf ft 

"-ícKtuf 
lt Ø.I0,7)

corrcsponds to the sequence of transformations

(r.y.:,t) -+ (r',y,z,tt) -- (,r' ,y',2,t") -- (r'".,y',2,t"') -- (x",y" ,2,t"")
(4. 108)

where
xt - y(x * u1t) (4.109)

,, - ^. /+ -' ulr\ 
(4. I l0)L - t\ \L -f --î |\ (:' /

y' : tz(a-t uzt') (4.111)

,,t l,t u2U\
t" :12\t'+ ]) (4.112)

¡" : y(x' - ufi") (4.113)



/ "..-r\
t"' : TI ttt - 

u|: 
I

\ c" ,/

/ L'l\A :72\A - u2r )

,r, l' ,,,, u2Yl \r : -t21, _ 
^2 l\c./

(4.r14)

(4.1 15)

(4.1i6)

(4.r20)

(4.12r)

ln the limit when zr1 and tr2 infinitesimal, the net transfomation is

(r.y.:.i ) - ('* ff.0 +lf .,.t) ø.t17)

which is a rotation by

u1u2fr2 (4.1 t s)

about the 3-axis. Expanding the corresponding unitary operators

,ícti2 tL= f ñ.r.icrt't ut /k r-icK2uz /hr-ich') q lù, _ I + rylF , ttr) + . . . (4.11g)
FL: t

.-tJ'utü2fc-h - 1 ?Ù1D2 ßL...' c2 fi, " '

lx1 , x'zl : -irlJs l¿

Comment

l. Comparison with the Galilei Algebra

Regarding the corresponding expression (2.12) in the Galilei Algebra, in the
limit when ¿ is infinite the net trânsformation (4.117) is

(x,E,z,t) ---; (r,y, z,t) (4.122)

yields



which is the identity transfomation. Expanding the conesponding unitary

operators yields

lxl , x2l : tt, (4.t23)

whele ó12 is a phase constant. This phase constant may be shown to vanish

using the Jacobi identity.



Chapter 5 SPACE INVERSION
AND TIME REVERSAL

In this chapær we extend the set of t¡ansformations of apparatuses considered
in Chapter 3 to include space inversion and time reversal.

The space inversion t¡ansformation corresponds to viewing the preparation and
measurement processes in a mi¡ror. The time reversal transformation corresponds
to viewing a motion picture ofthe preparation and measurement process in ¡everse.
ln this chapter we explore consequences of assuming that Lorentz inva¡iant
systems a-re also space inversion inva¡iant a¡d time reversa-l inva¡iant.

Unlike the Poinca¡e transformations (3.24) fo (3.27), rhe space inversion and

time revelsal tlansfomations cannot be cha¡acterized by continuous transforma-
tions frclm the identity. A consequence is that the time reversal operator is ân
antilinear antiunitary ope¡ator.

Space inversion is discussed in Section 5.1 and time reversal is discussed in
Section 5.2. Some derivations a¡e siven in Section 5.3.

5.1 Space inversion

The space inversion transformation is the following transformation of space
time points

on a prepamtion or measurement apparatus.

(i,t) .- (i,t,) : t-;,rl (s.t)
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The original preparation app¿üatus prepares | ú > and space-inveræd prepa-

ration appa¡atus prepares I ,þ¿,,, >. The original measuring apparatus measures

A and the space-inverted measuring apparatus measures A¡,,,.

A physical system is space-inversion inva¡iant if the same average is obtailed
i'o¡ the results of measurements of every observable of the system in every state

of the system when the space-inversion transformation is carried out on both the

prepalation apparatus and the measuring apparatus.

That is, a physical system is space-inversion inva¡iant if

'1 ttjt,,o I A;,,, l rP¡r,, >=< 1b I A I tþ > (s.2)

lol every obselvable ,4 and every state I ty' > of the system.

(5.2) holds if

where P is the operator on the Hilbert space which corresponds to (5.i). Since

the product of successive space inversions leaves apparatuses unchanged

P2:) (s.6)

I tþ;,', >: P I tþ >

A;uo -- P API

PPI:PlP:1

(5.3)

(s.4)

(s.5)
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PI:P (5.7)

P is either a linear unitar1 operator or an antilinear antiunit y operator.

