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Preface

The six volumes of notes Quantum Leaps and Bounds (QLB) form the basis
of the introductory graduate quantum mechanics course I have given in the
Department of Physics at the University of British Columbia at various times
since 1973,

The six volumes of QLB are

» Introductory Topics: a collection of miscellaneous topics in introductory
quantum mechanics

*  Scattering Theory: an introduction to the basic ideas of quantum scattering
theory by considering the scattering of a relativistic spinless particle from a
fixed target

v Quantum Mechanics in Fock Space: an introduction to the second-quantization
description of nonrelativistic many-body systems

*  Relativistic Quantum Mechanics: an introduction to incorporating special
relativity in quantum mechanics

*  Some Lorentz Invariant Systems: some examples of systems incorporating
special relativity in quantum mechanics

*  Relativistic Quantum Field Theory: an elementary introduction to the relativis-
tic quantum field theory of spinless bosons, spin % fermions and antifermions
and to quantum electrodynamics, the relativistic quantum field theory of elec-
trons, positrons and photons

QLB assumes no familiarity with relativistic quantum mechanics. It does
assume that students have taken undergraduate courses in nonrelativistic quantum
mechanics which include discussion of the nonrelativistic Schrodinger equation
and the solutions of some standard problems (e.g., the one-dimensional harmenic
oscillator and the hydrogen atom) and perturbation theory and other approximation
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methods.

QLB assumes also that students will take other graduate courses in condensed
matter physics, nuclear and particle physics and relativistic quantum field theory.
Accordingly, our purpose in QLB is to introduce some basic ideas and formalism
and thereby give students sufficient background to read the many excellent texts
on these subjects.

I am happy to have this opportunity to thank my friends and colieagues LK.
Affleck, R. Barrie, B. Bergersen, M. Bloom, J. Feldman, D.H. Hearn, W.W. Hsieh,
R.1.G. Hughes, F.A. Kaempffer, A.H. Monahan, P.A. Kalyniak, R.H. Landau, E.L.
Lomon, W. Opechowski, M.H.L. Pryce, A. Raskin, P. Rastall, L. Rosen, G.W.
Semenoff, L. Sobrino, F. Tabakin, A.W. Thomas, W.G. Unruh, EEW. Vogt, G.M.
Volkoff and N. Weiss for sharing their knowledge of quantum mechanics with me.

I also thank my wife, Henrietta, for suggesting the title for these volumes
of notes. Quite correctly, she found my working title Elements of Intermediate
Quantum Mechanics a bore.
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Chapter 1 INTRODUCTORY REMARKS

This volume of QLB contains a collection of miscellaneous topics in intro-
ductory quantum mechanics. Our purpose here is to define basic concepts and
illustrate notation used in all volumes of QLB and to give some simple examples
of introductory quantum mechanics.

Chapter 2 gives a brief overview of the language, mathematics and machin-
ery of quantum mechanics. Average and uncertainty and pictures of guantum
mechanics are discussed more fully in Chapters 3 and 4.

The density operator formalism is discussed in Chapter 5.

Spin states of a spin % and 1 particle are given in Chapters 6 and 7,

respectively, and the interaction of a particle with spin with a magnetic field
is discussed in Chapter 8.

The mathematical formalism for handling observables with continuous values
is discussed in Chapter 9 and the application of this formalism to the special case
of a spinless particle confined to move in one dimension is given in Chapter 10.

Ladder operators are defined and discussed in Chapter 11.
The Appendix contains mathematical preliminaries.

The velume concludes with lists of selected reference books, journal articles
and theses.







Chapter 2 OVERVIEW OF
QUANTUM MECHANICS

2.1 Introductory remarks

We briefly review the language, mathematics and machinery of quantum
mechanics in this chapter.

The language of quantum mechanics is given in Section 2.2; the principles of
quantum mechanics are given in Section 2.3; the principles of special relativity are
given in Section 2.4; the mathematics of quantum mechanics is given in Section
2.5 and the steps for setting up the machinery of quantum mechanics are given
in Section 2.6.

2.2 Language of Quantum Mechanics

l. Quantum Mechanics is the description of matter and radiation in all its
details and in particular of the happenings on the atomic and subatomic
scales. Quantum mechanics deals with states and observables of physical
systems. Built into the machinery of quantum mechanics is the notion that
a measurement of an observable of a physical system in general disturbs the
system and changes its state.

2. A physical system is a system of physical objects which can be isolated from
the rest of the physical world.

3. A stafe of a physical system is the result of a series of physical manipulations
on the system. These manipulations are said to prepare a state of a system or

to prepare a system in a state. States are either pure or mixed.

4. A pure state of a physical system is characterized by the existence of an
experiment which gives a result predictable with certainty when performed
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on the system in that state. We generally use lower case Greek letters | 1) >,
| ¢ >, | x >, etc., to denote pure states.

5. A mixed state of a physical system is characterized by the absence of any
experiment which gives a result predictable with certainty when performed
on the system in that state. Mixed states are generally easier to prepare than
pure states. We will nevertheless not deal with mixed states in most of GLB;
unless stated otherwise all states referred to are pure states. !

6. An observable of a physical system is an aspect of the system which is
measurable. A measurement consists of the manipulation of apparatuses and
the eventual reading or recording of a scale. We generally use upper case
Roman letters A, B, C, etc., to denote observables.

7. Observables A and B of a physical system are compatible or simultaneously
measurable if measurement of one subsequent to measurement of the other
does not change the state of the system. That is, if a measurement of A yields
a and a subsequent measurement of B yields &, then A and B are compatible
if a subsequent measurement of A yields a and a subsequent measurement
of B yields b.

