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Preface

The six voiumes of notes Quantum Leaps and Bounds (QIß) form the basis
of the introductory graduate quantum mechanics course I have given in the
Department of Physics at the Unive¡sity of British Columbia at various times
since 1973.

The six volumes of QLB are

. Introductory Topics'. a collection of miscelianeous topics in introductory
quantum mechanics

. Scattering Theory: rn introduction to the basic ideas of quantum scattering
theory by considering the scattering of a ¡elativistic spinless particle from a

fixed target

. Quanîum. Mechanics in Fock Sp¿c¿: an introduction to the second-quantization
description of nonrelativistic many-body systems

. Relativistic Quantum Mechanics: an introductìon to incorporating special
relativity in quantum mechanics

" Som.e Lorentz Invariant Systems: some examples of systems incorporating
special relativity in quantum mechanics

. Relativistíc Quantum Field Theory: an elementa¡y introduction to the relativis-
tic quantum field theory of spinless bosons, spin I fermions and antifermions
and to quantum electrodynamics, the ¡elativistic quantum field theory of elec-
trons, positrons and photons

pl.B assumes no familiarity with relativistic quantum mechanics. It does
assume that students have taken undergraduate courses in non¡elativistic quantum
mechanics which include discussion of the non¡elativistic Schrodinger equation
and the solutions of some standard problems (e.g., tire one-dimensional harmonic
oscillato¡ and the hydrogen atom) and perturbation theory and other approximation



methods.

QIB assumes aiso that students will take other graduate courses in condensed

matter physics, nuclear and particle physics a¡d relativistic quantum field theory.

Accordingly, our purpose n QLB is to introduce some basic ideas and formalism

and thereby give students sufÊcient background to read the many excellent texts

on these subjects.

I am happy to have this opportunity to thânk my friends and colleagues I.K.

Affleck, R. Barrie, B. Bergersen, M. Bloom, J. Feldmar, D.H. Heam, W.W. Hsieh,

R.I.G. Hughes, F.A. Kaempffer, A.H. Monahan, P.A. Kalyniak, R.H. La¡dau, E.L.

Lomon, W. Opechowski, M.H.L. Pryce, A. Raskin, P. Rastall, L. Rosen, G'W.

Semenofi L. Sobrino, F. Tabakin, A.W. Thomas, W.G. Un¡uh, E.W. Vogt, G.M.

Volkoff and N. Weiss for sharing their knowledge of quantum mechanics with me.

I also thank my wife, Henrietta, for suggesting the title for these volumes

crf note¡^. Quite correctly, she found my working ll.tle Elements of Intermediate

Quantum Mechanics a bore.
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Ghapter 1 INTRODUCTORY REMARKS

This volume of QLB conøins a collection of miscellaneous topics in intro-
ductory quantum mechanics. Our purpose he¡e is to deûne basic concepts and
illustrate notation used in ali volumes of QLB a¡d to give some simple examples
of introductory quantum mechanics.

Chapter 2 gives a brief overview of the language, mathematics and machin-
ery of quantum mechanics. Average and uncertainty and pictures of quantum
mechanics are discussed more fully in Chapters 3 and 4.

The density operator formalism is discussed in Chapter 5.

Spi-n states of a spin ] and 1 particle are given in Chapters 6 and 7,
fespectively, and the inte¡action of a particle with spin with a magnetic field
is discussed in Chapter 8.

The mathematical formalism for handling obse¡vables with continuous values
is discussed in Chapter 9 a¡d the application of this formalism to the special case

of a spinless particle confined to move in one dimension is given in Chapter 10.

Laddel operators a¡e defined and discussed in Chapter 11.

The Appendix contains mathematical preliminaries.

The volume concludes with lists of selected reference books, journal articles
and theses.





Chapter 2 OVERVIEW OF
QUANTUM MECHANICS

2.1 lntroductory remarks

We briefly review the language, mathematics and machinery of quartum
mechanics in this chapter.

The language of quantum mechanics is given in Section 2.2; the principies of
quantùm mechanics are given in Section 2.3; the principles of special relativity are
given in Section 2.4; the mathematics of quantum mechanics is given in Section
2.5 and the steps for setting up the machinery of quantum mEchanics are given
in Section 2.ó.

2.2 Language of Quantum Mechanics

4.

2.

3.

l. Quantum Mechanics is the description of matter and radiation in all its
details and in particular of the happenings on the atomic and subatomic
scales. Quantum mechanics deals with states and observables of physical
systems. Built into the machinery of quantum mechanics is the notion that
a measurement of an observable of a physical system in general disturbs the
system and changes its state.

A physical syster¿ is a system of physical objects which can be isolated from
the ¡est of the physical world.

A stafe of a physical system is the result of a series of physical manipulations
on the system. These manipulations are said to prepare a state of a system or
to plepare a system in a state. States are either pure or mixed.

A pure state of a physical system is chancteized by the existence of an
experiment which gives a result p¡edictable with certainty when performed



5.

on the system in that state. We generaliy use lowe¡ case Greek letters I ty' >,
I 4, >, I X >, etc., to denote pure states.

A mixed state of a physical system is characterized by the absence of any
experiment which gives a result predictable with certainty when performed
on the system in that state. Mixed states are generally easier to prepare than
pur:e states. We will nevertheless not dea_l with mixed st¿æs in most of plB;
unless stated otherwise all states refer¡ed to are pure states.l

An obsemable of a physical system is an aspect of the system which is
measu¡able. A measurement consists of the manipulation of apparatuses ard
the eventual reading or recording of a sca.le. We generally use upper case
Roman letters A, B, C, ¿/c., to denote observables.

Observables A an<l B of a physicat system are compatiblz or simultaneously
measurable if measurement of one subsequent to measutement of the othe¡
does not change the state of the system. That is, if a measurement of ,4 yields
a and a subsequent measurement of B yields b, then A and B are compatible
if a subsequent measurement of ,4 yields ø and a subsequent measurement
of B yields ô.

7.

2.3 Principles of Quantum Mechanics

1. Only probabilßtic statements about the results of a measurement on a physical
system can be made.

The probability that a system be in the state | ¡ > when it is known to be
in the state ] d) > is

1< x l,þ >l' (2.1)

Chapter 5 coDtains a geoeral description ¿¡d discussio¡ of mixed states. QLB: Scanerinï Theory
Chapter 3 coDtai¡s a descriptioú a¡d discussio¡ of mixed states iD scattering ther,rry.



The complex number' < X I ú > is the probabiliQ amplifude that the system
be in the state l¡ > when it is known to be in the state l/ >.

3. If | ór >,1 ó, >.,-.. ,l 4,,, > a¡e all the possible outcomes of a measurement
of the state of a system, then fo¡ any states I X > ^d l rþ >,

*a
< x I tþ >: L. * I ót, >< fu l,þ >

À:l

(2.2)

(2.2) is the Principle of Superposition.

2.4 Principles of Special Relativity

1. The laws of physics are the same in all inertial f¡ames.

2. The speed of light in empty space always has the same value.

2.5 Mathematícs of Quantum Mechanics

1- A pure stúte of a physical system corresponds to a unit norm vector on a
separable Hilbert space. Unit vectors which diffe¡ only by a phase factor
describe the same stat€. We use the same symbol to denote both the state
and the coresponding vector.

2. A mixed stale of a physical system corresponds to a nonidempotent, unit trace,
nonnegative Hermitian operator (densiU operqtor) on a separable Hilbert
space. A mixed state cannot be represented by a unit no¡m vector.

3. An observaltle of a physical system corresponds to a Hermifian operøtor
on a separable Hilbert space. We use the same symboi to denote both the
observable and the corresponding Hermitian operator.



4. A measurement of the observable ,4 yields one of the spectral values a of
,4. Every spectral va.lue ø of ,4 is a possible result of a measurement of ,,4 if
a system is in a general stâte | ?¿ > prior to the measurment of ,4.

5. If a is an eigenvalue of A, the probability of obtaining the value ¿ on

measurement of ,4 for a system in the state | ú > is

I< ó" l,þ >l 2 (2.3)

where I q,o > is the eigenvector of ,4 belonging to eigenvalue ø.

The system is in the state | /o > immediately afte¡ the measurement of .4.

po > is an eigenstate of A.

A measurement in general disturbs a system such that it causes a change in
the state of the system. If a system is in an eigenstate I S" > before the

measurement of A, however, then measurement of ,4 yieids ¿ \'vith certainty

and the state of the system is not changed by the measurement.

6. If a is a continuous spectral valuet of '4, the probability of obtaining a value

in the lange (a,a I cla) on measurement of ,4 for a system in the state | ?y' >
is

| 4:@) | zrta (2.4)

where

,þ(") :< n l,þ > (2.s)

I obse¡vables witb conti¡ous spectra are discussed nore fully i.n Cbapter 9



and where I a > is the eigenket of ,4 corresponding to specüal value o. The
system is i¡ the st¿te

immediately after the measurement of ,4.

7. lf a measu¡ement of ,4 for a system in the state | / > is made a large number

of times (by which one means: fust prepare a system in the state I ry' >, then

measure ,4, then prepare the system in the state I tþ > agun, then measure

,4 again, and so onl), then

Ã :<,1, I A 1.,þ > n1\

ís the øverage of the results obtained.2

8. The uncertainty LA in the result of measurement of ,4 for a system in the

state I ú > is the root mean square deviation of .4. That is,3

4.A=
_a

< ,/' | (A -Ã)' l, > :ll (/ -Ã) l,þ ,ll (2.8)

' One does Dot always do iÎ this way iD p¡actice. Fo¡ exâmple, as discussed i¡ QLB: Scanering Theory,

for experimental efficiency in scatteri¡g experimeDts, one prepares a beam of identical particJes and

drects this beam at a target of identical pa¡ticles.
2 Average is discussed more fully i¡ Chapter 3.
I Uncertaiìt¡ is discussed mo¡e fully i¡ Chapter 3.

a*d,a

[¿.
.t

I " > ,þ(") Q.6)



Altematively,

LA: (2.e)

9. For a measurement of two observables ,4 a¡d B fo¡ a system in the ståt¡

I r¡ >, the uncertainties 4,4 and AB obey the uncertainq relntion

1_
rl.4ìr^Bì >:ltA.Bll'-2'', " (2.10)

where

ÍA, Bl: AB - BA (2.1t)

is rhe commutator of A a¡d B.t

i) ,4 and B are compatible obsemables if and only if

[,,4, B] : o (2.12)

The commutato¡ is therefore a basic mathematical entity in QM since it
displays which observables of a physical system are compatible.

I t2.10.¡ is derived iD Cbapter 3. It is sbown also how (2.10) leads to the time-energy uncertai¡ty relation



1l) | tþ ,¡ > is an optimum state of A and B if the equality in (2.10) holds.

| 1þ opt > satisfies the eigenvalue equationl

/A-Ã B-B-\
( o, + ¿ LB )l úoPt >:o (2.13)

where ,4 and B a¡e chosen such that

'^Ir,.,rl: il[A,Bll Q.14)

10. The physical content of quantum mechanics is unchanged if every state I ry' >
and every observable ,4 of a physical system are replaced by

I¡ l',þ >

TI AUI

(2.1s)

(2.t6)

where {,¡ is a linear unitary operator ot arì antilinear antiunit¿ry operator.
Each Li is thus said to provide a picture of quantum mechanics.2

Except where explicitly noted, we always use the Schroilinger pbture of
quantum mechanics, that is, the picture of quantum mechanics where the
states of the system change with time and observables which are not explicitly
time-dependent remain unchanged in time.

I 1Z.t:¡ is de¡ived i¡ Cbapter 3.
2 Pictu¡es of qualtum mechaûics a¡e discussed mo¡e flrlly i¡ Chapter 4.

ll



Tlte Heisenberg picture of quantum mechanics, whe¡e observables of the

system change with time ard states remain unchalged in time, will be used

occasionally. It will be clea¡ from the context when the Heisenberg picture

is being used.

2.6 Machinery of Quantum Mechanics

in or<ier to ciescribe a given physicai system using quanfuú mecharrics oüe

does the following:

1. Specify a set of funilamenlal ilynømical vøriablcs for the system. This is a
complete set of independent operators in terms of which all observables of
the system can be expressed.

2. Specify the fundamental algebra of the set of fundamental dynamical vari-

ables. This is a set of algebraic relations satisfied by the set of fundamental

dynamical variables.

3. Select t complete set of compaÍible obsemables for the system.

4. Specify the Hilbert space of the system through spectral resolution of the

complete set of compatible observables. Thus one constructs an orthonormal

basis for the space, each basis ket being a simuitaneous eigenvector or

simultaneous eigenket of all elements of the set of compatible observables.

5. For a Lorentz invariantr or Galilei invariant physical system, determine tJre

Poincøre generdtors or Galilei generators for the system in t€rrns of the

findamental dynamical variables. ln particular, determine the Hamikoniøn
tnd fhe evolution opetator for the system.

There are, unfortunately, no general rules for the accomplishment of these steps.

Lore¡tz i¡varia¡t systeEs a¡e discussed i¡ QIß: Relativistic Quantum Mechanrcs

t2



Chapter 3 AVERAGE AND UNCERTAINTY

3.1 lntroductory remarks

In this chapær we prove various statements about the average and uncertainty
of an observable which were stated without proof in Chapter 2. In particular, the
eigenvalue equation for the optimum state of two observables is derived and the
time-energy uncertainty relation is derived and discussed.

3.2 Average

It is stated in Chapter 2 that 1f a measu¡ement of an observable A for a

physical system in the state I ll > ls made a large number of times then the
auerage 7 of the results obtained is given by (2.J).

Verific¿tion of (2.7)

We verify that (2.7) holds for a physical system which can be described i¡ an
n -dimensional vector space. The verification for a physical system described in
an inflnite-dimensional separable Hilbert space is given in Chapter 9.

Central to the description and analysis of a system whose obsewables have
ùt most ?¿ values is:

The Eigenvalue Decomposition Theorem for Hermitian Operators

Every Hermitian ope¡ator ,4 defined on an r¿-dimensiona_l vector space can
be written in the form

13



A:Ðla¡>a¡<a¡l (3.1)

whe¡e

The real numbers a7, a2, . . 
) an are the eigenvalues of A belonging to the eigen-

vectors a1 ) ,1 a2 ) , " ' ,1 or, > of A.

(3.2) states that I a1 >,1 oz >,"' ,l ou > span the vector space.

The probabilìty P(a¡) of obtaining the value ¿rÀ on measurement of A for

rhe system in the state lú > is

P(a¡) : <,l'I ot ><akIú>-_ l<ot l,þ >12 (3.4)

It follows from (3.2) that

Ðp(oo) : t. rþl"t ><at lú>:<rþlrþ>:I (3.5)

À:ì l:1

t: Ë f ak><akl

latlar't:6rt,

(3.2)

(3.3)



tS required.

If measurement of ,.4 for the system in the st¿te I ry' > is made a large number
of times, the average 7 of the ¡esults obtained is

7:tdfrl<arl,þ>l 2

À:l

It follows from (3.1) and (3.6) that

(3.6)

n :Dq l< ot l,þ tl, : Ðon <,þ l o* >< ot l rþ >
À:1 È:1

(3.7)

_t_:< rb I >- I o* > ot < q l rþ >--< rþ I A l rþ >
À:1

which is (2.7).

3.3 Uncertainty

It is stated in Chapter 2 ihat for a measurement of two observables ,4 and

B for a physicaì systom in the state | þ >, the uncertainties 4,4 and AB obey
(2.10). This statement is proved below.

Proof of (2.10)

Ã:,q-À (3.8)

Let

15



Now
ÃE:+iÃ,Éi +iiÃ,El (310)

and 
lÃ.al:rt.Br (3.r1)
LI

SO

L.^-l I. ,,1Ãø lç.>= -.,, I tr.ø j lu> +¡<,:llA.Bll v > (3.12)

It follows from (2.8) and from Schwartz's inequality that

(^,4)(^B) :ll Ão ll lÉ,t tl
(3.e)

.ì> l. A,b l B,r >l:l< ,b I AB | 7b >l

Now
. ,l { À.¿} I ¿ > is a real number' (3. 13)- 't )'

and

< ',þ I lA, Bl l rþ > is an imaginary number (3.14)

.in.. 1,4. BÌ and t1,4. Bl are Hermitian.l.)

It follows f¡om (3.12) to (3.14) that

It,,ÀÈ rr,=;lG'l ti,B), r')'-(.pll.¿. sll,u>)2

1l
Z t . ,þ | tA. Bl I ,t'l: il lA. Bll

(3. l5)

(2.10) follows from (3.9) and (3.15).



3.4 Optimum state

I rft oo¡ ) is an optimum stâte of ,4 a¡d B when the equality in (2.10) holds.
That is,

1_(a.4)(^B)::ll,4,Bll' z' (3. 16)

when the system is in the stâte l rþ oo, >.

It is stated in Chapter 2 that I tþ oo7 > satisfies (2.i3). This srarement is
proved below.

Proof of (2.13)

It follows from the proof of (2.10) that (3.16) hoìds if a:rd only if

l) Ã,þ ll I E,þ | : l< Ã,t, I Ét >l ß.t'i)

and

.tl{Ã,g}lør:o (3.18)' t )"
whele À is defined by (3.8).

(3.17) holds if and only if

I É+ >: 
^ 

I Ã,þ > (3.1e)

where I is a constant, and substitution of (3.19) into (3.18) yields

() + )-) < Ãç 1 Ã,b >: o (3.20)



(3.20) holds if ) : il where r is real, substitution of which into (3.19) yields

Bl,þ>:irAlþ>
and

<rþlÉ:-n'<rl, lÃ
(2.13) follows from (3.21) a¡d (3.22).