Parity

The eigenvalues of P are J:l. Eigenvectors of P belonging to eigenvalue a1
a¡e said to have positive parity; eigenvectors of P belonging to eigenvalue -1
ale said to have negative parity.

Parity projectors

We define parity projectors Pa by

P-,:1tt+Pl-2' (s.tì)

P++P-:1

(P+)' : P+

PlPa : S

(s.e)

(s.10)

(s.1 1)



Comments

l. Positive and negative parify components of a state

It follows from (5.9) to (5.11) that a state I tþ > may be wriúen as

lrl,>:lrþ+ > + l?y'* > (5.12)

lrþ+>: P+ Iy', > (5. r 3)

| ,/r+ > are eigenvectors of P belonging to eigenvalues f1.

| y'+ > and I r/- > are, repecúvely, the positive and negative parity
components of I r, >.

2. Observable invariant under space inversion

An observable,4 is invariant under space inve¡sion if

PAPi : A (5.14)

It follows f¡om (5.12) and (5.14) that

< ó+ I A l,þ- >:< þ- I A l,þ+ >:0 (s. r s)



for any states I ö > nd I ,þ >.

That is, a space-inversion inva¡iant observable does not couple states of
opposite parity.

Ttansformation of the unitary Poincare operators

Vy'e show in Section 5.3 that the evolution operator (3.24), displacement op-
erator (3.25), rotation operator (3.26) and Lorentz boost operator (3.27) tra¡sform
under space inversion as fbllows:

Transformation of the Poincare generators

We show in Section 5.3 that P is lirear and that the Poincare genel âtors

transform under space inversion as follows

Pr/(r)Pi : ¿i (t)

p ¡¡i ç"¡pI : Di (-")

PH(qPI : RiQ)

p Li þlp¡ : Li e")

(5.16)

(s.17)

(5. 18)

(s.19)
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PHPT : H

p.Ëpt: -F

pjpt : i

ptip¡: -ti

(s.20)

(s.21)

(5.22)

lJ.t5)

provided H and - H have different spectra. (Most Hamiltonians of interest satisify
this proviso; it holds if the spectrum of l/ is bounded below and but above.)

Comments

Conservation of parity

(5.20) states that the Hamiltonian is invariant under space inversion: parity
is eonse¡ved.

2. Vectors and pseudovectors

In view of the signs of the right sides of (5.21) to (5.23), F and I7 ffansform
under space inversion iike vecto¡s and ./ transforms like a pseudovector.

Space-inverted state I ,/,¿"oft) >

We recall that the original preparation apparatus prepares | ?y' > and the

space-inverled apparatus prepares l rþ¿nu >. These are two different states of the
system. They a¡e related according to (5.3).



The states evolve under the influence of the Hamiltonian 11 and at time i a¡e

I ,þ(t) >: U (t) l'þ >

I ,1,¡,*(t) >: U (t) I tþ¿,,, >

(5.24)

(s.2s)

where I/(f) is the evolution operator (3.24).

It follows using (5.16) that

14,¡*(t) >: P I ,/'(l) > (s.26)

(5.26) says that the space-invened state at time ¿ is obtained by performing
the space invelsion operation on the originally prepared state at time ¿.

5.2 Time reversal

The time ¡eversal üansformation is the following ransformation

(r,f)-- (;,,t):ra,-a (s.27)

of space-time points on a preparation or measurement apparatus.

The original preparation apparatus prepares I ú > and the time-¡eversed
preparation apparatus prepffes I ,þr"o >. The original measuring apparatus
measures ,4 and the time-reversed measuring appatatus measures ,4"",.



A physical system is time-¡eve¡sal inva¡iant if the same average is obtained
for the results of measurements of every observable of tlle system in every state

of the system when the time-¡eversal transformation is ca¡¡ied out on both the
preparation apparatus and the measuring apparatus.

That is, a physical system is time-¡eversal invariant if

1 úr"u I Ar", l rþrru >:< tþ | A I tþ > (5.28)

fÌrr every clbservable A and every state | / > of the system

(5.28) holds if

where T is the operator on the Hilbert space which corresponds to (5.27). Since
the product of successive time reversals leaves apparatuses unchanged

T2:1 (s.32)

I tþ,", >: T I ,l: >

A,",:TATT

11t:1i1 :1

(s.29)

(s.30)

(s.3 i)
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TI :T (5.33)

T is either a linea¡ unitary operator o¡ an antilinea¡ a¡tiunitary operator.