2.3 Principles of Quantum Mechanics

1. Only probabilistic statements about the results of a measurement on a physical
system can be made.

2. The probability that a system be in the state | ¥ > when it is known to be
in the state | ¢ > is

<xl|v>|? 2.1

Chapter 5 contains a general description and discussion of mixed states. QLB: Scattering Theory
Chapter 3 contains a description and discussion of mixed states in scattering theory.



The complex number < x | ¢ > is the probability amplitude that the system
be in the state | y > when it is known to be in the state | ¢ >.

3. If | ¢y >,| ¢2 >, -, | ¢n > are all the possible outcomes of a measurement
of the state of a system, then for any states | y > and | ¢ >,

<xl¥>=) <xi¢><dr|vp> 2.2)
k=1

(2.2) is the Principle of Superposition.

2.4 Principles of Special Relativity

1. The laws of physics are the same in all inertial frames.

2. The speed of light in empty space always has the same value.

2.5 Mathematics of Quantum Mechanics

1. A pure state of a physical system corresponds to a unit norm vector on a
separable Hilbert space. Unit vectors which differ only by a phase factor
describe the same state. We use the same symbol to denote both the state
and the corresponding vector.

2. A mixed state of a physical system corresponds to a nonidempotent, unit trace,
nonnegative Hermitian operator {(density operator) on a separable Hilbert
space. A mixed state cannot be represented by a unit norm vector.

3. An observable of a physical system corresponds to a Hermitian operator
on a separable Hilbert space. We use the same symbol to denote both the
observable and the corresponding Hermitian operator.



A measurement of the observable A yields one of the spectral values o of
A. Every spectral value a of A is a possible result of a measurement of A if
a system is in a general state | o) > prior to the measurment of A.

If o is an eigenvalue of A, the probability of obtaining the value a on
measurement of A for a system in the state | ¢ > is

1< ga |9 > 2 (2.3)

where | ¢, > is the eigenvector of A belonging to eigenvalue a.

The system is in the state | ¢, > immediately after the measurement of A,
| ¢q > 1S an eigenstate of A.

A measurement in general disturbs a system such that it causes a change in
the state of the system. If a system is in an eigenstate | ¢, > before the
measurement of A, however, then measurement of A yields ¢ with certainty
and the state of the system is not changed by the measurement.

If a is a continuous spectral value' of A, the probability of obtaining a value
in the range (a,a + da) on measurement of A for a system in the state | ¢ >
is

| () | *da (2.4)

where

la)=<alyp> (2.5)

Observables with continous spectra are discussed more fully in Chapter 9.



and where | @ > is the eigenket of A corresponding to spectral value a. The
system is in the state

a4-da
/ da | a > 9¥(a) (2.6)

immediately after the measurement of A.

If a measurement of A for a system in the state | ¢» > is made a large number
of times (by which one means: first prepare a system in the state | ¢ >, then
measure A, then prepare the system in the state | ¢ > again, then measure
A again, and so onl), then

A=<p | Al1h> (2.7)

is the average of the results obtained.”

8. The uncertainty AA in the result of measurement of A for a system in the

state | 1) > is the root mean square deviation of A. That is,?

.AA:¢<¢MA—EH¢>=HM—EH¢>H (2.8)

(8]

Oune does not always do it this way in practice. For example, as discussed in QLB: Scattering Theory,
for experimental efficiency in scaftering experiments, one prepares a beam of identical particles and
directs this beam at a target of identical particles.

Average is discussed more fully in Chapter 3.
Uncertainty is discussed more fully in Chapter 3.



Alternatively,

AA = /A7 — (&) (2.9)

9.

For a measurement of two observables A and B for a system in the state
| 1 >, the uncertainties AA and AB obey the uncertainty relation

(AANAB)Y> = | A, B] | (2.10)

[Sy R

where

[A,B] = AB — BA (2.11)

is the commutator of A and B.!

i) A and B are compatible observables if and only if

[A,B] =0 (2.12)

The commutator is therefore a basic mathematical entity in QM since it
displays which observables of a physical system are compatible.

(2.10) 15 derived in Chapter 3. It is shown also bow (2.10) leads to the time-energy uncertainty relation.
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i) | tYop: > is an optimum state of A and B if the equality in (2.10) holds.

| 1 opt > satisfies the eigenvalue equation!

A-A B-B
; o 2.1

where A and B are chosen such that

[A,B]=i|[A B]| (2.14)

10. The physical content of quantum mechanics is unchanged if every state | ¢ >
and every observable A of a physical system are replaced by

Ul > (2.15)

UAUt (2.16)

where {/ is a linear unitary operator or an antilinear antiunitary operator.
Each [/ is thus said to provide a picture of quantum mechanics.?

Except where explicitly noted, we always use the Schrodinger picture of
quantum mechanics, that is, the picture of quantum mechanics where the
states of the system change with time and observables which are not explicitly
time-dependent remain unchanged in time.

' {2.13) is derived in Chapter 3.
Pictures of quantum mechanics are discussed more fully in Chapter 4.

(%]
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The Heisenberg picture of quantum mechanics, where observables of the
system change with time and states remain unchanged in time, will be used
occasionally. It will be clear from the context when the Heisenberg picture
is being used.

2.6 Machinery of Quantum Mechanics

In order to describe a given physical sysiem using quanturn mechanics one

does the following:

L.

Specify a set of fundamental dynamical variables for the system. This is a
complete set of independent operators in terms of which all observables of
the system can be expressed.

Specify the fundamental algebra of the set of fundamental dynamical vari-
ables. This is a set of algebraic relations satisfied by the set of fundamental
dynamical variables.