Comments

I . Compatible observables

(3.19) and (3.20) hold also if
Al,þ>:o

nl,þr:o
and

(3.21)

(3.22)

(3.23)

(3.24)

(3.23) and (3.24) ue a special case of (2.13).

ln this case, | y', > is a simultaneous eigenvector of á and B nd A ar,dB
Ír-re the coÍesponding eigenvalues.

(3.23) tnd (3.24) hold when .4 a¡d B are compatible observables, that is,

when

[A,B):O (3.2s)

2. Optimum state of position and momentum

The coordinate-space wave function for the optimum state of position and

momentum of a particle with rest mass ¡¡¿ and spin s is a gaussian function.

This fact is demonstrated in Chapær 10 for a spinless particle confined to
move in one dimension.

l8



3.5 Time-energy uncertainty relation

We show that

çta¡çr."^,,,1r¡¡ 2|n (3.26)

where AE is the unce¡tainty in the energy of the system and Âf*¿,(l) is the
smallest time interval required at time ¿ to measu¡e a change in the system.

(3.26) is the time-energy uncertainty ¡elation.

Proof of (3.26)

The proof involves the uncertainty relation (2.10) and equation (4.7) for the
average.

Choosing B : H tn (2.10) and writing Afl : A.Ð, it foilows from (2.10)
ùnd (4.7) that

(^¿)(^,4) '-jut#l ß.21)

On defining Aúa(t) by

, dA(t) , LA
' dt ' LtA(t)

( LE\( Lt a(t\\ > lfl""-2

(3.27) becomes

(3.28)

(3.29)

l9



(3.29) holds for every observable ,4 of the system.

(3.26) follows from (3.29) where Al-;,,(f) be the minimum A.t a(t) for all, A.

Comments

1. The meaning of Al¡(l) and Âl-;",(l)

It follows from (3.28) that 
^¿1(¿) 

is the time interval required at time ¿ for
the average A of A t<t be changed by the uncerøinty AA of ,4.

Al¡(r) is the time interval required at time f to measure a change in 7.

,A1,,,¡,,(l) is the smallest time interval required at time I to measure a change

in the average value of some observable of the system.

4f,,,,,,(l) is the smallest time interval required at time ¿ to measure a change

in the system.

2. State whose energy is uncertain

It foilows from (3.26) that

i. if the system is in a state such that the uncertainty in the energy is Â8,
then it takes a time interval of at least

to measure a change in the system

lntrp2' (3.30)

20



ii. if it takes a time interual of at least Âl to measure a change in the system,
then the system is in a state such that the uncertainty in the energy is

lnt¿..'
2' (3.31)

3. Comparison with momentum-position uncertainty relations

As stated n QI,B: Relativístic Quantum Mechanics Chapær 6, Heisenberg's
Uncertainty Relation for centre of mass motion of a system is

(aî,)(rr-) ¿|ntio (3.32)

whe¡e -Î is the centre of mass position of the system and .ã is rctal momentum
of the system.

Given that H lc u'td P a¡e the components of the energy-momentum four-
vector, one is tempted to try to package (3.26) nd (3.32) into an equation
involving a space-time fou¡-vecto¡. As tempting as this is, it does not work
because of the asyrnmetry of position and time in quantum mechanics: Î,
like P and 11, is an operator and time is a parameter. This asymmetry is
reflected in the derivations of (3.26) and (3.32): the former requiring an
interpretation of Lt^i,,(t) and the latter following immediately from (2.10)

and the fundamental equation

lîi,rrl:,nd,n (3.33)

2l





Chapter 4 PICTURES OF
QUANTUM MECHANICS

tt l,þ >

UA(II

(4.1)

(4.2)

4.1 lntroductory remarks

'l-hê ñhr¡.i^ql ^^ñfañ+ ^f ^,rôñnrñ a¡¡ha-i¡c iô '.ñ^hô-ña¡ 
.if a.'an, o+o+a I '/' :

Yugrrlgrl1ùul¡w¡rgr6wu
and every observable ,4 of a physical system are replaced by

where L/ is a linear unitary operator or an antilinea¡ antiunitary operator. Each U
is thus said to provide a picture of quantum mechanics.

In thìs chapær we consider three pictures of quantum mechanics: the
Scluodinger picture, the Heisenberg picture and the interaction (or mixed) picture.

The Schrodinger pictuie is generally the eâsiest to conceptualize and wo¡k
with.

The Heisenberg picture is useful fo¡ defining observables (velocity, force,
torque) which a¡e time rates of change of other observables.

The interaction picture is useful when there is a natural separation of the
Hamiltonian for the system into a simple part and another part (the interaction)
which might not be simple.

Except where explicitly noted, the Schrodinger picture is always used in 0¿.8.



For simpiicity in this chapter, we only consider obseruables which do not

depend explicitly upon time.

4.2 Schrodinger picture

In the Schrodinger picture, a¡ observable of the system is constant in time

and a state of the system evolves in time according to

I ,¡(¿) >: u(t) 1,þ > (4.3)

I i,, > is the state of the systern at time zero, 1rþ(t) > is the state of the system

at tirne ¿ and

Il(t): e-iHt/fr' (4.4)

is the evolution operator for the system. 11 is the Hamiltonian for the system.

The average Zit) ot an observable ,4 for the system in the state I 
,r¿(¿) > is

Ã(t) :< ,þ(t) | A I 'l(¿) 
> (4.s)

It lbllcrws on differentiating (4.3) with respect to t that I þ(t) > saúsfies the

Sctu'odinger equation

ir,#1,þA) >: H lú(t) > (4.6)



lt follows on diffe¡entiating (4.5) with ¡espect ro I rhar 7(f) satisfies

,1 _
ih;A(t) = [A,H] (4;t)

4.3 Heisenberg p¡cture

In the Heisenberg picture, a state of the system is constant in time and an
observable of the system evolves in time according to

A(t) : rrt \t)Ar r lt ) (4.8)

It follows from (4.3), (4.5) and (4.8) that rhe average 71t) of ttre observable
,4(l) for the system in the state I t, > is

Ã(t) :< rþ | A(t) | ú > (4.9)

It f'ollows on differentiating (4.8) with rcspect to t that A(t) satisfies the
Heisenberg equation

.,lA(t)
dt lA(Ð,Hl (4.10)
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uþ): uoç¿¡¡¡r1¡¡

Uo(t) : e-;E"t/ñ'

(4.12)

(4.13)

4.4 lnteraction p¡cture

The inte¡action picture (or mixed picture) provides an alæmative to the

Schrodinger and Heisenberg pictures when the Hamiltonian 11 is written as

U - U^ ) ll-tt 
- 

tttt I ttl
(L l1\

The evolution operator (4.4) is writæn as

Stâtes and observables evolve in time in the interaction picture. A state

evolves ìn time according to

l',þ'(t) >: (h(t) | 1þ > (4.14)

An observable evolves in time according to

A'@ : ul(t)Auo(t) (4.1s)



The average A(¿) of the observable ,4/(t) for the system in the state I ,lr,(t) >

A(t) :< ,þt (Ð I At (t) I ,þ' (t) > (4.16)

| ,/'(l) > and,4'(f) satisfy

¿fr* t ,þ'Q) >: 1/í (¿) I ,þ' (t) > (4.17)

ikd{:Ð : I,q'þ), no) : u\þ)¡,q, H(rlrroþ) (4.18)

Proof of (4.14), (4.15), (4.1O and (4.1E)

(4.14), (4.15) and (4.16) follow on substituting (4.3) and (4.12) lr:rto (4.5):

,¿(t) :< ú(t) | A | þ(t) >

=. / {i rf All tt),r >:< lto\lll l.(t)d'1,4 l//0(/)1i(i )q., > (4.t9¡

:< (.tít)tþ | u¡(ùAu|(Ð | ut(t)ú >:< ,þ'(t) | At (Ð | út (t) >

(4.18) follows on differentiating (a.15) with respect to ¿.

Proof of (4.17)
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It follows from (4.4) and (4.13) that

,1.

ifl 
,ttu \tl 

: H U (t) ø.20\

,1.

if¿ (lttto!): HoUo\tJ @21)

and from (4.12) and (4.21) t}.at

¡n4t'tt) : ;n!-t'o1t7u,1t ¡dt dl

: ¿6drtlt) ¡rr1¿) + ihlrov\W (4.22)

: H ouoft)I] t (t) + ¡nu o(t){P
It fbllows from (4.11), (4.12), (4.20) and (4.22) thar

dI L (t\zrilroft):,f :@ _ Ho)uo(¿)¿/1(¿): H1U0(t)U1(t) (4.23)

fiom which

d.I l, tt\,u'+ = u[(Ðnrgo(t)rh(t) -_ Hl(t)r]lt) (4.24)

using (4.15). (4.17) foilows from (4.14) and (4.24).



Chapter 5 DENSITY OPERATORS

5.1 lntroductory remarks

., -. y**ntum mechanics 'tn QIts refers for the most pa::t

to purc states of a physical system, that is, to states which can be represented

mathematically by unit norm vectors in the Hilbert space for the system. This
is done merely for convenience in writing. It should be noted dlat pure states

u'e special states of a physical system: a pure state is characterized by the

existence of al experiment which gives a result predictable with certainty when
performed on the system in that state. For example, a pure spin state of a particle
can be produced by a Stern-Gerlach apparatus since a subsequent experiment
with a Stern-Gerlach apparatus can give a result predictable with ceftainty when
performed on a particle in one of the outgoing beams f¡om the filst apparatus.

Othe¡ states of a system (mixed states) can be prepared a¡d in some cases

are easier to plepare. A mixed state results f¡om an incomplete specification
of the state of the system by a preparation apparatus; it results from using an

inetlìcìent preparation apparatus. A mixed stâte is cha¡acterized by the absence

of any experiment which gives a result predictable with certainty when performed
on the system in that state. For example, a mixed spin state of a particle will
be produced by a "fuzzy" Stem-Gerlach apparatus, that is, by a Stem-Gerlach
apparatus which does not have a sufficiently strong magnetic fie1d gradient to
ploduce cleanly ssparated beams of outgoing particles. No experiment gives a

result predictable with certainty when performed on a stâte prepared by a fuzzy
Stem-Gedach apparatus. Mixed states of spin ] and spin 1 particles a¡e discussed
in Chapters 6 ¿nd '1 .

A mixed state is represented mathematically by a nonidempotent density
operâtor in the Hilben space for the physicai system. It cânnot be represented by
a single unit norm vector. Built into the nonidempotent density operator is a set

of probabilities which are characte¡ize the preparation apparatus.
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We describe the density operator formalism of quantum mechanics in this
chapter'. The formalism was originally developed by von Neumann in the i930's;
the standa¡d ¡eference is Fano (1957).

The density operato¡ for a pure state is defined in Section 5.2. It is defined
in terms of the state vector for the system.

The fnrrnql'icrn ¡levplnnp¡] in Q,.¡tin¡ { ? fnr nnr¡ cfâfÞc ic êytênr]ê¡l in Sentinn

5.3 to include mixed states. The extended formalism makes no ¡eference to the

state vector for the system.

The entropy of a stâte is defined in Section 5.4. Entropy is a numbe¡ which
characterizes the extent to which a staæ is mixed; it is a measure of the mixedness
of a state.

The density operator for a state with given average energy is given in Section
5.5. The density operator is expressed in terms of the temperature and the partition
finction. The density operâtor so defined is appropriate for describing a physical

system in thermodynamic equilibrium with its surroundings. The probabilities
which a¡e built into the density operato¡ are the Boltzmann factors.

Delivations of some resuits a¡e given in Section 5.6.

For simplicity throughout this chapter we consider a physicai system which
can be described in an r¿-dimensional vector space.

5.2 Density operator for a pure state

A pure state of a physical system may be represented mathematically by a

sin_gle unit norm vector in the Hilbert space for the physical system.

The density operator ú(l) for a pure state at time t is defined as

l0



ú(¿) :l ,i (r) >< ,¿(¿) 
|

(5.1)

whele | y'r(f) > is the state vector for the system at time I

. Proba-bilities and averages

We give expressions for probabilities and averages in terms of density oper-

atols. Proofs of these expressions are given in Section 5.6.

1. Probability of a state

The probability P(X,rþ,t) that a system be found in the state | ¡(t) > when
it is known to be in the state I l(t) > is

ï'Q,,þ,t): l< x(¿) 1.,þ(t) >12 (s.2)

(5.2) may be written equivalently as

r(1. v. t) :< \ (¿) | {/(/) | À(i ) > (s.3)

P(X, {,, ¿) : rr (x(r)ú(¿)) (s.4)



where X(f) :l x(¿) >< X(¿) | is the density operator corresponding to

i x(¿) >.

2. Probability of a value

The probability P(a¡.,tþ,t) of observing the va-lue ¿À on measurement of ,4
for the sysæm in the state I ,r/r(l) > is

P(a¡,$,t): i< ar I 'þ(t) >l' (s.s)

where ] c¡ > is the eigenvector of ,4 belonging to eigenvalue ø¡

(5.5) may be written equivalently as

P(a¡,\!,t):< ¿l I Ù(l) I ¿¡ > (s.6)

and as

P(a¡, ú,1) : Tr (,4À{i (f )) (5.7')

where.4¡ :l ¿¡ >< a¡ lis the density operator conesponding to lø¡ >.

3. Average

The average 7(t) of measurement of ,4 for the system in the state I t/(t) > is
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Ã(t) :< ,þ(t) I A I .,þ(t) > (s.8)

(5.8) may be written equivalently as

A(t) = r1(,4{/(r)) (s.e)

Comments

1. Mathematical representation of pure states

(5.4), (,5.7) and (5.9) express the physical content of quantum mecha¡ics.

(5.4), (5.7) and (5.9) show that the physical content of quantum mechanics
for pure states can be expressed entirely in terms of density operators.

Accordingly, a pure state of a physical system cor¡esponds mathematically to
a unit norm vector or, equivalently, to an idempotent density opemtor.

The mathematical properties of the density operator for â pure state are given
in 'loptc 5.2.2.

Properties of the pure state density operator

It foll,rws from definition (5.1) that
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l. qr(/) evolves in time according to

ìI,(¿) : U(f ){,(0)U1(r) (5.10)

where I/(f) : e-¿Etlr¿ is the evolution operator for the sysæm.

n. {/(f ) is Hermitian.

ùr(t1: E¡¿¡ (s. 1 1)

IIl. ü/(¿) has unit trace.

rr (v(t)) : t (s.12)

IV. {r(¿) is non-negative.

<dlv(¿)ld> > 0 (s. l3)

foralllþ>.

V. {, (¿) is idempotent.

q/'z(l) = \y(¿) (s.14)



5.3 Density operator for a mixed state

In this section we extend the density operator formalism developed in Section
5.2 for pure states to include mixed states of a physical system.

We assume that

The state of the system at time I can be described by a density operator \lr(l)
having Properties I to IV in Topic 5.2.2 and such that

l. the probability P(X, {/, ¿) that the system be found in rhe stare X(l) when
it is known to be in the state \lr(f) is given by (5.a);

2. the plobability P(ø¡, \lr, t) of observing the value ¿À on measurement of ,4
for the system in the state ù(l) is given by (5.7);

3. the average 7(t) of measurements of A for the system in the staæ !trr(l)
is given by (5.9).

Comments

l. A scheme for comparison of theory and experiment

The above provides a scheme for comparison of theory and experiment.

No reference is made to the state vector for the system.

2. Comparison with the formalism for pure states

Comparison with the formalism developed in Section 5.2 for pure states
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shows thatthe original definition (5.1) and Property V in Topic 5.2-2 have

been dropped; it is not required that ìI/(¿) be idempotent.

3. Mathematical implications

As show¡ in Section 5.6, it follows from Properties I to IV in Topic 5.2-2 that

,r,(¿) : Ë I ú¡(¿) > pt" <,þlG) 
I

(5.1s)

| úr(¿) >: ¿/(¿) | ,1,È(o) > (5. i 6)

r : Ë l,á¡(o)>< ú¡(o) |

< lt(0) I ú¡,(0) >: á¡¡,

(s.r'7)

(s. 18)

IL

\-r,,.: I/--) ' ^
À=1

0<pr.<i for all k=1,2,"',n

(5. 19)

(s.20)

4. Expressions for the probability and the average



Substitution of (5.15) into (5.7) a¡d (5.9) yields

P(a¡,ú,t): Ë o* È o, l ,þt (t) >l
À=l

2 6.21)

Á(t) : Ðp^<,/À(r) I A l,þ*(t) > (s.22)

5. Special case: idempotent density operator

It follows from (5.15) that (5.14) holds if and only if

pf;:p¡ for all k: I,2,.'-,n

That is,

p¡:0 or 1 fo¡ all k:L,2,.. .,n

The only solutions (5.24) satisfying (5.19) a¡e

P¡ : I fo¡ some fu

pj:0 fortil i+k
It follows from (5.15) and (5.25) that

(s.23)

(s.24)

(s.2s)

v(¿) :l '/(l) >< ?/(¿) i 6.26)

where we have written I ,r¿(f) >:l ,þ*(t) >.
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That is, the original definition (5.1) follows on requiring that Property V in
Topic 5.2.2 hold.

I tr(l) > is the staæ vector for the system.

6. Pure st¿te

ii tit(t) is idempotent, the system is saici to be in a pure state.

lf the system is in a pure state, it may be represented mathematically by a
single unit norm vector in the Hilbert space for the system.

7. Mixed state

If tlr(f) is not idempot€nt, the system is said to be in a mixed state.

If the system is in a mixed state, it cannot be represented mathematically by

a single unit norm vector in the Hilbert space for the system.