Tiansformation of the unitary Poincare operators

We show in Section 5.3 that the evolution operator (3.24), displacement op-
erat<tr (3.25), rotation operator (3.26) and Lorentz boost operator (3.27) transform
under time reversal as follows

Tiansformation of the Poincare generators

We show in Section 5.3 that T is antilinea¡ and that the Poinca¡e generators
transform under time reve¡sal as follows

T¿/(¿)Tr : U(-t)

t ni 6¡rr : Dr (a)

1¿riB¡1t : R! (0)

rtilu¡tt : Lieu)

(s.34)

(5.35)

(5.36)

(s.37)



1¡ L/'¡.I 
- 

IJ

rFrt: -F

t¡\+ : -t-

lrftr¡ : R

(5.38)

(s.3e)

(s.40)

(5.41)

provided H and -H have different spectra.

Comments

l. Invariance under time reversal

(5.38) states that the Hamiltonian is invariant under time reversal

2. Motion reversaì operator

In view of (5.39) T is also ca.lled the motion reversal operator.

Time-reversed state I (,r*(t) >

We recall that the original preparation apparatus prelares I ú > and the time-
reversed preparation apparatus prepares l rþ,"o ). These a¡e two different states

of the system. They are related according to (5.29).



The states evolve under the influence of the Hamiltonian ¡1 ard at time ¿ a¡e

1,þø >: u(t) ltþ >

l rl',",(t) >: Ir(t) l4',", >

(s.42)

(s.43)

where I/(l) is the evolution operator (3.24)

It follows using (5.16) and (5.34) that

l rþ,",(t) >: T I t/(-¿) > (s.44)

Comments

I . Time-reversed state at time I

(5.44) says that the time-reversed state at time ¿ by obtained by performing
the úme reversal operadon on the originally prepared state at time -¿.

2. Meanins of I d,'(-l) >

It is necessary to clarify the meaning of I ri (-t) >. l rþ(t) > has evolved
from the state I I > prepared at time zero. It can a.lso be regarded, howeve¡,
as having evolved under the inffuence of 1/ from a state prepared at an earlier
time, and, in particular, from ll(-f) >.



5.3 Some derivations

Derivation of (5.16)

The left side of (5.16) corresponds to a space inve¡sion foilowed by a time
translation by f followed by another space inversion. That is, it corresponds
to the following sequence of spacetime transformations:

(ri, r) --+ (-d, r) --+ (-É,, - t) ---> (i,r - t) (s.45)

The resultant transfomation is a time translaúon by f, as given by the right side
of (5.16).

Derivation of (5.17)

The lefì side of (5.17) corresponds to a space inversion followed by a space
displacement by a along the j-axis followed by another space inversion. That is,
it coresponds to the following sequence of spacetime transformations:

(t, ¿) -- (-i,t) -t (-i + aùr,t) --+ (i - aú¡,t) (s.46)

The resultant transformation is a space displacement by -a along the j-axis, as

given by the dght side of (5.17).

Derivation of (5.1E)

The left side of (5.18) corresponds to a space inversion followed by a rotation
by d about the j-axis followed by another space inversion. That is, for j :1it
corrcsponds to the following sequence of spacetime transformations:

(:r,y,z,t) -- (r' ,y' ,z',t') -- (x",y",2" ,t") - (""',a"',""' ,t"') (5.4':-)

where

(x' ,y',2' ,,t') : (-r,-y,-z,t) (s.48)

(,t",y",.".,t") : (x' ,y' cosl ! zt sinl,-yt si 0 ¡ z'cos|,t') (5.49)
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('"' 
'a"' ''"''t"') : (-'" '-Yt"-2" 't") :

(s.s0)

: (2, y cos 0 J z sin 0, -y sin 0 ¡ z cos 0,t)
The resultant transformation is a rotation by 0 about the l-axis, as given by the
right side of (5.18).