Select a complete set of compatible observables for the system.

Specify the Hilbert space of the system through spectral resolution of the
complete set of compatible observables. Thus one constructs an orthonormal
basis for the space, each basis ket being a simultaneous eigemvector or
simultaneous eigenket of all elements of the set of compatible observables.

For a Lorentz invariant! or Galilei invariant physical system, determine the
Poincare generators or Galilei generators for the system in terms of the
fundamental dynamical variables. In particular, determine the Hamiltonian
and the evolution operator for the system.

There are, unfortunately, no general rules for the accomplishment of these steps.

i

Lorentz invariant systems are discussed in QLB: Relarivistic Quantum Mechanics.
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Chapter 3 AVERAGE AND UNCERTAINTY

3.1 Introductory remarks

In this chapter we prove various statements about the average and uncertainty
of an observable which were stated without proof in Chapter 2, In particular, the
eigenvalue equation for the optimum state of two observables is derived and the
time-energy uncertainty relation is derived and discussed.

3.2 Average

It is stated in Chapter 2 that if a measurement of an observable A for a
physical system in the state | «» > is made a large number of times then the
average A of the results obtained is given by (2.7).

Verification of (2.7)

We verify that (2.7) holds for a physical system which can be described in an
n—dimensional vector space. The verification for a physical system described in
an infinite-dimensional separable Hilbert space is given in Chapter 9.

Central to the description and analysis of a system whose observables have
at most n values is:

The Eigenvalue Decomposition Theorem for Hermitian Operators

Every Hermitian operator A defined on an n—dimensional vector space can
be written in the form

13



A:Z|ak>ak<ak| (3.1)

k=1
where
i
1= lap><ay] (3.2)
k=1
< ap 1 apr > = O (3.3)
The real numbers ay, ag, - - -, a,, are the eigenvalues of A belonging to the eigen-
vectors | a; >,| ag >, -, | an > of A

(3.2) states that | ay >,! ag >,---,]| a, > span the vector space.

The probability P(a;) of obtaining the value a; on measurement of A for
the system in the state | ¢ > is

Plap) =<9 lap><ap | ¢ >=|<ap|¢>|? (3.4)

It follows from (3.2) that

T

S Pa) =Y <pla><alv>=<yplé>=1 (5
k=1

k=1

14



as required.

If measurement of A for the system in the state | ¢ > is made a large number
of times, the average A of the results obtained is

7
A= "aql<a|d>]* (3.6)

k=1

It follows from (3.1) and (3.6) that

T

E:Zak |< ay | ¢ >] 2=Z(%<7,biak >< ap | >
k=1 k=1
(3.7)

n
=<¢|> la>qg<aq|p>=<p|A|p>
k=1
which is (2.7).

3.3 Uncertainty

It is stated in Chapter 2 that for a measurement of two observables A and
B for a physical system in the state | 1 >, the uncertainties A4 and AB obey
(2.10). This statement is proved below.

Proof of (2.10)

Let

)
I
S
|
N

(3.8)



It follows from (2.8) and from Schwartz’s inequality that

(AA)AB) =|| Ap || || B¢ ||

> |< Ap | B >|=l< o | AB | >|

Now
and

S0

. 1 ~ 1
<‘:;’)|AB|1/;>:§<1/;|{A,B}|¢>+§<1/;|[A,B]|¢>

Now o
< | {A,B} | ¥ > is areal number

and
< |[A B]|¥ > is an imaginary number

since {/3[, E} and i[A, B] are Hermitian.

It follows from (3.12) to (3.14) that

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

I

< | AB | ¢ >|= —\/(< o1 {A B} v ) 4 (<0 114,81 )’

2
1 b ==
> S |< | [4.B) 1 >I= 5 TAB])

(2.10) follows from (3.9) and (3.15).
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3.4 Optimum state

| op > is an optimum state of A and B when the equality in (2.10) holds.
That is,

| [A, B] | (3.16)

| —

(AA)AB) =

N

when the system is in the state | ¢ o5 >.

It is stated in Chapter 2 that | o > satisfies (2.13). This statement is
proved below.

Proof of (2.13)

It follows from the proof of (2.10) that (3.16) holds if and only if
| A || || B || = |< Ay | By >| (3.17)
and '

<o {A’,'B} | >=10 (3.18)

where A is defined by (3.8).

(3.17) holds if and only if
| Bip >= A | A > (3.19)
where A is a constant, and substitution of (3.19) into (3.18) yields

A+ M) < Ay | Ay >= 0 (3.20)

17



(3.20) holds if A = ¢r where r is real, substitution of which into (3.19) yields
By >=ird|¢ > (3.21)
and
<¢|B=—ir<op|A (3.22)
(2.13) follows from (3.21) and (3.22).

Comments

Compatible observables

(3.19) and (3.20) hold also if

Al¢g>=0 (3.23)
and

B¢ >=0 (3.24)
(3.23) and (3.24) are a special case of (2.13).

In this case, | % > is a simultaneous eigenvector of A and B and A and B
are the corresponding eigenvalues.

(3.23) and (3.24) hold when A and B are compatible observables, that is,
when

[4,B] =0 (3.25)

2. Optimum state of position and momentum

The coordinate-space wave function for the optimum state of position and
momentum of a particle with rest mass m and spin s is a gaussian function.

This fact is demonstrated in Chapter 10 for a spinless particle confined to
move in one dimension.

18



3.5 Time-energy uncertainty relation

We show that

(AE)(Atmin(t)) = <k (3.26)

b =

where AF is the uncertainty in the energy of the system and A¢p;,(t) is the
smallest time interval required at time ¢ to measure a change in the system,

(3.260) is the time-energy uncertainty relation.