8. Eigenvalues of the density operator.

The eigenvalues h,p2,.'.,p,, of V(0) are interpreted as the probabilities for
preparing the system in the pure staæs I r/1(0) >,1 ,þz(0) >,.. , | ,rr,,(0) >
at time zel'o.

pl1p2,. . . tpn íìra specified by the characæristics of the preparation apparatus.

9. Average over incoherent states

(5.21) and (5.22) sometimes appear in applications without explicit mention
of the density operator or of a mixed state of a physical system.

In such applications, the summations in (5.21) nd (5.22), since they irvolve
probabilities and not probability amplitudes, are interpreted âs an average over
"incoherenf ' states I t/1(t) >,l rþz(t) >,'.. ,l rþ,"(t) > of the system.
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10. Results of measurements for a mixed state

We show in Section 5.6 that

P(a¡,ú,t) < 1 (s.2'7)

for every observed value a¡ of every observable ,4 for a sysæm in any mixed
state {r(l).

It follows from (5.27) that

No experiment gives a result predictable with certainty
when performed on a system in a mixed state.

A mixed state of a system is cha¡acterized by the absence

of any experiment which gives a result predictable with
certainty when performed on the system in that st¿te.

11. Results of measurements for a Dure state

We show in Section 5.6 that

P(a¡,ú ,t) : t (5.28)



for some observed vaJue øi of an observable ,4 for a system in the pure state
,! (t)

It follows from (5.28) that

An experiment exists which gives a result predictable with
certainry when performed on a system in a pure sate.

A pure state of a system is characterized by the existence

of an experiment which gives a ¡esult predictable with
certainty when performed on the system in that state.

5.4 Entropy of a state

The enuopy .s of r state tü(f) is defined by

,9 : -n hi ù(f ) : -/r Tr ({/(t) ln ìIr(¿)) (s.29)

where rc : 86.1 71 peV/K is Boltzmann's constant.

We show below that entropy characterizes the extent to which a state is mixed.



It follows from (5.15) that

tnv(r): t lrrfrl> hip¡ < r/¡(r) | (s.30)

and

_t_
ú(t) 1l V(t) : | | '/'r{r) > ,?)k 1,, n¡; < /,*(t) | (5.31)

and the¡efore

,5: -"Ðp¡h'pr (s.32)

Comments

l. Entropy is non-negative

It follows from (5.20) and (5.32) that

,q>0 (s.33)

2. Entropy of a pure state



It follows from (5.25) and (5.32) that

S:0 for a pure state (s.34)

3. Entropy oi a mixeri staie

It fblìows from (5.69) and (5.32) that

5>0 for a mixed state (s.3s)

4. Maximum value of entropy

We show in Section 5.6 thât the maximum value of ,9 occurs when

In this case

,9:S^or:nl'nn (5.37)

5. Entropy and information

1

n.
fo¡ all A (5.36)



It follows f¡om (5.25) and (5.34) that

5 : 0 corresponds to maximum information about a system.

It foiiows from (5.36) and (5.37) thal

,5 : ,9^o, corresponds to minimum information about a system.

6. Increase of entropy due to a measurement

Measulement of a system in a pure state of the system and measuring
rpparatus yields sysæm and apparatus component states which are mixed.

It follows from (5.34) and (5.35) that

The measurement i¡creases the total entropy
of the system and measuring appa.ratus.

5.5 State with gíven average energy

We consider a state ilr of a system which has been prepared such that only
its average energy E is specified.
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We show in Section 5.6 that

",-98gt: 
Z

(s.38)

Z: 'k e-þ E

1

,- xT

(s.39)

(s.40)

where .H is the Hamiltonian fo¡ the system and rc is Boltzmann's constânt

Comments

l. Stationary state

(5.38) describes a stationary state of the system.

q/(t) : ¿/t(¿)qr¿/(t): e+igtlkúe^¿Etlñ - Ui (5.41)

2. Temperature

The parameter 7 i¡ (5.40) is the temperature of the system.

3. Thermodynamic equilibrium



t:- rr (ãrI,) : -hu,, (s.42)

The state \lr given by (5.38) may be identified with the state of a system in
thermodynamic equilibrium with its surroundings.

In this case, ? is identified with the temperature of the surroundings.

4. Partition function

The function Z defrned by (5.39) is the partition function for the system.

5. Average energy in terms of fhe partition function

The average eneryy E of the system in the søte \lr is

6. Free energy

The fiee energy F of the system in the state \lr is defined as

F: -nTlnZ (s.43)

7. Determining the average energy and the entropy

It follows f¡om (5.29), 6.42) and (5.43) that
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-ñ a@lr)
rt: 

-

ð(1lT\
(s.44)

(s.4s)o E-F
I

(5.43) to (5.45) allow determination of the average energy and entropy of the
system at temperature ? f¡om the panition function for the system.

Comments

I . Boltzmann factors

2¡ given by (5.84) is the probability for preparing the system with energy e¡.

p¡ is the Boltzmann factor for the state I e¡ >.

2. Values of the Boltzmann factors

We label the eigenvalues of the Hamiltonian such that

(7<€2< Sru (5.46)

It follows from (5.84) that

Pk+l --d(rr+r -€! )

pÈ
(s.47)



and, the¡efole,

p1 > p2 > ...) pu when 7 is posiúve

? is negative

(s.48)

(s.49)h 1pz 1"'Sp" when

3. Negative temperature and population inversion

(5.49) implies that a negative temperature conesponds to a population inver-
sion in a sample of particles each prepared in the state \l/.

That is, the number of pafiicles in the sample whose energy is e1 is less than
the numbel of particles whose energy is e2, and so on.

Tlie above statement does not include effects which a¡ise when the particles
in the sample a¡e identical.

Systems of identical particles are discussed n QLB: Quantum Mechanics in
Fock Spuce.

4. Infinite temperature limit

It follows f¡om (5.38) to (5.40) that

_li+ ú: ü-i, : 1
n,

(s.50)

ü/,,,¡,, is the state of the system which has been prepared with the least input
information.



For this stâte,

1

fl.
fo¡ all ,L :1,2,.'. .n (s.s1)

5. Zero temperature Imit through positive temperatures

It follows f¡om (5.38) to (5.40) rhat

ttp Ú : Ùr :l úr ><'h 
I

(s.s2)

FoI the state \f 1,

H:I

P¡:0 for all k+r

(5.s3)

(5.54)

6. Zero temperâture limit through negative úemperatutes

It follows from (5.38) ro (5.40) thâr

,ryot_V: 
ú":l 1þ"><rþ"1 (5.5s)



For the state \p 
?¿,

YtL-t

Pt; :0 for all k I n

(5.s6)

(s.57)

7. Planck's Radiation Law

For simplicity throughout this chapter we have conside¡ed a physical system
which can be described in a finite-dimensional vector space. We no\¡r' as-
sume thaf the physical system is a nonrelativistic one-dimensional harmonic
oscillator as discussed in Topic 11.2.1. In this case, the Hilbert space is
infinite-dimensional and the partition function (5.85 ) becomes

7 :\- "-tr"- 1,'
À:0

(s.58)

where, from (11.22),

'o: (,t * j)0" (s.5e)

whe¡e c¿ is the oscillato¡ angular frequency as given by (11.i5).

It follows from (5.58) and (5.59) rhat



-- 0ñ.u /2

- 1 ^- ßñu
(5.60)

1 ftL,-¡E: -fr.u; + "":'r--2 eÞnu -1
(s.61)

It follows from (5.42) and (5.60) that the average energy of the oscillator is

(5.61) is a stand¿rd result which leads to Planck's Radiation Law.

5.6 Some derivations

Derivation of (5.4)

l-Êr 4n >,1 óz >,-'. ,l ó," > span the Hilbet space for the physical sysæm.

Then

åI : )- | ó* >< ôt | (5.62)

< il 1ó¡'>: 6xx'
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P(x,,þ,t):l< x(¿) l,þ(Ð >l 2

:< r(¿) I lr(¿) >< ,/(¿) | x(¿) >: P(x, v,¿)

1L

: t . x(t) l,þQ) >< .,þ(t) 
I ót >< h I xQ) >

/¡:r 
6.64)

: Ë . ór I x(t)>< x(¿) l,þ(t) ><,þ(t) I h >
À:1

: I . dÀ | x(¿){/(r) I h >: rr (x(r)q/(r)) : p(x, ú,¿)
À=1

Derivation of (5.7)

The proof of (5.7) is identical to the proof of (5.4) with I X(¿) > replaced by
lor >.

Derivation of (5.9)

A(t) :< .,þØ 
I A 1.,þ(t) >

1rn
=, .,þ(t) I ót >< ó* I A l,þØt: I . h I tl,þþ) ><,þ(t) I ó* >

À:1 À:1

_l
= L . óÀ I lq/(/) lpr >= Tr (,4{r(1)l

À=1
(5.6s)
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r,(x,,þ,t):l< x(¿) l,þ(t) >l 2

:< x(t) | 'r(f) >< ,þ(t) I x(t) >: P(x,ú,t)

1L

: t. x(t)1,þþ)><'þ(t) ld¡ >< ó¡lx(t)>
À=i (5'ó4)

1T

: Ð . ø,r I ri¿) >< x(¿) l,l,(t) >< ,þ(t) I ó* >
À:1

l)

: L . a'¡ | x(t)ù(t) I ó* >: rr (X(t)v(r)) : P(X, Ü,¿)
À:l

Derivation of (5.7)

The proof of (5.7) is identical to the proof of (5.4) with I r(¿) > replaced by

I o¡ >.

Derivation of (5.9)

Ã(t) :<.,1,(t) I A l,þ(t) >

7rn
: t .,þ(t) l ót >< d¡ | Al,þ@t: Ð . ót" l Al,þþ) ><,þ(t) l ó* >

À:1 ,t:1

1L

: t . ót I Aú(t) I dr >: rr (,aù(r))

5l

(5.65)



Derivation of (5.15) to (5.20)

It follows from Property II that V(0) has the eigenvalue decomposition

ú(o): Ë lú¡(o)> pt <,þ*(o)l ts.oat
À=1

where | /1(0) >,1 ,þz(0) >,.'.,1 ú,(0) > satisfy (5.17) and (5.18) and where
p7.p2)... tpn. ãfè real numbe¡s.

(5.15) and (5.16) follow from Property I.

(5.19) follows from Property Itr.

It fbllows from Propety IV that

Ph > 0 for all k : 1,2,"' ,n (5.6'1)

(-5.20) follows from (5.19) and (5.67).

Derivation of (5,27)

It follows f¡om (5.15) that {r(¿) is not idempotent if and only if
p2o I p¡ for all È : 1,2,... ,n (5.68)

It fbllo'ffs from (5.19), (5.20) and (5.68) that

0<pt<I for some k:7,2,'..,n (5.69)

when t! (l) is not idempotent.

It follows from (5.21) a¡d (5.69) that
7I ¡t

P(a¡,ú.,t): Ioo l< "¡ l,þr(t) tl ' . Ð I< "¡ l,þ*(t) >l 2

È=1 fr=l

,, (s.70)

: t . a¡ | rþ¡(t) ><,þx(t) I oj >:< a¡ | a¡ >: I
À=l



Derivation of (5.2E)

lt follows from (5.21), (5.25) and (5.26) thar

P(aj.V.t) =l< úr lrp(/)>l 2: l (s.71)

if | 'r/,(f) >=l ¿r >.

That is, given any obser.rable ,4, the result of a measurement of ,4 yields the

eigenvalue a¡ of A with certainly when the sysæm is in the state | ø¡ >.

Derivation of (5.36)

We determine þ,p2,, . 
, p,, such that 5 is maximum subject to (5.19).

We use tïe method of Lagrange multipliers; we write

,(år,r,,po+"Ëpu) :o (5.72)

(s.73)

(s.74)

where rr is a Lagrange multiplier'. Simplifying the lefr side of (5.72) yields

from which

f{inlrl*a*1)dp¡,:0

lnP¡: -¿ - 1

which shows that pÁ is independent of fu. (5.36) then follows from (5.19).
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Derivation of (5.38)

The eigenvalue decomposition of \l is given by (5.15) whe¡e the probabilities
p1,p2,...,p,, satisfy (5.19) and (5.20); the entropy ,9 is expressed in terms

of pr,pz.,"' ,pu bJ 6.32) nd the average energy E is expressed in terms of
pl,p2,. .,p,, using (5.22):

E:f nnEn 6.7s)

Et :< rþx l H 1rþ* > (5.76)

where ty'¡ > is the eigenvector of \f belonging to eigenvalue p¡.

We determine þ)p2)'..,p,, such that 5 is maximum for given E. We use the

method of Lagrange multipliers; we write

/r, n n \
dlf polnpr*of po+Éf poE*l:0 6.77\

\¡=r *: ì Å:1 /
where cr and p are Lagrange multipliers.

Solving (5.77) yields

p¡: "-t-a-BEr 
(5.?S)

The constânt cv is determined using (5.19). It follows that

¿- 9E rpo: z 6.19)

1r_

Z:l ,-orr (5.80)" Z--J -

We now specify the eigenvectors l rh >,1 ,þz >,..',1 ,þ" > of ü. The

Hamiltonian .H has the eigenvalue decomposition



H:Ðl e¡>e¡<e¡l (s.81)

We assume that

lor>=l.r> for alt À:1..2....,n (5.82)

It fbllows from (5.81) and (5.82) that

Eo:,0
It fillows from (5.79), (5.80) and (5.83) that

It follows from (5.15), (5.82) and (5.84) rhat

(5.83)

lt a..
'' \- ' e-P't e-oHV= ) lc¡. ) ---;- (r¡ l:-7:' z ^' 7

(s.86)

¿- Þt*

z

'¡t'

Z = \- ,-lJtt _ T" o-lJHZ-2'

(5.84)

(s.85)





chapter6 sPlN + PARTICLE

Â 'l lnlrn¡lr rr.l¡r¡rr ¡arrrarl¿c¡v, t . v.rrsr.re

The quantum mechanics of a Lorentz invariant single particie with arbitrary

spin is discussed in QLB: Some l¡¡rentz Invariant Systems Chapter 3. Included

in that chapter are expressions for the Poincare generators for the system and a

discussion of the coordinate-space and momentum-space wave functions for the

particle.

In thìs chapær, we describe the spin states of a spin å pa¡ticte. Our purpose

is to discuss the quantum mechanics of spin more fully than is given in QLB:
Sonte Lorentz Invaríant Syslems Chapter 3. We consider the simplest nontrivial
exarnple of spin and, for sìmplicity, we disregard entirely any charge in position
()r' momentum of the particle. The spin states of a spin 1 particle are discussed

in Chapter 7.

Pule spin states a¡e described in Section 6.2. This section includes a dis-

cussion of the prepa¡ation of pure states using a Stem-Gerlach apparatus and the

measurement of the components of spin using a a Stem-Gerlach apparatus. The

density operator conesponding to a pure stâte is also discussed. The density op-

er¡rtor is cha¡acterized by the orientation of the unit length polarization vector for
the paÌticle which vector also characterizes the orientation of the Stem-Gerlach

appara¡us used fol preparing the state of the particle.

Mixed states of the particle a¡e described in Section 6.3. The density operator

for a mixed state has the same form as the density operator for a pure state: for
the mixed state, the length of the polarization vector is less than unity. The spin

temperature for the particle is discussed in Topic 6.3.2.
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6.2 Description of pure states

Let | + >,1 - > be a set of orthonormal vectors which span the 2-dimen-
sional vector space for a spin I particle. That is,

l:l*><+l+ l-><-l (6.1)

Pauli operators are defined by

Comments

l. Eigenvalue decomposition of ø3

* > a¡e eigenvectors of o3 belonging to eigenvalues *1.

(6.6) is the eigenvalue decomposition of o3.

I -- l

l+>:o

(6.2)

(6.3)

l-><+l

+il-><+l

l-><-l

(6.4)

(6.s)

(6.6)



2. Pauli mâtr¡ces

The matrix representation of o1 ,o2,o3 with respect to I t > are the Pauli
matrices (4.62) to (4.64).

3. Expressions for operators

Every operator in the vector space can be written as a linear combination of
the unit operator (6.1) and the three Pauli operators (6.4) to (6.6).

4. Spin

The spin .s of the prnicle is defined as

-l
" - 2'""

d:o1í+o2í+o3Ë

(6.7)

(6.8)

where i. y', ñ are unit vectors along the coordinate axes.

5. Commutation relations

It follows flom (6.4) to (6.6) that

f,s,,sÀ] 
: ir,.e¡¡rst

,Ç. ,Ç: .s(.s + 1)ñ2

(6.e)

(6.10)

whe¡e s : à.



r ¡?¿1 >: cosq | + > +etpsinq r - >')' 2

ÊÊ
lrr- >: -e-'?sin tl+, -.o. ¡ | - >

(6.12)

(6.13)

ó. Eigenvalue decomposition of d. ¡i.

l,et ¡i¿ be a unit vector whose spherical polar coordinates are (d, rp).

,/, : sin d cos,.rI1 slrr á sirr ,:y- -' cos dÃ (6.11)

The vectors

are eigenvectors <tf ã .rñ belonging to eigenvalues +1 and -1, respectively.

The eigenvalue decomposition of d.ñ is

ã .,ír: I m,+ >< -* I - l*- ><^* (6.r4)

I n¿l: > are a complete set of orthonormal vectors which spal the vector

space.