Derivation of (5.19)

The lefi side of (5.19) corresponds to a space inve¡sion followed by a boost by
l along the j-axis followed by another space inversion. That is, for j : I it
conesponds to the following sequence of spacetime transformations:

(.r',u.;,1) -- (r'.yi.--l,t') --. (r",y".,z",tt') - (r"' ,y"' , r"' ,t"') (5.51)

where
(,r' .g',:'.tt) = 1-r,-y.-:.t)

1.rr' . r" ,:" ,ttt): (, ,r' + ut'), u' . , ,. (, - 4))
/ tlt lll t, t\ t u n,D\(/ .y ._- ,7 /: t-r" ,*y .-: ./ J =

: (rt" - ut).y.:.rl¿ - ï))\ \ c',/,/
The resultant tlansformation is a boost by -o along the 1-axis, as given by the
light sìde of (5. 19).

Proof that P is linear

(s.s2)

(s.53)

(5.s4)

(s.s5)

(s.s6)

Since

P¿/(¿)Pl - Pe-iHr/r''P+ -- e-PiuPtr/h

it fol.lows ihat (5.16) ca¡ be written as

-PiE Pt t /k -iHtll¿e ' :e

8I



The¡efore

if I' is linea¡ and

PHPT _ H

PHPT : _H

l5 5?l

(s.58)

if P is antilinea¡.

Now P-HPI and H have the same spectra so (5.58) cannot hold if fl and -I1
have different spectra. P must therefore be linear.

Derivation of (5.21) to (5.23)

(5.21) to (5.23) follow from (5.17) to (5.19).

Applying P . ..PÌ to both sides of the Poinca¡e Algebra (2 1) to (2.9) yields

consistent results, of course, when (5.20) to (5.23) are used.

Derivation of (5.34)

The left side of (5.34) corresponds to a time reversal followed by a time translation

by f followed by another time reversal. That is, it corresponds to the following

sequence ol' spacetime ransformations:

(,í, r) ---o (:c-, -r) -'+ (i., -, - t) --', (í 'r t t) 
(5'59)

The resultant transformation is a time t¡anslation by -f as given by the right

side of (5.34).

Derivation of (5.3Ð and (5.36)

(5.35) and (5.36) follow immediately since they involve space displacements and

rotations and these transformations are unaffected by (5.27)-



Derivation of (5.37)

The left side (5.37) corresponds to a time reversal followed by a Lorentz boost
by o followed by another time reversa.l. That is, for j : I it coresponds to the

following sequence of spacetime transformations:

(:r,g,z.,t) -- (r' ,y',2' ,,t') -- (r" ,y",2" ,t") - (r"',,a"' ,""',t"') (5.60)

where
(x' ,g' , t' ,t') : (x,,y, z,-t) (5.61)

çr'".g",:".t.") : ("rG' ¡ ut').g',:',t(t'*4)) 6.62)
\' \ c'.//

(tx"' ,y"' ,2"',t"') : (t" ry",z" r-t") :

/ / ur\\ (5'63)

: (l(r - r,r).e.--.t\¿ - ¿))
The resultant transformation is a Lorentz boost by -tr, as given by the right side

of (5.37).

Proof that T is antilinear

Since

T¿l(¿)Tl :Te-iEI/r¿Tl : e-Tiv'lttlb 6.64)

it lì'llrws that (5.34) can be written as

e_T;ETtilñ : eiqilñ (5.65)

Therefore
THTi -- -H (s.66)

if T is linear and

THTI _ H 6.67)

if T is antilinear.
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Now TI1Tt and ll have the same spectra so (5.66) cannot hold if 11 and -H
have diffe¡ent spectra. T must therefore be antilinear.

Derivation of (5.39) to (5.41)

(5.39) to (5.4i) follow from (5.35) ro (5.37).

Applying T...Tf to both sides of the Poincare Algebra (2.1) to (2.9) yields
cor.rsistent results, of course, when (5.38) to (5.41) a¡e used.



Chapter 6 CENTRE OF MASS POSITION AND
INTERNAL ANGULAR MOMENTUM

In this chapær we define ope¡ators fo¡ the cent¡e of mass position and intemal
angulal momentum of a Lo¡entz invariant physical system. These operators a_re

defined in terms of the Poincare generators for the system. The motivation for
defining cente of mass position and intemal angular momentum comes from
experience in classical mechanics and in nonrelativistic quartim mechanics whe¡e
it has been found useful to separate the motion of a system into motion of the
cenú'e of mass and motion of the system relative to the centre of mass. We carry
()ut the same separation for relativistic quantum mechanics.