Proof of (3.26)

The proof involves the uncertainty relation (2.10) and equation (4.7) for the
average,

Choosing B = K in (2.10) and writing AH = AE, it follows from (2.10)
and (4.7) that

1, dA(t)
(AE)AA) 2 5h|—= | (3.27)
On defining At4(t) by
dA(t)  AA
| dt | At 4(t) (3.28)
(3.27) becomes
(AB)(Ata(t) > =F (3.29)



(3.29) holds for every observable A of the system.
(3.26) follows from (3.29) where At,,;,(2) be the minimum A 4() for all A.

Comments

The meaning of At4(#) and At (1)

It follows from (3.28) that At 4(t) is the time interval required at time ¢ for
the average A of A to be changed by the uncertainty AA of A.

At 4(t) is the time interval required at time ¢ to measure a change in A.

Atyin(7) is the smallest time interval required at time ¢ to measure a change
in the average value of some observable of the system.

Atyin(t) 1s the smallest time interval required at time ¢ to measure a change
in the system.

State whose energy is uncertain

1t folows from (3.26) that

i, if the system is in a state such that the uncertainty in the energy is AFE,
then it takes a time interval of at least

—;-ﬁ/AE (3.30)

to measure a change in the system.

20



ii. if it takes a time interval of at least At to measure a change in the system,
then the system is in a state such that the uncertainty in the energy is

%ﬁ/At (3.31)

Comparison with momentum-position uncertainty relations

As stated in QLB: Relativistic Quantum Mechanics Chapter 6, Heisenberg’s
Uneertainty Relation for centre of mass motion of a system is

(Ai’") (Apk) > %ﬁcsjk (3.32)

- where X is the centre of mass position of the system and P is total momentum -
of the system.

Given that H/c¢ and P are the components of the energy-momentum four-
vector, one is tempted to try to package (3.26) and (3.32) into an egvation
involving a space-time four-vector. As tempting as this is, it does not work

because of the asymmetry of position and time in quantum mechanics: X,
like P and H, is an operator and time is a parameter. This asymmetry is
reflected in the derivations of (3.26) and (3.32): the former requiring an
interpretation of At,,;,(¢) and the latter following immediately from (2.10)
and the fundamental equation

X7, PH] = insjp (3.33)
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Chapter 4 PICTURES OF
QUANTUM MECHANICS

4.1 Introductory remarks

The nhuciral cantant of anantnm mae M~ oI0 ~ fad A tat
EREVIRO IS feP v I W AR W SR C e S M St VR LA B b QR S ST vl § 34 Yory o
and every observable A of a physical system are replaced by
Ul > @.1)
UAUT (4.2)

where [/ is a linear unitary operator or an antilinear antiunitary operator. Each {/
is thus said to provide a picture of guantum mechanics.

In this chapter we consider three pictures of quantum mechanics: the
Schrodinger picture, the Heisenberg picture and the interaction (or mixed) picture.

The Schrodinger picture is generally the easiest to conceptualize and work
with.

The Heisenberg picture is uwseful for defining observables (velocity, force,
torque} which are time rates of change of other observables.

The interaction picture is useful when there is a natural separation of the
Hamiltonian for the system into a simple part and another part (the interaction)
which might not be simple.

Except where explicitly noted, the Schrodinger picture is always used in QLB.
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For simplicity in this chapter, we only consider observables which do not
depend explicitly upon time.

4.2 Schrodinger picture

In the Schrodinger picture, an observable of the system is constant in time
and a state of the system evolves in time according to

L p(t) >=U(t) | ¥ > (4.3)

| 4+ > is the state of the system at time zero, | ¢(¢) > is the state of the system
at time ¢ and

Uty = e tHU/R (4.4)

is the evolution operator for the system. H is the Hamiltonian for the system.

The average A(t) of an observable A for the system in the state [)(t) > is

At) =< p(t) | Al v(t) > @4.5)

It follows on differentiating (4.3) with respect to ¢ that | (t) > satisfies the
Schrodinger equation

() = 1 | w() > 4.6)

24



It follows on differentiating (4.5) with respect to ¢ that A(t) satisfies

Ld—
ifi—A(t) = A, 1] 4.7)

4.3 Heisenberg picture

In the Heisenberg picture, a state of the system is constant in time and an
observable of the system evolves in time according to

Al = UT (AU (1) (4.8)

It follows from (4.3), (4.5) and (4.8) that the average A(#) of the observable
A(t) for the system in the state | o > is

AWy =< v { A@) | ¥ > (4.9)

It follows on differentiating (4.8) with respect to ¢ that A(¢) satisfies the
Heisenberg equation

LdA@)
ihi= = = [A(t), H] (4.10)

25



4.4 Interaction picture

The interaction picture (or mixed picture) provides an alternative to the
Schrodinger and Heisenberg pictures when the Hamiltonian H is written as

11'11-:}1][} t{'" iti (4.11)

The evolution operator (4.4) is written as
Ut) = Up (1)UL (1) (4.12)
U(t) = e~ tHot/R (4.13)

States and observables evolve in time in the interaction picture. A state
evolves in time according to

L' (t) >=Uh(t) [ ¥ > (4.14)

An observable evolves in time according to

A1) = U ) AU (2) (4.15)
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The average A(t) of the observable A'(t) for the system in the state | ¢'(¢) >
is

A =< ¢'(1) | A() | /(1) > (4.16)

| ¢'(¢) > and A'(#) satisfy

mdii (L) = H() | () > 4.17)

iﬁifl(;;—t) = [A'(t), Ho] = UL(£)[ A, HolUo(2) (4.18)

Proof of (4.14), (4.15), (4.16) and (4.18)

(4.14), (4.15) and (4.16) follow on substituting (4.3) and (4.12) into (4.5):
Alt) =< () | Al () >

=< U9 | A UB)p >=< Up()h (80 | A 1 Ug()Ui (1) > (4.19)

=< U009 | U3 (1) AUG(2) | Dh () >=< ¢'(t) | A'(2) | /(1) >

(4.18) follows on differentiating (4.15) with respect to {.