1: lnrf ><rn+ I + l*- ><m- |
(6. 1s)



<rn!lm*):<rr¿-

<nt!lm->:<tn-

lm- >:7

lnr-|¡:9

(6.16)

(6.17)

It follows from (6.12) and (6.13) thal

| -t- >: cos 
f, I ,r* , -"it .in 

f, I ,r- ,,

| - >: "-i'ri,, 
t¡l 

ur* , i "os! ' n,- >

(6.18)

(6. 1e)

7. Rotation of É to rÍ¿

Let

H:l?r+><+I+ lrr,->4-¡ (6.20)

Then A is unitary

p.pj __ pt ¡¡:1 (6.21)

and



lmf¡:nl+>

l-->:,al*>

Ro3R.Ï:ã.rñ.

(6.22)

(o.lJJ

(6.24)

-R corresponds to the rotation of È to r/¿

8. Exponential form of rotation operator

(6.20) can be written in the form

fl: 
"-iS3 

ç lñ 
"-N,92 

a /f¿ ei'93,p lñ (6.2s)

which corresponds to a rotation by -rp about the z-axis followed by a rotation
by I about the y-axis followed by a rotation by I about the z-axis.

ln general, the rotation of Ë to ri¿ is described by the unitary operator

e-i,93 e /ñ, e-i,52 0 /ñ e-i,g3 r /h (6.26)

whe¡e

"_i,S3nlk 6.2'7)

comesponds to a arbitrary initìal rotation by 4 about the z-axis. Specifying

n @.9., q: -p) corresponds to specifying the overall phase of the two
eigenvectors of Ë ' ri¿.
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9. Matrix representation

The matrix rcpresentâtion of .R with respect to I t > is

(ó.28) is the rotation manx Di"^(ç d,0) which appears in the discussion

of the helicity states of a spin { particle in QLB: Some lttrentz InvarianÍ
,S.rstems Chapter 3.

10. Polarization vector

The polarization vector for a state of a spin I particle is the average value
of d for the state.

The poìarizatiorr vectors for the states ] rn* > are

< nt| | õ | rnt >: Xrít (6.2e)

ll. Preparation by a Stern-Gerlach apparatus

The states I nr* > may be thought of as being prepared by a Sæm-Gerlach
apparatus whose inhomogeneous magnetic field is in di¡ection ñ.

We call such an apparatus an mSG apparatus.

(6.28)

,o,- (<+ lÃl+> <+lÁ'r->\t"r- \<- l É¿l+> . -lnl->)
I cos I -"-to tit, 4 \: 
\.io.ií t ,.'t ' )
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O: ¡S9 apparal'1s measures ,9 . rñ. The possible results of a measurement
Ol' ) . ?7¿ Afe !;n.

The states I :l > may be thought of as being prepared by a kSG apparatus. A
kSG apparatus measures È .Ë : 9. The possible results of a measurement
of ,93 are +rfz and -+fL.

The unitary operator R (6.20) corresponds to rotâting a Stern-Gerlach appa-
ratus whose inhomogeneous magneúc field is in the Ë -direction such that the
inhomogeneous magnetic field afte¡ the rotation is in ñ -direction. That is, it
conesponds to rotating a kSG apparatus so that it becomes an mSC apparatus.

12. Probabilities

We conside¡ states prepared by an mSG apparatus and measured by a kSC
apparatus.

If the system is known to be in the state I rn{ > then

are the probabilities that on measurement of 53 the system be found in the
states | * >.

If the system is known to be in the state I m- > then

"0l<*lm*>l'=cos"t

¡a - lnl* >) ' :rirr'I

(6.30)

(6.31)



l<+ln¿->l

l< - | "r- >l

A

2

" ,0-:cos--
2

(6.32)

(6.33)

are the probabilities that on measurement of 53 the system be found in the

states | * >.

13. Density operator for a pure state

The density operator corresponding to a pure state of a system is given by
(5.1). The densiry operators for the states I rn* > may be written in the form

rr¿+ )(,,+1:)¡+ã.ñ) (6.34)

whele ri. is the polarization vector for the staæ.

(6.34) illustrates an important feature of the density operator formalism: i¡
contradisúnction to (6.12) and (6.13), (6.34) is expressed explicitly in terms

of the polarization vector rñ which cha¡acterizes the state, which vector also

describes the orientation of the Stem-Ge¡lach apparatus used to prepare the

stûte-

We note also that (6.34) is characærized by two real numbers, as opposed to

th¡ee which characterize a general ptlre stâte as described by a state vector
(the third corresponding to the overall phase of the vector).

14. Density operators and rotations

It follows from (6.22) nd (6.23) that the density operato¡s fo¡ the states
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I ntl > and ] I > are related by

where A is given by (6.20).

That is, the effect on the density operator by ,R is simply, of course, to
change the polarization vector f¡om Ë to n-¿.

6.3 Description of mixed states

So fa:'ìn this chaptel', we have only consìdered pu¡e states of a spin å particte.
We conside¡ mixed states of a spin I particle in this section.

It is shown in Topic 6.3.1 that the density opemtor for a mixed state has the
same form as the density operator for a pure stâte, the only difference being that
the polarization vector for a mixed state is shorter than unity. Thus, a mixed staæ
of a spin å pa¡ticte is characærized by three parameters which are the length and
orientation of the polarization vector for the particle. The spin temperature for
the particle is discussed in Topic 6.3.2.

Polarization vector

We recall from Section 6.2 fhat fhe states I rn+ > of a spin j particle may be
thought of as being prepared by a Stem-Gerlach apparatus whose inhomogeneous
magnetic field is in the ñ---direction (that is, by an mSG apparatus). An mSG

lmf><nz*l:¿l+><+lÃf (6.35)

6.36)
ltr+a.,ñt=
2'

n!(r+ä.Àll,Rt2\ )



appafatus p¡epares pure states of the system: one can decide with certainty whether
an mSG appa¡atus has prepared the state I m{ > or the state I m- >.

We now imagine preparing a state of the system with an inefficient mSG-Iike
apparatus which does not allow one to decide with cefainty whethe¡ the apparatus

has prepared the state ] nz{ > or the state I m- >. This will be the case if the
gradient of the inhomogeneous magnetic field in the Særn-Ge¡lach apparatus is not
sufficiently strong. We call such an inefûcient mSG-like appa-ratus an mFSG
ùppâratus (F for fuzzy).

We can onìy assign probabilities fol preparing the state I rnf > or the state

] nr- ) with an mFSG apparatus. These probabilities are specified by the

chu'acte¡istics of the mFSG apparatus.

LeÍ p,,,¡ be the probabilities for preparing the states I m:t > with an mFSG
appu'atus. Then

0(¡r',4(1 and Q(p--(1 (6.37)

(6.38)Ptn+*Pnt-=l

As given by (5.15), the state prepared by the mFSG apparatus is represented

by the density operator

E : l nr* ) pn¿i 1nu + l * l*->p*-<*-l (6.39)

Mersurement of ,9 ¡/¿ with an mSG appâratus for the sysæm in the state llr
yields the values +]Ë na -1ft with probabilities p--¡ ând p*-, respectively.



It follows from (6.34) that (6.39) can be written in the form

1 , -\t:;(r+ã.ñ)
(6.40)

ît,: (p*+ - p*-)ñt
6.4t)

It follows from (6.40) that

â¿: Tr (äV)
(6.42)

f¡ is the polarization vector for tlie state {/. It follo\¡/s from (6.41) that

lñl<1 (6.43)

That i.s, a mixed state is characterized by a polarization vectot with length less
than unity.



Measurement of ^93 
with a kSG apparatus for the system i¡ the state \lr yields

the values +|k na -|n witn probabilities

Fol example, if the polarization vector for the state llr is 0.6k, then the above
probabilities arc 80Vo md 20%, respectively.

If the state tli is unpolarized, that is,

1

Pm+ : P^- : U (6.46)

ñ:0

E:l,¿

(6.47)

(6.48)

,0 . "0Prn-¡ cos' 
1 I P^- sttt" -

..,0 "0pm+ sr ' 5l P-- cos' -

(6.44)

(6.45)

then each of the above probabiììties is 50%.



Spin temperature

In Section 5.5 we determi¡ed the stâte (5.38) of a system which had been
prepared such that only its average energy is specified. In this topic, we specialize
(5.38) fo¡ a spin j particle prepared in a consta¡t, homogeneous magnetic field
B. We show that (5.38) may be written in the form (6.40) where the polarization
vector is

m= t.''r' (|ør-,)d (6.49)

whe¡e, as in (5.40),

and ,,-r¡ is the Larmo¡ precession frequency (8.1), rc is Boltzmann's constant and
ó is a unit vector in the di¡ection of B.

Comments

l. Stationary state

(5.38) is a stationa.ry state of the system.

The polarization vector (6.49) is constant in time; it is parallel to the magnetic
field B a¡d does not precess.

1

ñ-L
(6.s0)



2. Spin temperature

The parameter T n (6.49) is the spin temperature for the state (5.38)

? is not the temperature of the surroundings.

The state of the particle is specified by its spin temperature.

3. Ranges of parameters

The ranges nf p, T and tarh(|þñ,uo) are

In paticular, the system has a positive spin temperature when its poÌarization
vector points along the di¡ection of the magnetic field and a negative spin
tempelature when ils polarization vector points opposite to the direction of
the magnetic field.

Derivation of (6.49)

The Hamiltonian for the particle is given by (8.7). It follows that

e-Éã : cosh r¿ * ã. d silh a (6.54)

where

(6.5s)

7l

n:!,lk n
2',

-co < /J < 0 0<É<*oo (6.51)

(6.s2)

(6.s3)

0>7>-oc too>?>0

/1 \

-l 5 tarrlr ll,Jñr¡ ) < -1- \) 't-



It follows from (6.54) that

Tr 
"-þH 

:2cosh ¿

rr (ae-on): 2 sinh ¿ d

(6.49) follows from (6.41), (6.56) and (6.57).

(6.56)

(6.s7)

A second derivation of (6.49)

We a.ssume that the fixed Cartesian ¡eference f¡ame in the laboratory is defined

such that È: Bí in which caso the Hamiltonian is given by (8.16) a¡d the

eigenvalues and eigenvectors are given by (8.23) and (8.24).

(6.49) follows using (5.81) and (5.86) and the density operators for the states

| :E > as given by (6.34).
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Chapter 7 SPIN 1 PARTICLE

7.1 lntroductory remarks

ln this chapær we describe the spin states of a spir 1 particle. As in Chapter 6,
our purpose is to discuss the quantum mechanics of spin more ful1y than is given
rn QLB: Sorne Inrentz Invaríont Systems Chapter 3. The mathematical description
and the physics of a spin 1 particle is richer than that of a spin å pa¡ticte discussed
in Chapter 6. As in Chapter 6, for simplicity we disregard entirely any change
in position or momentum of the particle.

Spin operators and pure stâtes are described i¡ Section 7.2 and spherical tensor
operators a¡e discussed in Section '7.3. 'tlte density operator corresponding to a
pure state and to a mixed state is described in Section '7.4. The cha¡acte¡ization
of a stùte of a spin 1 particle in terms of a polarization vector and a polarization
ellipsoid is also discussed in Section 7.4.

7.2 Spin operators and pure states

The spin 5 of a spin 1 particle is defined as

,4:s1i+sri + stÉ 0.1)

wbele i 7', d are unit vectors along the coordinate axes and where

where ] 1 >,1 2 >,1 3 > are a set of orthonormal vectors which span a

,9r : -if¿e j* lo><öl (7.2)



3-dimensional vector space. That is,

Comments

I . Commutation relations

It fbllows from (7.2) that

i,s, ,sÀl : irte¡*,st

,51 . ,i1 : s(s -1- 1)ñ2

('7.s)

(7.6)

where ,s : 1.

2. Matrix representation of ,9r

It follows from (7.2) that the matrix elements of ,gi with respect ro I I >,
2>, 13 >are

< o I ,gt I b >-- ,5t u: -ihe jo¿ (7.7)

3

flo><al:t

<al b >:6".6

(7.3)

(7.4)

That is,



(,,j,):,(l i ;,) (7.8)

(s;u) : n(!, 
I å)

(7.e)

(,?,) : , (å I' s)
(7.10)

(7.8) ro (7.10) a¡e identicat to the

3. Products of spin operators

It follows from (7.2) thatl

mâtrices,9¡ Biven by (5.42), Rose (1957).

,qjSk:6j*-lr><tu1 (7.11)

,gi,rjh,tjt : -i6¡¡e ¡art lo >< t, | +ie¡orl o>< tl e.12)

ID tbe followi¡g we oÍle¡ sel å = I



SJ ,gK SI S^
(7.13)

--6¡¡(6¡,,-ll><m l) -ó¡- li >< Ã'l t6¡1 | j ><m'l

A special case of (7.12) is

(,(,,r ) 
3 

= ,sr (7.t4)

It follows from (6.9) that | 1 >, | 2 >,1 ll > a¡e simultaneous eigenvectors

of (,Ç1)2, (,sr)'?ano (,93)2.

4. Traces of products of spin operators

It follows from (7.2) and (7.11) to (7.13) that

TrSr :0

T,,c;i gL : 26¡x

TrSj ,gk,gt : -ie jt"t

^îr,S j ,gh St S"' : 6¡¡6m ¡ 6¡*6rt

(7.1s)

(7.16)

(7.17)

(7. 18)

lt follows f¡om (7.18) that



r'l{s,)'(so)'] : r.fs,(,s-)'s,] :' * a,n (7.19)

and that all other traces (7.18) vanish.

5. Rotations about the coordinate axes

The operator ,Rr (9) conesponding to a rotation by á about the j-axis is

Ri (0) : e-i'sr? - r - i,9i sÁ0 + (,9r)2(.os a _ t)
(7.20)

:cosd+(1 *cosd) ii >< i I -r¡"¡ la><ól:l';t;g

with the second and third equalities following using (7.14) and ('1.2).

It lbllows from (7 .2) thar the marrix elements of ,Rt (d) wirh respect to
l>,12>,13>are

<alH(0)lb>:Rl"b@)

: 6ot, c.os 0 + 6j"6jb\ - cos d) - e ¡oo sitt 0

(7.21)

That is,



(i :r; "*t')
(n1,(o))= 0.22')

(iï., å :ï,)(Riu(o)): (7.23)

(Rl,u(o)): ('î; ;:'å' i)
(7.24)

(7.23) and (7.24) ate the transpose of (4.55) a¡d (4.56), respectively

6. Rotation of Ã1 to rñ

The unitary operator

R.: e-i'53 e" /fL e-is2 0lñ (7.2s)

coresponds to a rotation of À to a vecto¡ rå (6.11) which has spherical polar

coordinates (0 , ç). lt foliows from (7 .2) nd ('l .20) that

ns3 nt : ,4 .ñ, (7.26)



The corresponding equation for a spin å pa.ticle is (6.24).

7. Matrix representation of Â

We denote the matrix elements of the ¡otation operator R (7.25) with respect

to I 1 >,1 2 >, 1 3 > by

< o lÃ I l¡>: Rot (7.27)

It follows from (7.20) that

(7.28) is a special case of (4.43), Rose (1957),

8. Eigenvectors of ,f3

It follows from (7.14) that the eigenvalues of ,5i are t1,0. We denote the
corresponding eigenvectors of ,S3 by ] + >,1 0 >. Solving the eigenvalue
problem for' ,53 yields

l+r: i,'u*(l 1 > +i l2 >) (7.29)

(7.30)lo>:eió. l3>

('-:tï;
sin d cos ,p \
sin d sin ,r: 

I
cos d /

-slDp
cos ?

0

(Ã"¿): (1.28)

It follrrws from (7 .29) a¡d (7.30) that



I , t: *(.-'u* l+ t +.-t'- l- t)VZ\

,r-6?"-'ó* I + > +.-ió- - t)

t.)- --iáo ln-1,)>:( 'lu2

(7.3r)

(7.32)

(7.33)

The usuaÌ choice for the phase factors, which we use from now on, is

(7.34)

(7 .29) nd (7.30) are a set of orthonormal vectors which span the vector

space, that is,

9. Another form for ,9r

It folkrws from (7.2) and (7.3i) to (7.33) that

D lpr.pl:r

<pl p' ):6pp,

(7.3s)

(7.36)



,'=it +><ol+ lo><+l+ lo><-l+ l-><ol) (7.37)

.?.ç,: --=(- l+><0 + l0><+l-
\/z

lo><-l+ l-><ol)

.s3:l+><*r* l-><-l

(7.38)

(7.39)

(7.39) is the eigenvalue decomposition of ,93.

10. Another matrix representation of ,9r

we denote the matrix elements of ,5i with respect to I t >, | 0 > by

< Pl S'l P' >: S'rr' (7.40)

It follows from (7.37) to (7.39) that

('r,):å(Î i å)
(7.4t)



6i,):#([ 
i' ;')

(7.42)

/1 0

(,si,,)=f 0 0

\o o i,) (7.43)

(7.41) to (7.43) arc identical to the matrices ,9r given by (5.52), Rose (1957).