Conditions on the centre of mass position and intemal angular momentum a¡e
given in Section 6.1 and definitions are given in Section 6.2. The helìcity of a
system is defrned in Section 6.3 and some Poincare transfomations are given in
Section ó.4. Some derivations are given i¡ Section 6.5.

6.1 Conditions and commutation relat¡ons

Centre of mass position i and internal angular momentum ,4 of a system
u'e defined in terms of the Poincare generators for the system in orde¡ that the
requilements listed below a¡e satisfied.

1. Heisenberg's Uncertainty Relation

It is required that Heisenberg's Uncenainry Relation holds fo¡ centre of mass
motion:

(6.1)
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2. Centre of mass velocity

We show in Section 6.5 that the centre of mass velocity ü of the system is
defined as

f - I
¡nv: lX,HlLI

(6.2)

It is required that (6.2) yields

It follows from (6.3) that

X(t): Y ¡Y¡ (6.4)

wtrere Îit) is the centre of mass position in the Heisenberg picture.

3. Orbital angular momentum

It is required that the total angular momentum ./of the system can be written
AS

J:L+S (6.s)

ü:"tF'H (6.3)



L--XxP (6.6)

I is the o¡bita1 angular momentum of the centre of mass of the system.

4. Constant of the motion

It is required that ,9 be a constant of the motion.

5. Compatibility

It is required that Îi and Î1 ,9i and 1À, and ,îi an¿ .âÀ be compatible.

Commutation relations

(6.1) and the compatibility conditions hold if

[*,,*r] : o

lîi,rll-_ m,n

(6;7)

(6.8)

fo,*'] : o

lS,,r^] 
: o

(6.e)

(6.10)



lti,lk): ir,,¡t"t¡I

fr,,3-] : ir,,¡xrgt

(6.11)

(6.12)

It follows from (2.3) and (2.5) that

and

lîj,ît): ik,¡r,tît

[,ç,'3*] 
: iñ.,¡xtgl

[i,, S^] : o

(6.13)

(6.14)

(6.15)

.Ç is r constant of the motion if

lñ,'] 
:' (6. l6)

6.2 Definitions

.a^
Centre of mass position X and internal angular momentum ,5 of a system a-re

defined i¡ terms of the Poincare generators for the system as



: 12/1- -1\î: -;(;/i + ti;) - @TiaWF xvt lr,17)

4: #(+* - zi¡¿*,,) (6.18)

ø:Jar:!''rz¿*7424 (6.1e)

where M is the invariant mass (4.14) and WP is the Pauli-Lubanski four-vector
(4. I ó).

Comments

1. Satisfying the requirements

-X and 5 given by (6.17) and (6.18) satisfy (6.3), (6.5) and (6.j) to (6.16).

2. Pryce-Newton-Wigner position operator

(6.17) is the Pryce-Newton-Wigner position operator.

(6.17) was derived by M.H.L. Pryce (1935) a¡d re-invented by T.D. Newton
and E.P. Wigner (1948).



3. Lorentz booster

(6.17) and (6.18) can be solved fo¡ ./ and Í to yield (6.5) and

4. Lorentz invariant

It follows on calcuìation that

tr¡,'.t\' : _(Mc)' ,s . ,5 (6.21)

That is, ,9. 3 is a Lorentz invariant.

-5. Single-particle system

We show in QLB: Some k¡rentz Invariant Systems that for â single relativisúc

particle with spin .s

where -f and ,54 a¡e the position and spin of the particle.
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X_X

cr_ ('

(6.22)

(6.23)



6. Galilei booster

The Galilei booster Í6 for a non¡elativistic system of n particles with ¡est
mASSeS ??¿t, tìi2! ..., rrz,, iS

r?G: -fn'"i* (6.24)

wherc X1,X2,..., X,, are the position operators fo¡ the individual particles.

7. Nonrelativistic li¡nit

We show in QI,R: Some Inrentz Invariant Systems that for a non¡elativistic
system of n. particles with rest masses ?r¿1) 7rz2) ...) 77¿r¿

-Ç : a f,,r^À=,-,'
?-n ¿--r

1L

s: t,5'"

(6.2s)

(6.26)

where X1 , X2, ..., X,, and 51,,92,...,Su are the position and spin operators
for the individual particles.