Proof of (4.17)
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It follows from (4.4) and (4.13) that
'ﬁduuy—HUu)
NI -

d
Sty _
zﬁdt[ Q(t) H[)Uo(t)

and from (4.12) and (4.21) that

L d . d

| AUy (¢
mm+mmwﬁ¥

dUp(t)

_ ;5 2olt)
A

AUy ()
dt

It follows from (4.11), (4.12), (4.20) and (4.22) that

i (1)
dt

= HgUg(i)U] (t) + ZﬁU{)(t)

iU 1) = (H — Ho)Us(£)Un(2) = HiUs(8) U (2)

from which

AU (1)
dt

using (4.15). (4.17) follows from (4.14) and (4.24).

if = UL () H\Ua()Us (8) = H} (1)UL (1)
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Chapter 5 DENSITY OPERATORS

5.1 Introductory remarks
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to pure states of a physical system, that is, to states which can be represented
mathematically by unit norm vectors in the Hilbert space for the system. This
is done merely for convenience in writing. It should be noted that pure states
are special states of a physical system: a pure state is characterized by the
existence of an experiment which gives a result predictable with certainty when
performed on the system in that state. For example, a pure spin state of a particle
can be produced by a Stern-Gerlach apparatus since a subsequent experiment
with a Stern-Gerlach apparatus can give a result predictable with certainty when

performed on a particle in one of the outgoing beams from the first apparatus.

Other states of a system (mixed states) can be prepared and in some cases
are easier to prepare. A mixed state results from an incomplete specification
of the state of the system by a preparation apparatus; it results from using an
inefficient preparation apparatus. A mixed state is characterized by the absence
of any experiment which gives a result predictable with certainty when performed
on the system in that state. For example, a mixed spin state of a particle will
be produced by a “fuzzy” Stern-Gerlach apparatus, that is, by a Stern-Gerlach
apparatus which does not have a sufficiently strong magnetic field gradient to
produce cleanly separated beams of ountgoing particles. No experiment gives a
result predictable with certainty when performed on a state prepared by a fuzzy
Stern-Gerlach apparatus. Mixed states of spin % and spin 1 particles are discussed
in Chapters 6 and 7.

A mixed state is represented mathematically by a nonidempotent density
operator in the Hilbert space for the physical system. It cannot be represented by
a single unit norm vector. Built into the nonidempotent density operator is a set
of probabilities which are characterize the preparation apparatus.
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We describe the density operator formalism of quantum mechanics in this
chapter. The formalism was originally developed by von Neumann in the 1930’s;
the standard reference is Fano (1957).

The density operator for a pure state is defined in Section 5.2. It is defined
in terms of the state vector for the systerm. '

The formaliem develoned in Section 5.2 for nure ctateg ig extended in vi.
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ion
5.3 to include mixed states. The extended formalism makes no reference to the
state vector for the system.

The entropy of a state is defined in Section 5.4. Entropy is a number which
characterizes the extent to which a state is mixed; it is a measure of the mixedness
of a state.

The density operator for a state with given average energy is given in Section
5.5. The density operator is expressed in terms of the temperature and the partition
function. The density operator so defined is appropriate for describing a physical
system in thermodynamic equilibrium with its swrroundings. The probabilities
which are built into the density operator are the Boltzmann factors.

Derivations of some results are given in Section 5.6,

For simplicity throughout this chapter we consider a physical system which
can be described in an n—dimensional vector space.

5.2 Density operator for a pure state

A pure state of a physical system may be represented mathematically by a
single unit norm vector in the Hilbert space for the physical system.

The density operator U(t) for a pure state at time ¢ is defined as
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V(t) =[ () >< H() | (5.1

where | (f) > is the state vector for the system at time £.

. Probabilities and averages

We give expressions for probabilities and averages in terms of density oper-
ators. Proofs of these expressions are given in Section 5.6.

1. Probability of a state

The probability P(x,,t) that a system be found in the state | x(¢) > when
it is known to be in the state | (¢) > is

Pl th,8) = |< x(2) | 9(#) >| 2 (5.2)

(5.2) may be written equivalently as

Plx, ¥,t) =< x(t) | ¥{£) | x(t) > (5.3)

and as

P(X,0,t) = Tr(X()¥(1)) (5.4)
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where X(t) =| x(f) >< x(t) | is the density operator corresponding to
| x(2) >

2. Probability of a value

The probability P(ay,,t) of observing the value a; on measurement of A
for the system in the state | ¥(¢) > is

P(ag,h,1) = |< ag | () >| 2 (5.5)

where | aj, > is the eigenvector of A belonging to eigenvalue ay.

(5.5) may be written equivalently as

Plap, V. t) =< ap | ¥{t) | ap > _ (5.6)

and as

Plag, U, ) = Tr(A;9(2)) (5.7)

where A; =| a; >< a; | is the density operator corresponding to | ap >.
3. Average
The average A(t) of measurement of A for the system in the state | ¢ (¢) > is
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At)=<9(t) | Al () > (5.8)

(5.8) may be written equivalently as

At) = Tr (AV(1) (5.9)

L.