I l. Another matrix representation of A

We denote the matrix elements of the rotation operator R (7 .25) with respect
to lt >,10 > by

<plRlp'>:Rrr, (7.44)

It follows lrom (7.20) and (7.31) to 0.33) thar

/ e-'t cos2 f;

\R,u') = | -:^";no'

\ .l" riu2 $

-fie-iv s:n0

cos d

fieiv sinl

e-tp sir2 4 \
hrr''U I

"¡, 
,o"' !, )

(7.4s)

(7.45) is a special case of the rorarion mat¡ix Dt ("þl) given by (4.46), Rose
(19s7).



i2. Eigenvectors of i . ¡¡-¿

It follows from (7 .26) that the eigenvalues of ,5" . n-r are t1, 0. We denote the

corresponding eigenvectors of S . n by I ml >, I -0 >. It follows f¡om
(7.26) and the eigenvalue problem for ,9' ri¿ that

lm¡t>:fl11"s ('1.46)

where i :t >. | 0 > are the eigenvectors of ,93 and Ã is given by ('/.25). h
follows using ('l .45) That

I nr-¡ ¡: "-ir ro"2ll *, *rtsi.d | 0 > -¡"trsin2 lt -, (7.4i)

l nro >: -ftr., rir',0l * > +cosá lo > +ft"i,sind l - > ('1.4s)

lnr,- >:.-io,i''2 f;l*, *ft"nd l0 > ¡¿iP cos2 lt -, (i.49)

(7 .47) to (7 .49) are a set of orthonormal vectors which span the vector space,



thùt is,

I l*u><mtl l:1
ir=+,0

< rnp I m p' )-- 6pp'

(7.50)

(7.51)

13. Preparation by a Stern-Gerlach apparatus

The states I n.p > may be thought of as being prepared by a Stem-Gerlach

apparatus with inhomogeneous magnetic field in direction rñ.

As in Chapter 6, we call such an apparatus an mSG apparatus.

An mSG appal'atus measures ,51 . ñ.. The possible results of a measurement

of ,9 . rñ are pft, wherc þ : +I,0.

The states I p > .ay be thought of as being prepared by a kSG apparatus. A
kSG apparatus measures ,9 .i : 53. The possible results of a moasurement

of ,Ç3 ale ¡Lfz where þ : i1 , 0 .

The unitary ope¡ator (7.25) corresponds to rotating a Stem-Gerlach appa¡atus

with inhomogeneous magnetic field in the È -{irection such that the inho-
mogeneous magnetic fleid after the rotation is in ri -ìi¡ection. That is, it
corresponds to rotating a kSG apparatus so that it becomes a¡ mSG apparatus.

14. Probabilities

We consider states prepared by an mSG apparatus and measured by a kSG

apparatus.

If the system is known to be in the state I r¿+ > then



l<+lm+rlt:"ornl

l<0lnr.* >1 z:f,"in'e

^ .0
¡a-lrrr,*¡¡ r:siri.;

(7.s2)

(7.s3)

(7.s4)

are the probabilities that on measuÍement of ,53 the system be found in the

states I t >,10 >.

I1 the system is known to be in the state I nzo > then

l< .l lnrO >1 z :|si,,2 e

l< 0lnro )l 2:rot20

(7.ss)

(7.s6)

are the p¡obabilities that on measurement of .93 the system be found in the

states | È >,10 >.

If the system is known to be in the state I m- > then



l< + l-- >l " .0
2

(7.57)

(7.s8)

(7.s9)

^1
l< 0 | nr- >l ' :1siÍ 0

A
l<- in¡->l 2:cosal

'2

are the probabilities that on measurement of 53 the system be found in the

states lt >, 10 >.

7.3 Spherical tensors

As shown in Chapter 6, every operatoÌ in the spin j vecto. space can be

written as a linea¡ combination of the unit operator (6.1) and the th¡ee Pauli

operators (6.4) to (6.6). The corresponding statement for the spin 1 vector space

is more complicated: there a¡e nine basic operators for the space as opposed to

four for the spin I vector space.

For example, it foilows f¡om (7.35) that a hermitian ope¡ato¡ ,4, in the spin

1 vector space can be written in the form

A: t lp>o,,r,<p'I
t1,P'=+,0

(7.60)

where
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crttp, :< p I A I p' >=< tt' I A | ¡t ) : ai,, 0.61)

where I * >, | 0 > are the eigenvectors of ,93 belonging to eigenvalues t,0.

Expansion (7.60) in terms of the nine operators I þ >< lr' I may be convenient

in many instances; it is not particularly convenient, however, when the effect of
rotrtions is tn be considered.

We construct a set of eight spherical tensor operators T¡^ which, in addition
to the unit operator, are appropriate for expanding an arbitrary opelatot in the

spin i vector space. The T¡- are constructed in order that they transform símp1y

undel' rotations.

We define the operators ?¿* as follows:

I

7.,-, : a--:= ( 51 + i.ç2)
vz

(7.62)

( /.oJ,7lo:,93

Tu,:!(,51 +i,q2\2
2',

rr+, : +){s' + i,g2 , ,g3 }

,,,: rl!,lt*f -il

(1.64)

(7.6s)

("1.66)



where ,91, ,52, ,93 a¡e the spin operators discussed in Section 7.2

Properties

l. Adjoint

It follows from (7.62) to (7.66) that

Tl,n: e)mTt-n, (7.61)

2. Matrix elements

It follows ftom (7.62) to (7.66) that

where p > is the eigenvector of ,53 belonging to eigenvalue pä and

. 
(j1j 2n4nt,2 ] j3nr.3) is a Clebsch-Gordon coefÊcient.

(7.68) is an example of the Wigner-Ecka¡t theorem: the dependence of
< p I Tm I p' > on p.,m., ¡tt rcsides entirely in the Clebsch-Gordon
coefficient (11¡.ttrrt. | 7p).

3. Traces

< ttlTm p' ): ct (tlp'mltp)

ß1
-, -,l"-Vo"- Ji

(7.68)

(7.69)
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r' (rt^rl,*,) : nún,6* ,

1

-1ì.i = ¡1,.t : 1

2

0;n)

(1;72)

It follows lrom (7.62) to (7.66) that

Tr T¡* -- 0 (7.70)

4. Commutation relations

It fbllows from (7.62) to (7.66) that

lS1 +;,1;2 ,r,*) : f (I a,,r)(t L,, + r) T¡*¡,

l,;t,r,*] : nr 717,,

(7.73)

(7.74)

-5. Transformation under rotâtions

It is shown in Chapær V, Rose (1957) that it follows ftom (7.73) nd ('7.74)

that



+r
R.(a,p,1)T¡^Rt(",p,ù : Ð,ot^,*1",þ,ùT*, 

(1.7s)

r,t ) ., -t.çJd -i,ç?,1 -iS31ff (¿r!p!1,: € e e (7.76)

and where

nt-,-(o, P,t) ('t.77)

is a rotation matrix. ln particular,

T^.
RTttoRl : ,lth

+l

I v¡;e,ç¡ri^ (7.78)

where Y¿,, (d. .r:) is a spherical harmonic and

R -- R(ç,0,0) -- e-is3 e e-i'e2e (7.79)

.R corresponds to the rotation of fo to a vector which has spherical polar



coordinates (P, p).

ln view of ('7.'15), the T1* ate called spherical tensors of rank /

6. Spin operators

It follows from (7.62) and (7.63) that

7. Scalar product of spin operators

LÊ.f ¿i : 
"1í + n'j + o3AÌ. It follo-s from (7.80) to (7.82) that

+1

,;,51 :Ða1^Tl^:
?¿:_1

I +7f

tl ;n ).Y1*(0..)Ti^ (7.83)
Y ,J 

m-_1

s' : fit-rt+ t-,)

s'z : ftQl+ î-r)

<,j .r,¡) _ ¿t0

(7.80)

(7.81)

(7.82)



"r*r: +#þ1 +io2¡

¿lo : ¿3

('1.84)

(7.85)

are the spherical components of d and (a,0.,ç) arc tÍre spherical polar coor-

dinates of ã.

8. Products of spin operators

It follows from (7.5) and (7.6) and (7.62) to (7.66) that

(7.86)

(7.87)

(7.88)

ar"^ * !,r,., *r, .\
,/a '" 2' "
11:=Tzo - =(Tzz 

I Tz-z)
v0 ¿

.'¡ Fl
="-+tl"-Trn

, -1 ,2 Z

., ,)

. ^t
(,c") -

(7.8e)

(1.90)

(7.91)

<t <s : rþïtL * T,-r) + f,t-r^ * Tz-t)

,t'1,f : *Eer' !rt-t) +;g^ +rz.l)



v. Operators I p )< ,a/ |

The operators I p >< t"' I which appear in (7.60) may be written in terms of
the operators I o >< l, I which appear in (7.2) using ('7.29) a¡d (7.30). These
lattel operators may be written in terms products of spin operators using (7.5)

and in terms of the ?¿,,, using (7.86) to 7.91). Finally, then, the operators

I tt >< lt' I may be written in terms of the ?¡,,, as follows:

lt+><01:;I,r---ÊTztz vz

1ll0><-l:-:Irr----=Tztt 
'/z

(7.9s)

(7.e6)

l-l >< - l: Tzz (7.97)

10. General hermitian operator

l1
l+><+¡:;*lol--=TzoJ VO

11
l0><01:;-frol--TzoÐ v0

,-:-'-,-!,.F-,.|_.-'-|-"-\l;'.¿0¿ t¿

(7.92)

(7.93)

(7.94)



I

,a:!r,e+ | f ,¡.r,f,
" r=t t -:-r

(7.e8)

A hermitian operator ,4 is expressed in terms of the operators I p >< p' 
I

by (7.60); it may be written equivalently in ærms of the spherical tensor

operators 7¿- as follows:

where

aI^: \-) ,1t_^ (7.99)

and where, using (7.71),

tr¡^: L Tr (T¡*A)
7tI

(7.100)

Tr,4 and the o¿- ate expressed in terms <tf the arr, as follows:

(7.101)

1all:¡þo¡-a-o)

a10:a++-t7__

(7.t02)

(7.103)



tlra : o, \

I
rL21 - ---Ê\u0+ t u_0 )

vL

Iazo: t;(a++ -f n-- - 2r¡66)
VO

(7.104)

(7.105)

(7.106)

A general operator on the spin I vector space is specified by nine complex
numbers: its Lrace and the coefficients of the eight Trt*. Fo¡ a hermitian
operator on the space, the trace is real and the coefficien¿s satisfy the eight
conditions (7.99).

Accordingly, (7.98) expresses a general hermitian operato¡,4 in terms of nine
reaÌ numbers: its trace, three real numbers related to the coefficients of the
¡ank one tensor ?rt- and five real numbe¡s related to the coefficients of the
lank t';vo tensor 7rT,,,.

7.4 Density operators

We recall from Topic 5.3 that the general state of a system is represenæd by
a unit trace hermitian density operator. It follows from (7.98) that the general
state of a spin 1 system is represented by the density opemtor

,+¿
v:1+\- \-',1 ¿-., ¿----,/

l=7.2 m:-l
at-TtÏ* (7.107)
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where r¿¿,,, satisfies (7.99) and

",- : *,Tr ("¡-v) (7. 108)

Density operator for a pure state

The density operator lbr a pure state is discussed in Section 5.2. In this topic
we apply the formalism to pure states of a spin 1 particle prepared and measured
by a Stern-Gerlach apparatus.

Density operator corresponding to | ø >

It follows from (5.1) that the density operator \lr ø corresponding to the
eigenvector' I p > of 53 belonging to eigenvalue pfi. is

úu:lp><pl (1.10e)

It fbllcrws from (1 .92) to (7.94) rhat

,I,P = 1+
3 Ð "rrl'

l=1,,2

(7. r 10)



'¿1 - -(¿1 -r

aÎ:o

_, 1" 1a¿ : a^ : --¿X: 
-

t) L /^L lO

(7.1 1r)

(7.1t2)

(7.r13)

Density operator corresponding to I mø >

It follows from (5.1) that the density operator ùmp corresponding to the
eigenvector I nrp > of ,í. zñ belonging to eigenvalue pñ is

ú*P:Intp><mpI (7.114)

It f'ollows from (7.78) and (7.110) thar

ï* ,Ð-r,f ,"r*,rl*,
\ú'np : (7.11s)



oh,: lTrurafy*,Q,v)
(7.1 16)

where (d,9) are the spherical polar coordinates of the unit vector ñ.

The pure state (7.115) is labelled by four real parameters (a1,a1,0,9). Tlte
geometrical interpretation of these parameters is given below.

As given by (5.3), the probability P ( ¡",V^''\ that the system be found in' \' /
the state ¡r > when it is k¡own to be in the state {/?n/ is

r (u,v"'ø') :< p I ú*P' ) tt > (7.1t7)

Probabilities

It follows using (7.68) and (7.115) that

Ipl tt .tlt-u | = -\'/3

lt

t,i=+- nf'.r )- (r.t.p.rtt¡ | t.p)Yi^,ß,v)
/--) \l ')l L1 t ' /---J '

I=1.2 mL=-I

(7.118)

(7.118) is identical to ('1.52) to (7.59).
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Polarization vector

--mpAs given by (5.9), the average ,9 of the spin ,9 for the system in the state
llr Ì¡r i.s

(7.t te)

,Ç is the polarization vector for the system in the state ú-r'.

ìt follows using (7.80) tr¡ (7.82) with (7.108) that

That is, (af, 0.,9) ue the spherical polar coordinates of the polarization vecror
-- n1P

,5 . The polarization vector is directed along the inhomogeneous magnetic field
of the mSC apparatus which prepared the state ú-p.

-;:t'fn p

'\' : aì sl1ì 
' 

cos (p

;ln!u.^.
rr - : (1i Slrl 0 Sllì p

,Ç' : aT cos á

(7.120)

('7.121)

(7.122)



Polarization elliPsoid

As given by (5.9), the average of (Sr;2 for the system in the state \lr^p is

T,q': r. l(s,),v",,]
('7.r23)

It follows using (7.86) to (7.88) with (7.108) that

Tas')'l-'

l{*["'

T(,rt--'' : ? 
- à o! (t.osz o - t)

=''-*Iaf 13,i,,2 ocos2 I-t).) vll

:''= * L^a! (:t 
"ir,2 

o sin2 p - I )') vo

(7.124)

(7.t2s)

(7.126)

In paticular,

-r 

" r 
À/ -i--- -;TÀP

l(,s'1 )'l : L(,s,)'l
21u
:l ,/A '

It
V5",

(7.r27)

('t.128)
-;-_--------:rÀ ¡, ,
Irs')'] : i+



-À+ -À+

t,^,.2) t,.,",2t .r

L(ò','.1 :L(,\"r ) :t (7.12e)

(7.130)-1

.-À0 

-À0
lr,t'r'] : lt,s,r'1 :1 (7.131)

('1.132)

-_ 

_À0

1,,.' ,'] = o

Comments

1. Semiaxes of the polarization ellipsoid

The above results correspond to an ellipsoid (the polarization elLipsoid) centred

at the origin of the coo¡dinate system. The semiaxes (c1^r' , c2-t ,.s-ø) along
the coordinate axes of the polarization ellipsoid for the system in the state
rlr"'r are defined by

, -=----..=-n u ' *

",*,: (lr,s,r'J )' (7. r33)

(7.133) involves the parameters ("1,9,ç).



In particular, ('7.127) and 7.128) conespond to an elìipsoid of ¡evolution about
the z-axis: Q.129) and 7.130) correspond to a prolate ellipsoid; (7.131) and
7.132 correspond to an extreme oblate ellipsoid (a disc).

2. Stern-Gerlach apparatuses in series

The observable ,5".ñ, is measured by a Sæm-Gerlach apparatus with inhomo-
geneous magnetic field in di¡ection ri, (an mSG apparatus).

The obser¡¿able (,çr)'? is measured by two jSG apparatuses in series: that is,
by two jSG appartuses such that the ent e output from the fust jSG appara-
tus is the input to the second jSG apparrus. The output f¡om the 6rst jSG
¡ìpparatus is not observed.

Density operator for a mixed state

The densiry operator for a mixed state is discussed in Section 5.3. In this topic
we apply the fìrmalism to a mixed state of a spin 1 partìcle prepared by a fuzzy
Stern-Gerlach apparatus and measured by efficient Stem-Ge¡lach apparatuses.

We recall from ltem 13 in Section 7.2 that the states I nzp > of a spin 1

particle may be thought of as being prepared by a Stem-Gerlach apparatus whose
inhomogeneous magnetic field is in the ñ---direction (an mSG apparatus). An
mSG apparatus p¡epares pure states of the system: one can decide with certainty
whether an mSG appa-ratus has prepared the state I m{ > or the state I m0 >
or the state I nr- ).

We now imagine preparing a state of the system with a¡ inefficient mSG-like
àpparatus which does not allow one to decide with certainty whethe¡ the apparatus
has prepared the state I rrzf > or the stâte I m0 > or the state I m- >. This
will be the case if the gradient of the inhomogeneous magnetic field in the Særn-
Gerlach apparatus is not sufficiently strong. As in Chapter 6, we call such an
inefficient mSG-like apparatus an mFSG apparatus (F for fuzzy).

t02



We can only assign a probability for preparing the state I nrp > which
probabílity is specified by the characæristics of the mFSG apparatus.

L-eI p^, be the probability for preparing the state I mp > with an mFSC
apparatus. Then

0 1 p*, 11

Ð p,,,:1

('7.t34)

(7.135)

As given by (5.15), the state prepared by the mFSG apparatus is represented
by the density operator

,Ir",: I p,n¡,ú,,rp 0.136)

It follows from (7.115) and (7.116) rhat rhe mixed srate (7.136) is tabelled by
the fbur ¡eal parameters (a1,a2,0,ç) where

"t: D Pr"l (7.137)

(â.9) specify the direction of the inhomogeneous magnetic field of the mFSG
appa¡atus which prepared the state ú*; (a1,0,9) are the spherical polar compo-
nents of the polarization vector for tho state; ("2,0,ç) determine the semiaxes of
the polarization eliipsoid for the state.
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Measurement of ,9.rr-¿ with an mSG apparatus for the system in the state ilr -
yields the val:ue ¡tfz with probability p-r.