9t

tr, : i rr,, (6.27)



6.3 Helicity

Helicity Â of a physical system is defined as

It follows on calculation that

^ 
= 
j:!-
\/P.P

(6.28)

[^,H] :0

[,t'F] 
: o

l,t'"'-l 
: o

l^ 1'-i = irzMc\PS - ltP )

(6.2e)

(6.30)

(6.31)

6.32)

/-=-=
whele P = \/ I'.f'.

Comments

1. Invariances

It follows from (6.29) to (6.32) that 
^ 

is inva¡iant under time tr¿nslations,

displacements and rotations and is not invaria¡t under Lorentz boosts except

for systems with M :0. Such systems a¡e discussed in the following topic.



2. Eigenvalues for a single-particle system

For a single-particle system with spin s, .4 is the projection of the intrinsic
spin of the particle along the direction of the momentum of the particie.

The eigenvalues of Â a¡e,\ñ where À : srs - 1, ..,-s.

Values of helicity and the general state of a single-particle system

The general state of a single-particle sysæm with spin s and nonzero rest mass

is a linea¡ combination of states with helicity )ñ. where ) : .s,.s - l, . . ., -...

The above statement is not true for a single-particle system with spin s and
zelo rest mass as shoìvn in the following topic.

Lorentz invariance for a system with ill - 0

It lollows ftom (6.29) fo (6.32) that A commutes with all Poinca¡e genemtors
fbr a system with ,44 : 0. That is, ,A is a Lo¡entz inva¡iant for a sysûem with
l,l : 0. A system with M : 0 may be labelled by a unique value of helicity.

Second proof

The Lorentz inva¡ia¡ce of ,{ for a system with M
conside¡ation of the Pauli-Lubanski four-vector (4.16).

that

wo:Ê.F: ¡vp

and, when luI : 0, (6. 18) yields

-W0W: PP:AP
where we have taken

H : E:Juz: p.

= 0 follows also from
It follows using (6.28)

(6.33)

(6.34)

(6.35)
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It therefo¡e follows that

W! : /\PP (6.36)

(6.3ó) shows expiicitly that 
^ 

is a LorenÍz invariant.

t.

Comments

Pseudoscalar

We show in Section 6.4 that 
^ 

changes sign under space inversion.

Â is a pseudoscalar.

System which does not conserve parity

The general state of a single-particle system with spin s and zero rest mass

which is described by a Hamiltonian which is not inva¡iant under space

inversion is a state with helicity lñ. where either À: s or À: -s.

Neutrinos and antineutrinos are examples of such particles (s : {). Every

neut¡ino state is an eigenstate of helicity with À : -j; eveV antineutri¡o

state is an eigenstate of helicity with À : ]. ttris point is discussed again in

QLR: Relativistic Quantwn Field Theory when a quantum field description of
a Lorentz inv¡¡iant system of free neutrinos and antineutrinos is described.

System which conserves pâr¡ty

The general state of a single-particle system with spin -s and zero rest mass

which is described by a Hamiltonian which is inva¡ia¡t under space Ílversion
is a linear combination of states with helicity lñ where À = s or ) : -s.

3.



A photon is such a particle (s: 1). This point is discussed again ín eLB:
Relativistic Quantum Field Theory when a qi.rantum field description of a
Lorentz invaria¡t sysrem of free photons is described.

6,4 Space-time transformat¡ons

In tlris section we record some space-time t¡ansformations of i , ü , 3 and
1 and we give firther properties of the space-inverted state l rÞ;",1t¡ > and the
time-reversed state I ?¿"",(l) > defined .in Chapær 5.

Einstein addition of velocities

It follows from (6.3) and from (3.75) to (3.78) that

Interpretation

The left sides of (6.31) and (6.38) are the components of the centre of mass
velocity as measured in an inertial f¡ame boosted with speed u along the j-axis.

(6.37) and (6.38) a¡e the quantal versions of the Einstein addition of velocities
formulae.

V) _u
Lt( u\Vr DÎ( u\

| _ Vjulc2

¡¡L t -
Lr\IJVILjiW)= = 

u,/,',, (j| _V¡ulc +k)

(o.J / )

(6.38)
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r,1 1u1,î1 rl 6¡ : Iu' * *{0,, J#ø}

111u¡îi Dtlu¡: tj +*.{t', J#'} u :2,r)

(6.3e)

(6.40)

Lorentz boost of position

It follows from (6.17) that

when ,î : 0.