Comments

Mathematical representation of pure states

(5.4), (5.7) and (5.9) express the physical content of quantum mechanics.

(5.4), (5.7) and (5.9) show that the physical content of quantum mechanics
for pure states can be expressed entirely in terms of density operators.

Accordingly, a pure state of a physical system corresponds mathematically to
& unit norm vector or, equivalently, to an idempotent density operator.

The mathematical properties of the density operator for a pure state are given
in Topic 5.2.2.

- Properties of the pure state density operator

It follows from definition (5.1) that

33




I.  W(t) evolves in time according to
U(t) = U)e(0)Ut) (5.10)
where U/(t) = e7# t/% is the evolution operator for the system.
II. W{#) is Hermitian.
i) = 0(2) (5.11)
HI. ¥(¢) has unit trace.
Tr (V(t)) = 1 (5.12)
IV. ¥(t) is non-negative.
<¢iU()é> 20 (5.13)
for all | ¢ >.
V. ¥(t) is idempotent.
W2(t) = ¥(t) (5.14)

34




5.3 Density operator for a mixed state

In this section we extend the density operator formalism developed in Section
5.2 for pure states to include mixed states of a physical system.

We assume that

The state of the system at time ¢ can be described by a density operator ¥(¢)
having Properties T to IV in Topic 5.2.2 and such that

1. the probability (X, ¥, ) that the system be found in the state X(¢) when
it is known to be in the state U(¢) is given by (5.4);

2. the probability P{ay,¥,t) of observing the value ¢; on measurement of A
for the system in the state ¥(¢) is given by (5.7);

3. the average A(t) of measurements of A for the system in the state W(t)
i1s given by (5.9).

Comments

I. A scheme for comparison of theory and experiment

The above provides a scheme for comparison of theory and experiment.
No reference is made to the state vector for the system.

2. Comparison with the formalism for pure states

Comparison with the formalism developed in Section 5.2 for pure states
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shows thatthe original definition (5.1) and Property V in Topic 5.2.2 have
been dropped; it is not required that ¥(¢) be idempotent.

3. Mathematical implications

As shown in Section 5.6, it follows from Properties I to IV in Topic 5.2.2 that

Wty = > | u(t) > pr < ¥i(t) | (5.15)
k=1

| r(t) >=U(t) | ¥5(0) > (5.16)

L= [ 9(0) >< y(0) | .17)
k=1

< ?/)L(O) l @L‘kr(O) >= dph (5.18)

S o =1 (5.19)

0<p,<1 forall k=1,2,---,n (5.20)

4. Expressions for the probability and the average
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Substitution of (5.15) into (5.7) and (5.9) yields

P(G’jaqjvt) - Zpk |< ay | "r/)k(t) >l 2

(5.21)
k=1
A) = pi < (1) | AL v(t) > (5.22)
k=1
Special case: idempotent density operator
It follows from (5.15) that (5.14) holds if and only if
pi:pk forall £=1,2,---,n (5.23)
That is,
pp,=0 or 1 forall £=1,2,---,n (5.24)
The only solutions (5.24) satisfying (5.19) are
pr =1 forsome £
(5.25)
p; =0 forall j#%k
It follows from (5.15) and (5.25) that
W(t) =] ¥(t) >< () | (5.26)

where we have written | (1) >=| ¢(t) >.

37



That is, the original definition (5.1) follows on requiring that Property V in
Topic 5.2.2 hold.

| 1(t) > is the state vector for the system.
Pure state
If W(t} is idempotent, the system is said to be in a pure state.

If the system is in a pure state, it may be represented mathematically by a
single vnit norm vector in the Hilbert space for the system.

Mixed state
If W(#) is not idempotent, the system is said to be in a mixed state.

If the system is in a mixed state, it cannot be represented mathematically by
a single unit norm vector in the Hilbert space for the system.

Eigenvalues of the density operator.

The eigenvalues py, pg,- -, pa of ¥(0) are interpreted as the probabilities for
preparing the system in the pure states | 121(0) >,| ¥2(0) >, -+, | ¥u(0) >
at time zero.

1,2, -+, pu are specified by the characteristics of the preparation apparatus.

Average over incoherent states

(5.21) and (5.22) sometimes appear in applications without explicit mention
of the density operator or of a mixed state of a physical system.

In such applications, the summations in (5.21) and (5.22), since they involve

probabilities and not probability amplitudes, are interpreted as an average over
“incoherent” states | ¥1(t) >, | ¥2(t) >, -, | ¥({) > of the system.
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10. Results of measurements for a mixed state

We show in Section 5.6 that

Pla;,0,1) < 1 (5.27)

for every observed value a; of every observable A for a system in any mixed
state W{{).

It follows from (5.27) that

No experiment gives a result predictable with certainty
when performed on a system in a mixed state.

A mixed state of a system is characterized by the absence
of any experiment which gives a result predictable with
certainty when performed on the system in that state.

11. Results of measurements for a pure state

We show in Section 5.6 that

Pla;,¥,8) = 1 (5.28)




for some observed value «; of an observable A for a system in the pure state
W(t). '

It follows from (5.28) that

An experiment exists which gives a result predictable with
certainty when performed on a system in a pure state.

A pure state of a system is characterized by the existence
of an experiment which gives a result predictable with
certainty when performed on the system in that state.

5.4 Entropy of a state

The entropy S of a state W(¢) is defined by

S=—knU(t) = —x Tr (¥{) In V(L)) (5.29)

where £ = 86.171 peV/K is Boltzmann’s constant.