Measurement of ,93 with a kSG apparatus fo¡ the system in the stâte llrm
yields the value pfi with probabilþ

P(p,ú*) : Ð r'*r, e (t",ú^,')
þ'=+'o

(7.138)

Unpolarized state

If the state \lr'" is unpolarized, that is, if

Prr¿+:Pmj:Pm-
1

3 (7.I3e)

ù--1-3 ('1.140)

(7.14t)øl:0

It follows f¡om (7.141) thal, not unexpectedly, the poiarization vector for the

unpolarized state vanishes and the polarization ellipsoid is a sphere with ¡adius

\ÆG +Ð where .s : 1.
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Chapter I PARTICLE lN A MAGNETIC FIELD

8.1 lntroductory remarks

In this chapær, we describe inte¡action of a particle with spi;r with a magnetic

field. Our purpose is to apply the methods of quantuni mechanics to the

important processess of spin precession and magnetic resonance.

We conside¡ the interaction of a particle with spin with a constant, homoge-

neous magnetic field in Section 8.2. We show that the average magnetic moment

of the particle precesses about the di¡ection of the magnetic field with the Larmor
flequency. The phenomenon of magnetic ¡esonance is discussed in Section 8.3.

Magnetic ¡esonance of a spin ] particle and of a spin 1 particle a¡e discussed

in detail.

8.2 Particle in a constant magnetic field

Observation

A particle with spin is subjected to a constânt, homogeneous magnetic field
.d. tt is observed that the average magnetic moment of the particie precesses

about F with angular frequency

.,^_geB
zmc.

(8.1)

.r7 is the gyromagnetic ratio of the panrcle, m is its rest mass, e is the charge

of a proton and c is the speed of light.
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u0 is the Larmor precession frequency. For a proton in a one Tesla field

';uf 21T :42lt4Hz; for a proton in the Ea¡th's magneúc freld, asf 21t : 850 liz.

Analysis

We describe the quantum mechanics of the sysæm. We wo¡k in the

Schrodinger picture as described in Section 4.2.

We cha¡acterize a fixed Ca¡tesian refe¡ence frame in a laboratory by unit

uecto.s i. /, í along the coordinate axes. We disregard any change in position

of the particle. The fundamental dynamical va¡ìables are the three Ca¡tesian

components ,çr, ,92, ,13 of the spin ,4 of the particle.

,51 : ,s1/+ s2j + s3i (8.2)

The fundamental algebra is given by

where s is the spin of the particle.

Since change in position of the particle is disregarded, the angular momentum

./- of the particle is

7_ C (8.s)

lçr. ,sÀlL.l = ifr, ¡n,1t

s(s + 1)ñ.2

(8.3)

(8.4)
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The magnetic moment y' of the particle is

11

Oe I

2nc
(8.6)

The Hamiltonian 11 for the particle in the magnetic field B is

H=-i'E (8.7)

The state of the particle at fiñe t is I ,l/r(f) > âs given by (a.3).

Comments

l. Precession of the polarization vector

The particle experiences a torque f due to the magnetic field E. The torque
on the particle is the time rate of change of its angular momentum, that is,

- ,l-r(Ð: +J(r)
fl,7

(8.8)

wtrere f(t) and "r-(t) are the torque and angular momenrum in the Heisenberg
picture. It follows from (4.8) that

t0't



ilt¡: utlt¡Ìu1t¡

,îçt¡ : u+ 1t¡tup¡

(8.e)

(8. 10)

On carrying out the differentiation in (8.8) , it follows using (4.4), (8.9) and
(8.i0) that

ihÌ : lí,Hl
(8. 1 1)

Substitution of (8.5) and (8.7) into (8.11) yields

f = F" É (8.12)

As given by (4.5), the average torque f(l) acting on the particle in the state

rl, (l) > is

-1 (¿) :< tþ\t) | I I lblt) > (8.13)

It follows from (8.12) that

r(t): È(t) x B (8.14)



where

È(Ð :<,þ(Ð I F.l,þ(ù > (8.15)

E(¿) is the average magneric moment of the particle in the srare l rþ(t) >.

(8.14) states that the average torque acting on the pafticle is perpendicular
to the average magnetic moment and the magnetic field. Accordingly, the
torqûe causes a precession of y'(t) aUout .d as is observed.

2. Precession frequency

To determine the precession frequency, we take -d : BÊ in which case

H : -aofi3 (8.16)

where r,;6 is given by (8.1).

It fblkrws from (4.7) that

pr 1t¡ : y' ,o" rú !fr sir tost

p1t¡ : - ¡ ""r 
rot !Ê cos rot

(8. r7)

(8. i 8)

(8. 19)p3(t): p3

We assume that the average magnetic moment at time zero lìes in the



7't-plane and makes an angle d with the magnetic fie1d. That is,

-r--l¿: fsin0j+cosîkj1u
(8.20)

where p : ñã It foliows that

-r-rly'(t) : 
lsin 

0 j(t) + cos9 Àlø (8.21)

where

./(¿) : sin¿¿o¿ í+c.o"rst j (8.22)

(8.22) defines a vecto¡ which rotates about the ,t-axis with angular frequency

t '0.

Thus, E(1) precesses about B- with angul frequency (8.1) as is observed.

3. Average energy and uncertainty for a spin f particle

For a spin å particte, the eigenvalues and corresponding eigenvectors of
(8.1ó) a¡e

t-
€2 : +=hú0

,r: -)nro

l--t-1CC ,2- | - 2

le1 >:l*>

(8.23)

(8.24)



where | :l > are the eigenvectors of a3 as discussed in Section 6.2

The evolution operator (4.4) may be written in the form

aot c uol
i/ (¿ ) : cos -l- + r.o" sñ 

-
(8.2s)

The average energy -Ð and the uncertainty in energy A-Ð for the particle in
the state

l,þ(t) >: u(t) | m+ > (8.26)

E:. ,l'(¿)l H lu(r) >: -!h"0,o"0'2
(8.27)

-\E:|(H-E) |,r'(r1 >¿|n o,ine (8.28)

It follows f¡om (8.27) and (8.28) that

1_1
-)ha¡18<*=ha¡2 '- - '2

1

O 1 LE 1:-ht:"- -2 "

(8.29)

(8.30)



It follows from (8.30) a¡d the time-energy uncertainty retation (3.26) that

(8.31)

That is, it takes a time interval of at least fr to measu¡e a change in the

state of the particle.

For example,

(8.32)

for a proton in a 4T magnetic field.

Since the speed of light c : 30 cm/ns, it follows that a fast moving proton

must tmvel of the o¡der of :10 cm ìn a constant, homogeneous 4T magnetic

ûeld in orde¡ to have its polarization vector rotated by an observable amount.

The magnet used for rotating the polarization vector of the proton beam at

TRIUMF is a one-metre long superconducting solenoid which produces a

magnetic field of the order of 4T.

8.3 Magnetic resonance

Observation

A particle with spin is subjecæd to a magnetic field B which is a superposition

of a constant, homogeneous field -86 and a rotating field -B1 which is perpendicular

to .Bu.

It is observed that the rotating field causes the average spin vectol of the

particle to change sign. The probability of this "spin flip" ca¡ be made equal to

1

-a1nsL¿D



one when the frequency of the rotating field is equal to the Larmor precession
fiequency of the particle in the field 4. fni, is the phenomenon of magnetic
resonance.

Analysis

We describe ths quantum mecha¡ics of the system. We set up the quantum
mechanics in the Schodinger picture as desc¡ibed in Section 4.2 and solve the
equation of motion in the interaction picture as described in Section 4.4.

The physical system is characterized as in Section 8.2. The Hamiltonian is
given by (8.?) where, in this case, the magnetic field F acting on the particle is

B: Bol Bt (8.33)

whele

Bo -- Br:k

-/--\B, = B' f cos¿.r1 d - sin.¿l i l. -\

(8.34)

(8.3s)

B¿, B1 and ûr are constânts. c.., is the angular rotation frequency of 81.

The Hamiltonian for the particle in the magnetic field (8.33) is

H:HolHt (8.36)



where

Ho : -toSJ

H1 : -q(51 cos c¿l - ,92 sin c,:f)

(8.37)

(8.38)

where r,;e is the Larmor frequency (8.1) and

geBt
2tÌL(

(8.3e)

ft determine the time evolution of the system in the magnetic field, in view
of (4.1l), we solve the equation of motion i¡ the interaction picture.

We recall f¡om Section 4.4 Íhaf in the interaction picture the state of the
system I rl'i (l) > satisfies (4.17), that is,

ih*,1,þ'(Ð >: H\(t) l,tt(t) > (8.40)

H:(t) : e+iHotlñ Hf-iva¿lñ (8.41)



Evaluating the dght side of (8.41) using (8.37) to (8.39) yields

Ht(t) : -."1 [,51 cos (a6 - u)t * 52 sin (u6 - u)t] (8.42)

We solve the equations of motion for a spin å pa¡ticle and a spin 1 particle
in the following topics.

.' Spin j particte

Tlre eigenvalues and corresponding eigenvectors of Ho ß.37) are given by
(t1.23) and (8.24).

We take the inìtial st¿te ] ,/r(0) > of the sysrem ro be ground srare of fl¡.
That i.s,

lú(0)>=l+> (8.43)

Tcr solve (8.40) we use (6.1) to write

l,þ'(t) >: Ðor(r) L,
p:t

(8.44)



auft): < plrþ'(t)> (8.4s)

D 1.,(¿)1'? :r (8.46)

It follows from (8.43) that

ar(o) : ór* (8.4'7)

..,i,(/)l r is the probability that the polarization vector of the particle at time

I 1s t1+ l,'.

I o-(¿) 2 is the probability of a "spin flip".

Subsútuting (8.44) into (8.40) yields two coupled first-orde¡ differential equa-

tions fo¡ aa(l) and a-(l). Solving these equations subject to the initial conditions

(8.47) yieÌds

, /L¡ir \ 2 "Qt ó2l,ì+li)l':(nl cos'V*ç

, ...,, l,¿t\2 r0-tla-(/)l-:(0,, s'n--

(8.48)

(8.49)



n: G+6'?

6:u-L¿o

(8.s0)

(8.51)

whele

Comments

l. Resonance function

The function

in (8.48) and (8.49) cha¡acterizes a resonance; it is symmetric about ø : ø0,
has a maximum equal to unity when e : uo and drops to half-maximum
when i.¿ = a¡ t a1.

ûrt characterizes the width of the ¡esonance. The¡e is a sharp resonance if
rd1 << rro, that is, Bl ( ,Bo.

When r¿ = cu'0,

lo+(¿)l'_ "o"tî

l.-(¿)l ': ,i,,'T

(8.53)

(8.s4)

/ Lr1 \
\0/

,: .?
,,2)\a-ùo) +uí

(8.52)



2. Magnetic resonance

It follows from (8.54) that

That is, a spin flip is certain when the angular frequency ø of the rotating
magnetic fietd B-l (8.35) is equal to the Larmor precession frequency ¿¿o (8.1)

and the parlicle is subjected to the rotating magnetic field for the time r fu1.

The particle absorbs energy ñ.c,.,6 from the magnetic freld Ët in making a

trânsition from the ground state | + > to the excited state | - >.

This is the phenomenon of magnetic resonance.

3. Applications of magnetic resonance

Magnetic resonance was first used in the 1940's to det¡¡mine gyromagnetic
ratios of nuclei.

It has since become one of the most widely-used diagnostic tools in all of
science.

One reason for this wide range of applicability lies in the fact that, as seen

fìom (8.1) a¡ld (8.39), the resonance parameters cu6 ând c".r1 depend upon a
numbe¡ of other parameters (Bo, Bt,9, m) which can be controlled or va¡ied
dependìng upon the application under consideration.

Spin 1 particle

r"-(;)r' : ' (8.s5)

The eigenvalues and corresponding eigenvectors of t1o (8.37) are



(J: +frcÐ¡

tz:0

tl: - fi'uso

l.e>:l->

le2>:10>

lel>:l*>

(8.56)

(8.s7)

(8.s8)

where I f >, | 0 > a¡e the eigenvectors of 53 as discussed in Section 7.2.

We take the initial st¿te | ,r(0) > of the syst€m to be ground state of 11¡.
That is.

ld,(o)>:l+> (8.s9)

To solve (8.40) we use (7.35) to write

l,þ' (t)>: Ð "r(Ðlrr..
P=+'0

(8.60)

whers

ar\t):ap. lrþ'(t)> (8.61)



Ð 1,,(¿)l' :r (8.62)

It folìows from (8.59) that

au(O) : 6r* (8.63)

| "r(t) 
t is the probability that the polarization vector of the particle at time

I is pL.

a-(l I 
2 is the probability of a "spin flip".

Substituting (8.44) into (8.40) yields three coupled fi¡st-orde¡ differentia.l

equùtions for a-¡(l), ø¡(l) and o-(f). Solving these equations subject to the

initial conditions (8.63) yields

where O and ó ale given by (8.50) a¡d (3.28).
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I a-rr r, = (#)'(.".,T . S,)'

I a¡{r I 
z : r(#)',;n, }(.o', i - å)

to-(t)t,: (ä)','*T

(8.64)

(8.65)

(8.66)



Comments

l. Resonance function

The ¡esonance function

in (8.64) to (8.66), because of the higher power, characterizes a sha¡per

resonance than (8.52) which appears in the spin I equations (8.48) and (8.49).

When i,: : ø0,

2. Magnetic resonance

It follows from (8.70) that

r'-(")r' : 
'

(8.7 r )

(ä)': (
u2t

)'
(8.67),,2¡

\0 -a0) +uí

løa(r)12:

lae(t) 2:

I a-(t) l'z :

o att
2

sin2 c.r1l

, att
2

(8.68)

(8.6e)

(8.70)



That ìs, a spin flip is cerøin when the angular frequen cy u of the rotâting
magnetic field -B1 (8.35) is equal to the Larmor precession frequency oo (8.1)

and the particle is subjecæd to the rotating magnetic field fo¡ The ttme r f u1.

This is the phenomenon of magnetic resonance.

Energy transitions

The interaction of the magnetic moment of the particle with the magnetic

field -B1 (8.35) does not cause a direct t¡ansition from the ground state | + >
to the second excited state | - >; the Hamiltonian ¡11 (8.38) does not connect

these states directly. The paticle absorbs energy fia¡ from the magnetic field

B-1 in making a transition from | * > to the frrst excited state | 0 >; it then

absorbs fu¡ther energy ñ,as in making a transition from | 0 > to the second

excited state l- >.

The pfobability I a¡(t) l 2 (8.69) that the particle is in the first excited state

0 > has a maximum equal to f: there is leakage to the second excited state

> during the energy absorption process and leakage to the ground state

+ > during the energy emission process.



Chapter 9 OBSERVABLES WITH
CONTINUOUS SPECTRA

9.1 lntroductory remarks

In this chapær we consider the description of a physical system whose

observabìes have continuous values. Such a system is described in a¡r infinite-
dimensional separable Hilbert space. An example of such a system is the single

spinless particle discussed in QLB: Some l¡¡rentz Invariant Systems Chaptel 2.

The position and momentum of the particle have continuous values.

The Dilac method for handling an observable with continuous values is used

thrrrughout QLB. 'îhe Dirac method introduces the notion of an eigenket of
an operator and defines a complex function (wave function) of a rea-l va¡iable

associated with a vecto¡ in the infinite-dimensional separable Hilbeft space.

Our purpose in this chapter is to discuss the Di¡ac method more fu11y than
is given in other parts of QlB. The spectral theorem for Hermitian operators is

discussed in Section 9.2 and the Di¡ac method is discussed in Section 9.3.

The particular case of the position and momentum of a spinless particle

confined to move in one dìmension is considered in Chapter 10.

9.2 Spectral theorem

Centrû-l to the description and analysis of a physical system whose observables

have continuous values is:
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' [ -,o, -,'- I ',""',"',
(e.2)

Spectral Theorem for Hermitian Operators

For each Hermitian operator ,4 defined on a separable Hilbert space there is

a unique family of operators E(a) such that

B(-co) :0

E(+co) : 1

(e.3)

(9.4)

E(a)E(a') : E("')E("): E(minimum of ø and ø/) (9.5)

1: I a dE(a) (e.1)



Comments

l. Nomenclature

(9.1) is the spectral decomposition of ,4.

The value a in the integrand in (9.1) is a spectral value of ,4.

The spectrum of ,4 is continuous in the range (-oo, ¡co).

(9.2) is the resolution of the identity.

In view of (9.5), the family of operators E(a) is a family of projection

operators.

2. Stielties integral

The integral in (9.1) and (9.2) is a Stieltjes integral.

The Stieltjes integral of /(¿) with respect to 9(r)

is defined as

tJ

I J(r) ds(.t) (9.6)

lJ

I f (t) ds?):
tu

lirl | /1(¡;[e(¡¡) - g(¡¡-r )] (e.7)



rY : :t0 < r.7 < ." 1J¿n: þ

z¡-1 ({¡ (z¡

(e.8)

(9.e)

3. Riemann integral and Stielties integral

Tl.re Riemann integral of .f(r)

is the special case of the Stieltjes integral (9.6) when

s(t) : r (9.11)

4. Stielties integral with respect to a discontinuous function

The Stieltjes integral (9.6) of /(z) with rcspect to 9(ø) can be defrned fo¡ a

discontinuous function 9(r).

For example,

lJ

I f t.,\ ,t,,.t"'' (9.10)
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+coI
I f@)dq(x): Í(o) (e.12)

+o<)
r
I dî(t) :1 (9. r3)

where d(r) is defined by

á(z) :11 i¡

:0if

¿)0

z(0
(9.t4)

5. Eigenvalue Decomposition Theorem

The Eigenvalue Decomposition Theorem given in Section 3.2 is a special
case of the Spectral Decomposition Theorem when ,4 is defined on an
r¡ -dimensional vector space:

I-nt I q >,1 oz >,...,1 o,,, > be the eigenvectors of ,4 belonging to
eigenvaÌues a1J02) .. ,aù of A defined on an z-dimensional vector space.