Interpretation

(6.39) and (6.40) appea¡ at first sight to be quite unfamilia¡. Monahan (1995)

sìrows how in the Heisenberg picture (6.39) and (6.40) correspond to the familiar
cl¿ssical resulLs.

rrVigner rotation

The internal angular momentum ,9 changes unde¡ a Lo¡entz boost because 3i
depends on 1{j. It follows f¡om (6.18) that

ûçu)îr,itçu¡:ã,o"0w +Q_ costry)(iV S)f *si'dryñ ' ã to.¿r)
\,/



^-+ ixP' lixÞl

g¡.:2tan-tl l¡'¡l \
\{Ë+M"r¡.otn5-"i.F)

(6-42)

(6.43)

whe¡e

Comments

l. lnterpretation

(6.41) describes a rorarion of ,õ ty angle \¡at about a¡ axis ,ñ which is
perpendicular to ,9 and the boost di¡ection i This rotation is called a Wisner
lotation.

2. Galilei invariant systems

The Wigner rotation is a purcly ¡elativistic phenomenon. There is no Wigner
rota¿ion in Galilei inva¡iant systems because the Ga_lilei booster Rc 6.2+),:
commutes with ,ç.

Space inversion and time reversal

The transformations of i, i, É anA.{ under space inversion p and time
leversal T follow from the deflnitions (6.3), (6.17) and (6.1g) and from the
transformation equarions (5.20) to (5.23) and (5.38) to (5.41) for the poincare
gsne¡ators.



For space inversion,

Fclr time reversal,

rir¡ : fr

riT' : -ú

T,çTT : _,5'

TATT: A

(6.48)

(6.49)

(6.s0)

(6.s 1)

Pseudoscalar; pseudovector

:.
Â changes sign under space inversion and 5 does not; t\ is a pseudoscalar

and ,9 is a pseudovector.

PÎPt: -Î

PiP¡ : -û

P,9Pr : ,9

P^Pt : -A

(6.44)

(6.4s)

(6.46)

(6.47)



Averapes in the states I tb ,".".( t\ > and I tb --".( Í.\ >

We recall from Chapter 5 that I tþ¿,,,(t) > and | 1þ,",(t) > are states which
have evolved under the Hamiltonian 11 from states prepared ât time zero by space-

invefted and time-¡eversed preparation appâratuses, respectively. | ú(¿) > h*
evolved under l1 f¡om the state prepared at time zero by the original preparation

appafatu s.

It follows using (5.26) that

It follows using (5.44) that

(6.s2)

(6.s3)

(6.s4)

(6.s5)



Commenfs

l. Averages in the state I rl;,,,, (f ) >

The average centre of mass position and velocity both have opposiæ signs
for the states I ,Þ;,",(t¡ > and I t/(t) >.

The average intemal angular momentum has the same sign for the states

I ,l,a*,(t) > and I t/(t) >.

2. Averases in the state I 1b".",(t\ >

The average centre of mass velocity and intemal angular momentum both
have opposite signs for the states l rb,",(.t¡ > and I r/(-f) >.

The average centl'e of mass position has the same sign for the states

I ,¡..,,(f) > and | ,þ(-t) >.

6.5 Some derivations

Derivation of (6.2) and (6.3)

The cenúe of mass velocity is the time rate of change of the cent¡e of mass
position. That is,

- ,:l =v(ì) -- +x(1) (6.60)
dt

The operators in (6.60) are in the Heisenberg picture. They are related to

Schrodinger picture operators Î and ü according to

î 1t¡ : gt çt¡i1r (t) = eiHtlk i e-iÛtlh (6.61)

i (Ð : ut ft)û t¡ (t) : eiul/ ñ'ú e-¿Ht/r'

r00

(6.62)



Crnying out the differenriarion on rhe righr side of (6.60) yields

u ' ,): !",r,tol¡¡,rt]"-,r,to (ó.63)a*tnLr
and comparison with (6.62) yields (6.2).

Evaluating the right side of (6.2) using (6.17) yields (6.3).