We show below that entropy characterizes the extent to which a state is mixed.
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It follows from (5.15) that

13
W)= > [ 9(t) > Inp < vi(t) | (5.30)
k=1
and
i\
Uy W(t) = > | y(t) > prlnpr < hp(t) | (5.31)
k=1
and therefore
n
S =—K Z i lnp (5.32)
k=1
Comments

1. Entropy is non-negative

It follows from (5.20) and (5.32) that

S>>0 (5.33)

2. Entropy of a pure state
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It follows from (5.25) and (5.32) that

S =0 for a pure state (5.34)

3. Entropy of a mixed staie

It tollows from (5.69) and (5.32) that

S >0 for a mixed state (5.35)

4. Maximum value of entropy

We show in Section 5.6 that the maximum value of 5 occurs when

pp =~ forall k (5.36)

In this case

S = Spez =fklnn (5.37)

5. Entropy and information
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It follows from (5.25) and (5.34) that

S = 0 corresponds to maximum information about a system.

It follows from (5.36) and (5.37) that

S = Sper corresponds to minimum information about a system.

6. Increase of entropy due to a measurement

Measurement of a system in a pure state of the system and measuring
apparatus yields system and apparatus component states which are mixed.

It follows from (5.34) and (5.35) that

The measurement increases the total entropy
of the system and measuring apparatus.

5.5 State with given average energy

We consider a state V of a system which has been prepared such that only
its average energy F is specified.
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We show in Section 5.6 that

e_ﬂH
U= ~ (5.38)
where
7= Tre P4 (5.39)
I (5.40)
kT )

where / is the Hamiltonian for the system and x is Boltzmann’s constant.

Comments

[. Stationary state

(5.38) describes a stationary state of the system.
V() = U0 (1) = ePEY By HR — (541

2. Temperature

The parameter 7 in (5.40) is the temperature of the system.

3. Thermodynamic equilibrium
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The state ¥ given by (5.38) may be identified with the state of a system in
thermodynamic equilibrium with its surroundings.

In this case, T is identified with the temperature of the surroundings.

4, Partition function

The function Z defined by (5.39) is the partition function for the system.

5. Average energy in terms of the partition function

The average energy E of the system in the state U is

E=Tr(HV) = —%ln Z (5.42)

6. Free energy

The free energy £ of the system in the state ¥ is defined as

F=—xl'InZ (5.43)

7. Determining the average energy and the entropy

It follows from (5.29), (5.42) and (5.43) that
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(5.44)

S == (5.45)

(5.43) to (5.45) allow determination of the average energy and entropy of the
system at temperature 7" from the partition function for the system.

Comments

Boltzmann factors

pr given by (5.84) is the probability for preparing the system with energy ¢;.
pp. is the Boltzmann factor for the state | ¢ >.

Values of the Boltzmann factors

We label the eigenvalues of the Hamiltonian such that

61 e <Ky (5.46)

It follows from (5.84) that

P41 _ e~ Blery1—ex) (5.47)
Pk
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and, therefore,

PP 2 when T is positive (5.48)

PIEp S-Sy when T is negative (5.49)

3. Negative temperature and population inversion

(5.49) implies that a negative temperature corresponds to a population inver-
sion in a sample of particles each prepared in the state W.

That 1s, the number of particles in the sample whose energy is ¢; is less than
the number of particles whose energy is €2, and so on.

The above statement does not include effects which arise when the particles
in the sample are identical.

Systems of identical particles are discussed in QLB: Quantum Mechanics in
Fock Space.

4. Infinite temperature limit

It follows from (5.38) to {5.40) that

Em ¥ =Y,,,,= l (5.50)
T—2co T?.

Ui 18 the state of the system which has been prepared with the least input
information.
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For this state,

pk=7l—l forall k=1,2---,n (5.51)

5. Zero temperature limit through positive temperatures

It follows from (5.38) to (5.40) that

im U =9, = 5.52
leingr 1 =1 >< 11 | (3.52)
For the state Uy,
pr=1 (5.53)
pp=0 forall k+#1 (5.54)

6. Zero temperature limit through negative temperatures

It follows from (5.38) to (5.40) that

Thnﬂl— U= lpn :| Py >< 'ﬁbn I (5.55)
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For the state ¥,,,

P =1 (5.56)

PE = 0 for all k ;é n (557)

Planck’s Radiation Law

For simplicity throughout this chapter we have considered a physical system
which can be described in a finite-dimensional vector space. We now as-
sume that the physical system is a nonrelativistic one-dimensional harmonic
oscillator as discussed in Topic 11.2.1. In this case, the Hilbert space is
infinite-dimensional and the partition function (5.85 ) becomes

7 = Z e =P (5.58)
k=0
where, from (11.22),
1
€ = (k + E) A (5.59)

where w is the oscillator angular frequency as given by (11.15).
It follows from (5.58) and (5.59) that
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o—Bho/2

- (5.60)

It follows from (5.42) and (5.60) that the average energy of the oscillator is

—_ 1 huw
Ez;z-ﬁer R 1 (5.61)
(5.61) is a standard result which leads to Planck’s Radiation Law.