The eigenvectors I o1 ), I oz >,- . . ,l o,, > may be chosen to satisfy
1 a¡, I a¡' t: 6r¡,.

We label the eigenvalues such that -oo < ¿t < a2 <...! ø,, ( fco.

t27



(3.1) and (3.2) follow from (9.1) to (9.5) 'ffhen

E("):Ðlor><orl
"r3"

(9.15)

9.3 Dirac method

Dilac invented a method for haldling an observable with a continuous spec-

trum which does not explicitly involve the Stieltjes inægral. The Dirac method re-
places the Stielde integral by the Riemann integral and uses the Di-rac ó-function.

For example, the Di¡ac method replaces the Stieltjes integrals (9.12) and
(9. 13) by Riemann integrals by writing

d,0(:r) : d,a51r1 (e.16)

where r5(r ) is the Di¡ac á-function.

Regarding the Specual Theorem, the Di¡ac method takes

dÛ(a):dala><a) (9.t7)

which equation introduces the eigenket I o > of A.

t28



Using (9.17) in (9.1) and (9.2) yields

It follows f¡om (9.3) and (9.17) that

(9.20) is the generalization of (9.15) fo¡ a Hermitian operator with a contin-
uous spectrum.

(9.4) follows from (9.20) and (9.5) holds provided

<olo'>--6(a-a') (9.2r)

(9.18), (9.19) and (9.21) give the Di¡ac method for handling an observable
A with a continuous spectrum.
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+co

A= l,l, ln.
.t

+ôo

1: I dala

>a<úl

><al

(e.18)

(e.1e)

E(a) = lda' la'><a'l (e.20)



(9.i8), (9.i9) and (9.21) arc the continuous spectrum analogs of (3.1) to (3.3).

Comments

l. The eieenket | ¿ >

J c > is the eigenket of ,4 belonging to specûal value ¿ of ,4.

I a > is not a vector in the Hilbert space because < o I d > is not finite.

2. Notation for vectors and eigenkets

Throughout QLB we use lowe¡ case Greek letters |ú >,1Ö >, 'to denote

vectors and lowe¡ case Roman letters I " >,1 p ) , " ' to denoæ eigenkets.

3. Wave functions

It follows using (9.19) that

(9.23) defines a complex function r/(a) of the real va¡iable ¿

r¡(o) is the ,4-wave function for the vector I ty' >.

Now

+.x)

I dala>tþ(a)

,þ("):<"1ú>

(9.22)

(9.23)

l/'>=
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< rþ I o > : < " lrþ > " : rþ*(") (9.24)

(9.22) provides a correspondence between a vector ry' > in the the Hilbert
space of states and a function l(a) in the Hilbert space of square-integrable
wave functions.

(9.22) provides a representation of the vector l rþ > by the square-integrable
function r/ (rz).

4. Probabilities

The probability I'(a)da of obtaining a value in the range a to a + da on
measurement of ,4 for the system in the state | ú > is

P(a)da:<rþlo><altþ> da:lú((r)l'zda (9.26)

(9.2s)

+cé
fl:< tbl¡>= I d"<,t, lo><altb>

J

+.x)I
= I lil;(nt 12da.t""



+co +co

l "p¡a": l l,tøll2da:t (9.27)

It follows that

5. Averages

The average Z of the results obtained on measurement of ,4 for the system

inthestatelú>is

(9.28)

+o'rIA=<r,,¡Al,fs= I < ,tt I o > a < a I tb > ,Lo
J

+oo
r: I "l rtt(a) l2eta

.l



Chapter 10 SPINLESS PARTICLE
IN ONE DIMENSION

10.1 lntroductory remarks

QLI): Some h¡rentz Invariant Systems Chapter 2 gives a descripúon of a single

relativistic spinless particle of rest mass r¿. Proofs of some results stated thete

are given in this chapter for a particle confined to move in one dimension.

Position and momentum eigkets and the relationship between them are given

in Section 10.2 and coo¡dinate- and momentum-space wave functions are defined

in Section 10.3. The optimum staæ of position and momentum is given in Section
10.4 and the partial diffe¡ential Schrodinger equation for the wave function of a
noruelativistic puticle moving i¡ a central potential is derived in Secúon 10.5.

Some other derjvations are given in Section 10.6.

10.2 Position and momentum

Fundamental dynamical va¡iables for a spinless particle confined to move in
one dimension particle are the Ca¡æsian coo¡dinate X and momentum P of the

palticle. These va¡iables satisfy the fundamental quantum condition

lx, Pl : zrL ( 10. 1)

X a¡d P are each a complete set of compatible observables; the spectrum of
Y and the specffum of P arc both continuous in the range (--, -).

We use the Di¡ac method as given in Section 9.3 for handling these observ-

ables. We denote the eigenkets of X and P by
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md lp> (10.2)

respectively. These eigenkets may be used as bases for the Hilbert space. That

is,

+oo +c<)tr
7: l,lt lr>(rl: lrlp lpt<p.J .l

(10.s)

<tlr' >: á(,, - "')

<plp' >:d(p-p')

(10.6)

(10.7)

Idr r >¿<¿l

+.x)

ldplp>p<pl

(10.3)

(10.4)

\z-

t)



where ó(z - :r') and 6(p - p') a¡e Di¡ac delta functions.

We show in Section 10.6 that it follows f¡om (10.1), (10.3) and (10.4) that

<rlPlx'>:-ik61 (r-r')

<plxlp' >:ih61 (p-p')

(10.8)

(10.9)

< ¿ lp >: (*1'"',',^ ( 10. 10)

6'fu) : d6_#) (i0.11)

10.3 Wave functions

The state | 'r1,(l) > of the particle at time f is

l,þØ >: U(t) l1þ > (r0.12)

where {/(l) is the evolution operator for the particle a"d I r/ > is the state of
the particle at úme zero.
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The coordinate-space wave function for the particle is

,þ(",t) :< 
" l rl'Q) > (10.13)

and

þ. þ,t)rþ(r,t)d.r (10.14)

is the probability that the position of the particle is between ¿ and ¿ I d'r at

time ¿.

The momentum-space wave function for the particle is

tþ(1t,t) :a p l r/,(Ð > ( 10.1s)

tþ+ (p,t)tþ(p,t)dat (10. r6)

is the probability that the momentum of the particle is between p and p * d'p

at time f .
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< t l P" I ,1,(l) >: ¡ln|" ffirtt1r,r)
(10.17)

< pl x" l ú(¿) >: r,ot *!-ø1r.,¡
(10. i 8)

It follows using (10.5), (10.8) and (10.9) that

whe¡e r¿ is a positive integer'.

It follows using (10.5), (10.10), (10.13) and (10.15) that

Commenfs

I. Fourier transforms

(10.19) a¡d (10.20) show that the coordinate-space and momentum-space
wave functions of the particle a¡e Fou¡ier transforms of each othe¡.

This ¡emarkable ¡esult is a direct consequence of the fundamental quantum

r +c<'

u(¡.1): (r+)' J dp"it'/h,ttt.tt

Ì +co

t'tp.t ) : (#)' J tue-in'/ht¡t1r.r7

(10. r 9)

(10.20)



+oo +(x)
II
I drrP'(r.t)þ(t,r) : I dp$'@.t)ú(p,t)
.t J

-ax)

(10.21)

condition ( 10.1).

It folkrws using (10.5) that

which is Pa¡seval's theorem on Fou¡ie¡ tra¡sforms.

10.4 Optimum state of position and momentum

In this section we specialize the matedal of Secúon 3.4 to consider the

optimum state I d.,oJ,r > of position and momentum.

It follows from (3.16) and (10.1) that the uncertâinties AX and AP in the

position and momentum of the particle in the state I úoe¿ > sadsfy

(AXXAP)
fi
2

Q0.22)

It follows from (2.13) that | þor1 > satisfies

/X_7 P_F\
(-¡X-'' 

^P )lúol>:o
(10.23)

where X and F a¡e the average position and momentum of the particle in the

state | ?ropr >.
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I . l+
úoot(ù : l--]----- | "-;r7/zn"æ"/ñ"-l("-7)tztx)' ço.z+¡' t2n(LX)" I

t , l¡ __
t,.n,,¡t¡t) = I --l. | ";e7 

/za"-;x tlñr-l\o-v)lzael"
lzr(LP)" )

(10.25)

We show in Section 10.6 that it follows f¡om (10.23) that the coordinate-space
and momentum-space wave functions for I tþor1 > are

tþor¡(r) :1 r I 1þopt >

,þ"et(P) :< P I rÞoet >

(10.26)

(10.2't)

Comments

l. Gaussian wave functions

(10.24) and (10.25) are gaussian wave functions.

(10.24) gives a coordinate-space probability function centred at the average
position T of the particle with width dependent on the position uncertainty

^x.
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(10.25) gives a momentum-space probability function centred at the aveÌage
momentum P of the panicle with width dependent on the momentum uncer-
tainty AP.

(10.24) and (10.25) are consistent with the fact that the Fourier transform of
a gaussian function is another gaussian function.

The phase factors in (10.24) and (10.25) have been chosen in order that
(10.24) and (10.25) are related by the replacements

x:ep 7,-P i*-+-i (10.28)

as implied by (10.1) and (10.23).

2. Anotler form for I r/.',n¿ >; the state I r/n >

We show in Section 10.6 that l1Þoet > ma! be written in the form

r,/, .:_ j(Fx-xP)lñ | ^L^I t.opt ):( " l?0> (10.29)

wherelrl¡>satisfies

A ,þo>=0 (10.30)

where

1/ X P\
':'to"+iLP) (10.31)

It follows from (10.30) that
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<,þo I X I úo >:< rþo I P l rþo >: 0 (t0.32)

That is, ] ?r0 > is the optimum state of position and momentum with average
position and momentum both equal to zero.

3. Ladder operator

A defined by (10.31) is a ladder operator (lowerìng operator); that is, it obeys
( 1l.l).

( 10.31) may be written as

^-- 
+(J-+ .'¿ì
V2 \n/ntc trrc /

(10.33)

where the constant c is defined by

AX=

AP=

TK
J2nc

1
"-=nl,C,
t/z

(10.34)

(10.3s)

Choosing c by (11.14) and (11.15) corresponds to regarding the particle as

a non¡elativistic ha¡monic oscillator. I úo > in this case is the ground state

of the oscillato¡.



10.5 Partial differential Schrodinger equation

For a non¡elativistic particle moving in a potential V (X), the evolution

operator is

tr(t) : e-i Hí/ñ (10.36)

and the Hamiltonian l/ is

p2
H -- 2n + y(x) (10.37)

H | ú(t) >: ir"*.I ,þ@ > ( 10.38)

Diffèrentiating (10.i2) with respect to I yields the Schrodinger equation

the cooldinate representative of which

< ,l H l,þ(t) >:;nft < , 1,¡çt¡ > ( 10.39)

using (10.17), becomes



rr2 ð2
-.2n ðf1þ@,t) +

â
V (r)tþ(x,t) : iñ *,þ(r,t)

(10.40)

(10.40) is the partial differential Schrodinger equation for the coordinate-space

wave function ry'(r, f ).

10.6 Some derivations

Derivation of (10.8) and (10.9)

It follows from (10.1) that

<;rl(XP - PX)lxt>:iñ. <,lr'> (10.41)

which, using (10.3) and (10.6), becomes

(r-r') <,lP lt' >:ih6(r-r') (10.42)

It follows using (4.32) rhat (10.42) is solved by

< tl P lx'>: -ifr.61(x- x') (10.43)

which is (10.8). (10.9) follows similarly.

(10.43) is a particular solution of (10.42): it follows using (4.31 ) that the

most genelal solution of (10.42) is

-iñ.61 (r - r') + "6(x - x') (10.44)

where r¿ is real. Now

-iñ.61 (x - "') + oó (" - "')

." l. i(r - r')a l .1: -zhlt - -._-¡lo1(z - z,) : 
"-i(a-x')alñ¡-iñ.61 

(x - x,)) (10.45)
Lnj

=<¿lPlx'>
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where

l, >: "i'o/h 1., > (10.46)

The most general solution of ttO.iZlthe¡efo¡e corresponds to a choice of phase

facto¡ in the position ket. The choice ¿: 0 is standa¡d and car be made without
loss of generality.

Derivation of (10.10)

It follows from (10.4) that

<*)Plp>:p<rlp> (J0.47)

which, using (10.5) and (10.8), becomes

-ifr!.r p>:p<r p> (10.48)
oJ

Similarly, it fbllows from (10.3) that

àifr:- < p lr>:z <plr> (10.49)
up

Integrating (10.48) and (10.49) yields

< r | ¡, >: r1çp¡ein,/ñ ( 10.50)

¡nr l

<Plr>= c2lt)e-xPr/k (10.s 1)

Now
<plx>:<xlpJ
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so

and

cz(r.) : ct- 11,¡¡ 
: constant : c (10.53)

+co

á(,r -,r') :< r ltt r: I o, <'lp><pl r' >
-c' 

(10.54)
+ô<)

: rf I dpcip(r-r'tlñ = ""r 2trñ6lr - rt)
.l

choosing c positive Ë1 yietds (10.10).

Derivation of (10.24) and (10.25)

It fbllows using (10.17) and (10.22) that the coordinate-space representative

of (10.23) is

¡-X ¡P\IL+ ,- - t,r,,,,,(-r):u (10.55)

\d' 2(lx)' h )
Solving (10.55) yields (10.24). (10.25) follows similarly or using (10.20).

Derivation of (10.30)

(10.30) follows from (10.23) and the identities

X-X:DXDt

P - P: DPDT

D _ ei(Fx-Tp)/ñ,

(10.s6)

(10.57)

(10.s8)





Chapter 11 LADDER OPERATORS

11.1 lntroductory remarks

Ladder operators are refer¡ed to in QLB: Som¿ lnrentz Inyariant Systems
Chapter 2 with refe¡ence to countable bases fo¡ the Hilbert space for a single
spinless particle. ln this chapter we give a more complete discussion of ladder
opelators and we derive properties of these operators which a¡e staled in QLB:
St¡me Lorentz Invariant Systems Chapter 2.

Ladder operators we¡e introduced by Dirac to determine the energy eigenval-
ues of the nonrelativistic harmonic oscillator and they subsequently provided an
important bridge in the development of relativistic quantum mechanics.

Dirac's method for determining the eigenvalues of the ladder operator number
operato¡ is given in Section 11.2.

Ladder operators are used in Section 11.3 to determine eigenvalues of angular
momentum operators. The method is due to J. Schwinger; see J. Schwinger, On
AngLtlar Momentum (1952) in L.C. Biedenharn and H. van Dam (1965).

Some derivations ale given in Section 11.4.

11.2 One pair of ladder operators

We consider a¡ operator ,4 which wittr its adjoint Ai obeys

le,tt): t ( 1 1.1)

t4'1



We define a Hermitian operator lV by

N: A+A ( r 1.2)

Vy'e show in Section 11.4 thât it follows f¡om (11.1) ard (11.2) that the

eigenvalues of 1V are the nonnegative integers and the corresponding eigonvectors

are obtåined by operating with powers of ,4f on the eigenvector belonging to

eigenvalue zero.

More specifically,

1r'ln>:nin> ( 1 1.3)

t,,,: fi(e,)" lo, (1 r.4)

and

< n I n' >-- 6,,,,,

r¿ :0,1,2,. . '

(11.5)

(11.6)



Furthermore,

At ln>--J"+tln+1>

Aln+1>:t/r,41,r,

(11.7)

(11.8)

Al0>:0

<01,4t:0

(11.9)

(1 1.10)

Comments

l. Nomenclature

In view of (11.7) and (11.S), 1l and A are called ladder operators; ,.4i is a
raising operator and ,4 is a lowering operator.

,\'' is the iadder operator number operator.

2. Comparison with boson operators

Ai utd A bear some formal similarity to sreators and a¡nihilators defined in
QLB: Quantum M echanics in Fock Space Chapter 6 for a system of identical
bosons. lndeed, the harmonic oscillato¡ ladder operators discussed in Topic
I 1.2. I historically provided a bridge to the description of a sysrem of identical
bosons.
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The similarity between boson operators and ladder operators is only apparent

however: creators and annihilators change the number of particles in a system;

ladder operators do not.

One-dimensionâl harmonic oscillator

We show in this topic that the vectors I n > defined by (1 1.4) are eigenvectors

of the Hamiltonian fo¡ a one-dimensional nonrelativistic harmonic oscillato¡.

The non¡elativistic harmonic oscillato¡ is discussed in depth in all standard

books on nonrelativistic quantum mechanics and these books should be consulted

fclr furthe¡ details. Our purpose here is simply to define ladder operators in

terms of particle position and momentum and to relate the ladde¡ operator number

operator to the harmonic osciliato¡ Hamiltonia¡.

The description of particle of rest mass n¿ confined to move in one dimension

is given in Chapter 10. When the particle is subjected to a fo¡ce

F:-kx (11.r 1)

where ,t is a constant, the Hamiltonian for the particle, in the Galilei approxi-

mrtion, is

D2 l
H :' + !kx2

2tn 2
,,1t.12)
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On defining ,4 by

whete r: is defined bv

fr,u : ¡t¿c2

":rl!,

(1 l. r4)

(11.rs)

it follows from (10.1) that (11.1) holds. á defined by (11.13) is a ladder operator

It follows from (11.13) that

. I / X P\A= Jt\w^"+'*,) (11.13)

t':-!-(¿¡+ò
t/'2tnc r /

e :ff(et - e)

(11.16)

(11.t7)



(r 1.18)

(11.19)

"':;(*)'1, +2AtA+ (et)' + e')

r' :)1,,")'lt +zete- þt)' - a'f

":-(r*|) (11.20)

and theleibre

whe¡e 1ú is given by (11.2).