Appendix: Some Matrices

Rotation matrices

Rotrtion matrices r1 ç01.12101,r'31d) are defined as

That is,

,t"t(0): <5o¡cosá ¡ 6¡"6¡(I - cosd) * e ¡oasinî (4.4)

(A.l) to (4.3) are involved in coo¡dinate tra¡sformations under rotations'

r'2irl) and 
"3(.7) 

are identical to M(þ) and M(1), respectively, on page 65, Rose

( l s57).
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(å *,:rs)

(,ï, : .ï')

(iî1í, ïl i)

,1 çe¡ :

,21e1 :

,3 ço¡ :

(4.1)

(A.2)

(4.3)



Lorentz transformation matrices

Lorentz tlansformation matrices l1(u).,12 (u), /3(z) are defined as

Thrt is,

lrq,(u) : 6ø,

+ (6p0á"0 + aPra,r) i-rt u - t) - (drod", + ápráe¡o) sinh u

(A.8)

¡ labels the rows and ¡u labels the columns of /r(z).

(4.5) to (4.7) a¡e i¡volved in coordinate transformations under Lorentz boosts.

,,,,, : (,,,i'',

,',",: 
(-':,:',:

,',,,: (_.,i,:

- sinh zt 0

cosh z 0

01
00

0 -siuhz10
0 cosh z
00

0 0 - sinh'
10 0

01 0

0 0 coshz

i)

i)
,)

(4.5)

(A.6)

(A.7)



Pauli matrices

Pauli matrices or,os,oz ale defined as

It follows that

eoot : coslt a * ø' sinh ¿ (,{.15)

- _-1 _

_ _-2_

_-x

(lå)

(: ;')

(l 
-0, )

(A.e)

(A.i0)

(A.11)

oj ok : 6j* ¡ ie¡¡¡ot

(; a-)(a E):Ã Ê+¿a (Ã"È)

(a Ã)' : e' t fei.fil:o

(A.12)

(A.13)

(4.r4)



Dirac matrices

Dilac matrices crl , a2, a3, B satisfy

Dilac rcpresentation

Each element in the matrices on the right side of (4.19) and (A.20) is a 2 x 2

mttrix.

?-matrices

1-matrices .10,.11 
,-12,^13.,.15 are rclated to Dirac matrices at ,a2,a3, B by
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{"i,"k} :za¡r

\oj ,l¡j : o

(,{.r6)

(4.17)

(A.18)

" /oaJ:l
\o'

,l:(I' \0

",\0,/

0\
r)

(4.19)

(4.20)



-0 à| -l)

l:þaj

1t : ^r, : ó101t 12^13

(4.21)

(A.22)

(A-23)

Ir f'ollows that

{tP ,t'\ : 2eP'

{rt, r'} : o

(^.24)

(A.2s)

(ro)t = -(r,)': -(..,r)t: -(r,)': (rt)': I (A.26)

^,pl - ^,0 ^,p ^,0| -ltt

^.0i _ ^.0

-it _ _-i

(4.27)

(4.28)

(A.29)

(A.30)



Dirac representation

Weyl representation

(A.31)

(A.32)

(A.33)

lt o \
= \o ;)

(_:, i)
_ (o r\
- \r o)

'Ìo

^,J _

(4.34)

(A.3s)

(4.36)

/: (? å)

; I o ar\r':\_or o)

": 
(;' Î)



Chiral representation

Comments

I . Notation

Each element in the matrices on the right side of (4.31) to (4.39) is a 2 x 2

mùtrix.

2. Unitary transformations

Let

Ut:f--nirs-yo)- \/2

V+: U2+: +1t'to

(A.40)

(A.41)

o lo -1\') =t ^ I' \-1 u /
. I 0 oj\

^J-t Ir -\_dr 0)

. lt o\
'-\o -1)

(4.37)

(A.38)

(A.39)



Then

tl
I vJ : +^,5t0 : -v+ te.+lll

rt¡1ou! -- +15

(t¡1iu!: I
II¡1sIlt: a1o

II¿1510ltt: 1510

(4.44)

(4.4s)

(,{.46)

(4.4'1)

i/-, roVl : -'ro

v¡1ivl: I
v¡1svf : -.,s

V¿151ovf: 1s1o

(4.48)

(4.49)

(A'.s0)

(4.s1)

3. Dirac, Weyl and chiral representations



The Dirac, Weyl and chiral representations a¡e related as follows:

IJal!r,^.tl\: fl.r¡

uqþ,,¡t: ?år¡

v+t'*"rYf: ?Ír,r¡

(4.s2)

(A.s3)

(4.s4)
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