The eigenvectols of 11 span the Hilbet space, that is,

¡r¡:tln>nczl
r¿:0

co / r\
H:ñ,t)ìlnt(n+i)<,, 

1zJ' \ tl
n:0 \ -/

t:Ëfn><nl
'¡L:0

(11.21)

(tl.22)

(11.23)



L

2.

Comments

Countable set of basis vectors

As given by (11.23), the eigenvectors of 1ú a¡e a countable set of vectors
which span the Hilbert space.

This contrasts with the eigenkets of X and P which are labelled by a

continuous va¡iable and are not vectors in the Hilbeft spaca but which
neveltheless which may be used as bases for the Hilbeft spâce as expressed
by (10.s).

The eigenvectors of l{ a¡e used in QLR: Some lnrentz Invariant Systems

Chapter 2 to provide a countable basis for the Hilbert space for a single
spinless particle.

They ale also used in QLB: Quantum Mechanics in Fock Space Chapter 3 to
provide a countable set of basis vectors for a one-particle system which is
appropriate for developing the occupation number representation for a system
of identical pa¡ticles.

Normal order

(ll.l) has been used to write (i1.18) and (11.19) in normal orde¡, that is,
with nising operators \¡/ritten to the left of lowering operators.

Ladder operator method

We dete¡mine the average and uncertainty of position and momentum for the
oscillato¡ in the ground state | 0 > to illusÍate the ladder operator method.

Using (11.9) and (11.10) with (11.16) to (i1.19) immediately yields

Y-Þ-tl (11.24)



^X 
: J_L

'/2 
tt¿c

^p: L^,
\/2

fL(AxxAP):,

(11.2s)

(11.26)

(11.27)

( I 1.28)

According to (10.22), | 0 > is an optimum state of position and momentum.

Indeed, (11.9) is a special case of (10.30).

4. Coordinate-space wave functions

It follows from (10.24) that the coordinate-space ground state wave function

çôo(¡) :< r l0 > is

^r
ft f tnc

(t.29)

It follows f¡om (l1.7), (11.13) and (10.17) that
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t;u(r): #läQ - *)1" r*o ( 1 1.30)

where rl,,(:r) :< ¿ I t, > is the coordinate-space wave function fo¡ the state

lr,>.
(11.30) allows 1,,(z) to be determined from /6(z). ry',,(r) involves the

Hermite polynomial

11.3 Ladder operators and angular momentum

We consider operators Au, A¿ which with their adjoints ,4i,,,,1j obey

Lt",to1:o

lt",eIu): d"p

(1t.32)

(11.33)

/J,,(-¡)= "t'n(:t-*)" ( 1 1.31)



We define mutually commuting Hermitian operators 1ú",1r'¿, jV by

It fotlows from an analysis similar to that given in Section 11.4 that

tn,,n¿): ffi(ot)'""(aj)"' ¡oo ' (11.40)

N,: ALA,

Nd : AIdAd

1ú:lf"*Iú¿

(11.34)

(11.3s)

(11.36)

Nu I n rn¿ >: r¿u I n,r¡t.¿ >

N ¿ | r,,utr'¿ >: nd I nurrd, >

N I nun¿ ): n, I nun.d )

(11.37)

(11.38)

(11.39)



t¿u+nd:'t¿

nu)'Itd:0,1r2r'"

(11.41)

(11.42)

Furthermore

Ato l,r,na >: Jrrd + 1 | n un¿ J 1 )

Ad n1)'n,d >: \Ç,t+1lnun¿-I >

(11,45)

(11.46)

A"lAn¿>:Q

A¿ | rt.uO >: 0

(tt.47)

(11.48)

Af,|nurt¿>: t/rr,+t lr,

Au)n¿t¿>: Jn,+1lr",

* lr¿a )

-7n¿)

(i i.43)

(tt.44)



We define

?l

t2

J3:

T?'ro"+,tT¡o)

;,,
t\A'oA" - '¿l"Aa)

LþLo"- etoao)

( 1 1.49)

(1 1.s0)

(1 1.s 1)

(11.s2)

It lbllows from (11.32) to (11.36) that

I ¡" ¡tl - ',-,.t'
L¿ \¿ )_ 

otaoc

l(4',,'1 
: 

[{,1',,'] 
: l(4',,'] 

:o

(11.53)

(11.54)



(4' :

Í: jtN,-

f (+.')

¡/d):(¡/-21ld)

(11.s5)

(1 1.s6)

It follows from (11.37) to (11.42) that the eigenvalu", of (-i-)' and .I3 are.

respectively,

ir i-l) where ;:0.-L l I..J\J ,t -". 2.'. 2

,t where tn:j. j-1,...,-j

( 1 1.s7)

(11.58)

On writins

tlr:J+rt¿

n¿:j-m

(11.59)

( 11.60)

it fbllows from (11.37) to (11.42) that



(,r) | jnr >: i(j +l) |i,n >

J3 l¡m >:^li*>

J- | jtrr. >: VSlj + 1) 1n + 1 ) | jnr * I >

J- | jrt, >: JIj + 1) 1nt - Dl jrn - I >

(11.61)

(r1.62)

(11.63)

(tt.64)

1 t .\ /+m / '\ /-rnr:...__ 

-(rl) 

lAr) 100, (11.6s)trt¡t /- Ãr+;¡(l-,"1.

J+ : J1 +iJ2 : ALA¿

J-:Jl -¿12:AIA,

( 1 1.66)

(11.6'7)

Comments

I - Commutation relations

(11.53) and (11.54) are the standard commutation relations satisfied by the

Cartesian components of angular momentum.
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2. Eigenvalues

(11.57) and (11.58) are standard results for the eigenvalues of (-i-)'? anO -r3.

3. Ängular momentum ladder operators

(11.66) and (11.67) define angular momentum ladde¡ operators.

(11.63) and (11.64) a¡e standa¡d ¡esults fo¡ angular momentum ladder oper-
ators.

4. Generators of ,5'[,¡(;])

The discussion of this section can be extended to include any number of
ladder operators.

The generators of ,ltl(;l) can be defrned in terms of th¡ee ladder operators

A,, A¿. A" similarly to the âbove definition of ,5'il(2) generators in terms of
Ar,, A,l.

11.4 Some derivations

Derivation of (11.3)

The eigenvalue problem for 1ú is to solve

^/l)>:llt> 
(11.68)

fìr¡ nonze¡o vector I I > a¡d constant ì.

It follows from (ll.l) and (11.2) that

LN,AI:-A 1ll.ó9)

T ,llN.A'l: At (il.70)LI

1ól



and therefore

and

(l1.71)

(1t.72)

(11;73)

(11;t4)

lt follows fìom (11.71) and (11.72) that

^¡.4 
1À>:(À_1),4 1À>

<A^lA^>:)<)ll>>0

¡/,4t1)>:()+1).4r1)>

< At^l AI^>= ()+1) < À | À > > o

)>0

AJo>:o

(11.75)

(11.76)

It follows also from (11.73) rhar J 0 >, .41 l0>, (,41)'? l0 ), .. tre
eigenvectofs of -N are belonging to eigenvalues 0,1,2., .., respectively.

That there are no eigenvalues between 0 and I follows from (11.71) and

(11.75). That there are no eigenvalues between 1 and 2 a¡d between 2 and 3

etc. follows f¡om (11.73).

The norm of rhe vecrors ,41 | 0 >, (,4i)' | 0 >, ... is expressed in terms

of the norm of 0 > by (11.74).

This completes the proof of (i1.3).



Appendix: Mathematical Preliminaries

4.1 Some properties of operators

Joldan (i969) should be consulted fo¡ the mathematics of linea¡ and antilinea¡

operùtors for quantum mechanics. We give a few properties of these operators

below.

Linear operators

A lineu' operator ,4 satisfies

Aa: øA (A.l)

for ùny constant ø. The adjoint ,41 of a linear operator ,4 is defined by

<,1, IAt:<ArþI (4.2)

Antilinear operators

An antilinear operator A satisfies

Ai: -iA (A.3)



The adjoint AT of an antilinear operator A is defined by

<rþlAiló>:<Arþló: (4.4)

Linear unitary and antilinear antiunitary operators

Linear unitary operators and antilinea¡ antiunitary operators pteserve the norms

of states. They satisfy

trrl:Ulu:1 (A.s)

Notation for the inverse of an operator

4: te-t : B-1 A
B

when lA, Bl: 0 (.A.7)

1

Ã
¡-l (A.6)



4.2 Commutator and anticommutator identities

The commutator [A, B] and anticommutator lA, B] of linear operators A utd B
are defined as

lA,Bl:AB-BA

1A,B):AB+BA

(4.8)

(A.9)

It fbllo\ s that

frt,rt] -_ -tA,Btl

{r,,rt} : {A, B}l

(4.10)

(A.11)

lå "l

{; "}

: -!tt.at!A' 'A

- 
1r, o, 1

- A\"1"J A

(4.12)

(4.13)

lA, BCI: lA, BIC + BlA,cl: {A, B}c: - B\A,C}

ÍAB,Cl: AIB,Cl+ LA,c]B : AIB,C] - {A,C}B

(4.r4)

(4.15)



lAB,CDl: AlB,ClD + CÍA, DIB +lA,clBD + c AlB,Dl

: ALB,C]D + CIA, D]B + IA,CIDB + ACIB, DI
(A.16)

: AlB,ClD - C\A,D)B - {A,C}BD + CAlB,D\

: AIB,C:)D _ C{A,D}B + IA,C}DB _ AC{B,D}

LA,IB, cll + LB,lc, All+ [c, [.4, B]l : o (4.17)

À+B A B _!IA.B1e'-,- : (:--e- e 2i , r rr lA, lA,Bll:lB,lA,Bll:0 (A.18)

eABe-A: B +lA,Bl+ itA,lA,Bll+... (4.1e)

A.3 Summation conventions

Repeated Roman indices

We use the convention that repeated Roman indices a¡e summed 1 , 2, 3. That

is.

AJ BJ

3

implies \,+i a'
J:7

(A.20)



Repeated Greek indices

We use the Einstein summation convention that repeated Greek i¡¡dices a¡e
summed 0, 1, 2, 3. That is,

At" BP implies
3

l*a' (4.21)

4.4 Miscellaneous symbols

Kronecker delta 6;r.

6tt : 6zz: ósrÌ : 1

ó,¡:0 (j+k) (4.22)

Kronecker delta 6r',,

60o : á1r : 622: 633: l

6P,:o (pI,) (4.23)

Dirac delta ál¡) and 6-l¡)



6(r:) and 6"'(z) are defined by

It f-oìlows that

á(-r):6(¡)

6'"(-r) : (-)*6-(")

(4.2e)

(4.30)

á(z) :0 if "+0

:co if r:0

I b(r)dr :1

s,nt."t-{i(x)
tl:¿^

(A.24)

(A.2s)

(^.26)

+c<,

I 6(" - b)f(b)db: Í(a)

Llnf(a)
/ r-1,, - b)Íltù,1b: ;' :J aa"'

(4.27)

(A.28)



' 
I

| , (t,- k') =T [ 
0,,',,(r'r')j¡(ktr) ,o.rr, 

I| '¿
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álr): j I 

"ikt 
¿¡

2¡¡ J

+co:î
,t1lr): -1 I I"ik'rl.A,

2tr J

(4.36)

(A.37)



Levi-Civita permutation symbol e;+r

eir¿ is defined as the totally antisymmetric quantity with

etzs : 7 (A..3e)

It follows that

( jkt€ jmlr : 6k^6u, - 6¡r6t^ (A.40)

Permutation svmbol rPtd"

ri'¡'"' is defined as the totallv antisymmetric quanúty with

0123 (A.41)

Metric tensor o/"

.gi "' is defined bY

^00 -ll -.22 - ^33 - rq :-9 =l

JP' :0 (p I ,)

gp, : g,

(4.42)

(A.43)



It fi)llows thar

gþo go, : 6þ, (A.44)

4.5 Raising and lowering indices

4.6 Dot and cross products of operators

We define

A'B:ntBt

A.B : ApBp : Ap Bp :,So Bo - Ã. É

-ri
lÃxB) :ei*AkBt

(4.49)

(4.50)

(A.s1)

A,: gwAv

ÁlI - ^Pv A
''_J!\u

Arv : groAo'

Ap, : gpogn Ao'

(A.45)

(4.46)

(4.47)

(4.48)



Ã. (Ã " É) : o ir lei,ß): o (4.s2)

We wriæ

Ã.Ã:t, (4.s3)

The superscript 2 thus refers both to the 2-component of a triad na ¡o Ã. Ã.
Which mealing of ,42 pertains will always be clear from the context.

The dot and cross products (4.49) to (4.51) are only used for operators which
tlansfoûn like vectors unde¡ rotations.

4.7 Rotation matrices

Rotarion marrices 11(0),12(0),"^3(â) are defined by
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,,(,): (å ::,:, ,*;)

",,,,: (,ï, : .li)
"'r,r : (l:lf, :î3 i)

(4.s4)

(4.s5)

(A.s6)

That is

,t"o(0) -- 6o6cos0 ¡ 6¡"6¡r.(7 - cosd) * e¡otsirl (A.57)

(4.54) to (,A.56) a¡e involved in coordinate transformations under rotations.

12(¡J) and r'3(1,) are identical to M(ll) and M(1), respecrively, on page 65, Rose
( 1es7).

4.8 Lorentz transformation matrices

Lorentz transfo¡mation matrices 11(u),12 (u), t3(u) are defined by
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,',,,: (j:l'i:' 
;:ïi' 

: i)

,',",:(-.n 
å î- i)

,,,",:(j::i: ;: .r")

(A..58)

(A.se)

(4.60)

That is,

lrP,(u): 6t",

(4.61)

+ (a"o,l'o + aeraer) (costr u - 1) - (tr oa', + óer6ero) sinh u

p labels the rows and rz labels the columns of lr(u).

(4.58) to (4.60) a¡e involved in coordinate transformations unde¡ Lo¡entz boosts.



4.9 Pauli matrices

Pauli matrices or)os)oz are defined by

It follows that

, lo r\
",:ø':(r 0)

. /o -t\on:"": 
\r 0 )

o.-_ ot:(r o \- \0 -r)

(4.62)

(4.63)

(4.64)

oj ok : 6jt ¡ ie ,¡Ft

(u 4(u u):Ã È+¡a (Ã"É)

(a Ã)' : Æ ir lti,ñ):o

(4.65)

(4.66)

(4.67)

eoot : coslt a -l- al sinh a (A.68)



4.10 Dirac matrices

Di¡ac matrices al , a2, a3, p satisfy

Dilac ¡epresentation:

Each elemer't in the matrices on the right side of (4.72) and (4.73) is a 2 x 2

m aüix.

A.11 7-matrices

'¡-matrices 1o , ^lt ., ^12 , ^13 ,.15 a¡e reiated to Dirac matrices a1 ,o2,o3, B by

1'76

{.i,"0\ :zt,o

{"j ,þ} : o

A2:t

(4.69)

(4.70)

(4.71)

,j:(0
\o'

t= ("

",\o)

o\
-r)

(4.72)

(4.73)



o^'l' = It

^,i - ,¿ ^i] _ PLI

^,5 - ^,_ _ ;^,0^,1^,2^,3t - t5-.t I I I

(4.74)

(A.75)

(4.76)

lt follows that

I't','v'j :2sP'

{r5,r'} : o

(4.77)

(,{.78)

6o)' : -(1')' : -(t')': -(r')' : (75)2 : r @.'Ìs)

^ t'ï - ^,0 ^,p ^ot-ttt

0i 0^|':^|

^,ii _ ^.i

5+ s^|':7

(4.80)

(4.8i)

(4.82)

(4.83)



Dirac representation

Weyl representation

(4.84)

(A.8s)

(A.86)

n lr o\t:\o -t)

.¡-(o "'\/ -\_or 0)

": 
(? å)

(A..87)

(A.88)

(A.89)

.o:/0 r)
' \r 0)

^¡:( o "'\' \-o' o/

o l-l 0\
1-:ll' \0 r)



Chiral representation

Comments

1. Notation

Each elemenr in the marrices on rhe right side of (4.84) to (A.92) is a 2 x 2
m atrix.

2. Unitary transformations

Let

1

Il- = 
-11 

*'v'.vu ì- ,/,

V+ : U'+ : +.'/510

(A.e3)

(4.94)

n /o -1\t =\_, 0 )

',j : (!,, i)
, lt o\t:\o -t)

(A.90)

(4.91)

(A.92)



,,r I ,. _ s oru+: /:-t1 +'l ^l )- \/,¿

Vt:*1 'Y :-V+

(4.e5)

(4.96)

l)L1 lJ,:f1

ü.^,irì - ^,i

ll!1 I/\ = -ln

I/-'-us.uoIll : ",'5 "ro

(4.e7)

(A.e8)

(A.ee)

(4.100)

3. Dirac, Weyl and chiral representations

V¡1ov]: -^,0

v*'v]: I
v¡15v]: _915

V+1510v]: 1510

(A.101)

(4.102)

(4.103)

(4.104)
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The Dirac, Weyl and chiral representations a¡e related as follows

U¡$,r,*IJ1r: fi"r1

II -t!. ¡+ :.p_._ - /drlac_ - /chrral

v*t urvj: 7Ír,i,,:

(A.i0s)

(4.106)

(4.107)
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