5.6 Some derivations

Derivation of (5.4)
Let | ¢1 >,| ¢2 >, -,| ¢ > span the Hilbert space for the physical system,
Then

1= 16 >< ¢ | (5.62)

=1
< ¢ | e >= bprr (5.63)
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and

P(x,,t) =|< x(t) | $(2) >| *

=< x(t) | (1) >< (t) | x(£) >= P(x, ¥, 1)

=3 < x0) | 9(t) >< BE) | da >< i | x(0) >
k=1
—Z<¢klx ) >< xlt) | () >< b(t) | dx >

Z < i | X(OW(1) | g >= Tr (X(1) V(1)) = P(X, ¥, 1)
k=

Derivation of (5.7)

The preof of (5.7} is identical to the proof of (5.4) with | x(¢) > replaced by
I arp >

Derivation of (5.9)

Aty =< 9(t)| Al4(t) >

n

,,,Z<qf; V1 >< g | Alp(t) >= ) <ép | A| () >< (1) | ¢ >

k=1

< | AV(L) | ¢ >= Tr (AU(L))

o
Il
—

(5.65)

51






and

P(x, 1) =< x(t) | $(t) >|

=< x(1) | (1) >< () | x(t) >= P(x, ¥, 1)

=Y < x(t) | 9(t) >< p(t) | dr >< dx | x(t) >
k=1 (5'64)

=3 < i | x(t) >< x(t) | (1) >< $(1) | 1 >
k=1

= Z < g | XOU(E) | i >= Tr (X T() = P(X, T, %)

Derivation of (5.7)

The proof of (3.7} is identical to the proof of (5.4) with | x(¢) > replaced by
| ap =>.

Derivation of (5.9)

At) =< () | Al w(t) >

WZ@ Y gk >< dn | Al9(1) Z<¢k|A|¢()><¢(t)|¢k>

< ¢ | AY(1) | 6 >= Tr (A¥(2))

k=1
(5.65)
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Derivation of (5.15) to (5.20)

It follows from Property I that ¥(0) has the eigenvalue decomposition
= Z | %&(0) > pr < ¥x(0) | (5.66)

where [ ¥1(0) >, 12(0) >,--+,] ¢ (0) > satisfy (5.17) and (5.18) and where
p1.p2, -, pn are real numbers,

(5.15) and (5.16) follow from Property I.
(5.19) follows from Property IT.

It follows from Property IV that
pr >0 forall k=1,2,---,n (5.67)
(5.20) follows from (5.19) and (5.67).

Derivation of (5.27)

It follows from (5.15) that (¢} is not idempotent if and only if

piApp forall k=12 n (5.68)
It follows from (5.19), (5.20) and (5.68) that
O0<pr<1 forsome k=1,2,---,n (5.69)

when ¥(#) is not idempotent.

It follows from (5. 21) and (5.69) that
Pla;,0,1) Zpk < aj | r(t) >] 1<) < ay | hi(t) > 2
k=1
(5.70)

Z<a]|¢k ) >< i) | >=<a; | a; >=1
k=
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Derivation of (5.28)

It follows from (5.21), (5.25) and (5.26) that
Pla;, ¥,1) =|< a; | (t) >] * =1 (5.71)
if | #(t) >=| a; >.

That is, given any observable A, the result of a measurement of A yields the
eigenvalue ; of A with certainly when the system is in the state | a; >.

Derivation of (5.36)

We determine pq, pg, - - -, P SUch that S is maximum subject to (5.19).

We use the method of Lagrange multipliers; we write

n k1
d(z ol + o Zpk) =0 (5.72)
k=1 k=1

where o is a Lagrange multiplier. Simplifying the left side of (5.72) yields
n
> (npp+ e+ 1)dpe =0 (5.73)
k=1

from which
Inpp =—a—1 (5.74)
which shows that p; is independent of k. (5.36) then follows from (5.19).
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Derivation of (5.38)

The eigenvalue decomposition of ¥ is given by (5.15) where the probabilities
D1, P2, . Py Satisfy (5.19) and (5.20); the entropy S is expressed in terms
of p1,p2, -+, pn by (5.32) and the average energy E is expressed in terms of
P, P2, Pu using (5.22):

T
E=) nF: (5.75)
k=1

Ep =<y | Hvp > (5.76)

where | o > is the eigenvector of ¥ belonging to eigenvalue py.

We determine p1, pa, - -+, pu Such that S is maximum for given E. We use the
method of Lagrange multipliers; we write

n n n
d(ZPk Inpy -y p +5Zpkfk) =0 (53.77)
k=1 k=1 k=1

where o and S are Lagrange multipliers.

Solving (5.77) yields
pp = e 1m0 AE (5.78)

The constant o is determined using (5.19). It follows that

o 579
PE="—7 (5.79)
n _
Z =) P (5.80)
k=1
We now specify the eigenvectors | 1 >,| 2 >,---,| ¥n > of ¥. The

Hamiltonian A has the eigenvalue decomposition
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n
H:Z]6k>fk<6kf

(5.81)
k=1
We assume that
| >=] e > forall k=1,2,---,n (5.82)
It follows from (5.81) and (5.82) that
It follows from (5.79), (5.80) and (5.83) that
e 5.84
Pr=— (5.84)
Z=Y e o= el (5.85)
k=1
It follows from (5.15), (5.82) and (5.84) that
n — e —pH
e e
mp:kz_l|ek> 7 <al=— (5.86)
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Chapter 6 SPIN ; PARTICLE

6.1 Introductery remarks

The quantum mechanics of a Lorentz invariant single particle with arbitrary
spin is discussed in QLB: Some Lorentz Invariant Systems Chapter 3. Included
in that chapter are expressions for the Poincare generators for the system and a
discussion of the coordinate-space and momentum-space wave functions for the
particle.

In this chapter, we describe the spin states of a spin % particle. Our purpose
is t0 discuss the quantum mechanics of spin more fully than is given in QLB:
Some Lorentz Invariant Systems Chapter 3. ‘We consider the simplest nontrivial
example of spin and, for simplicity, we disregard entirely any change in position
or momentum of the particle. The spin states of a spin 1 particle are discussed
in Chapter 7.

Pure spin states are described in Section 6.2. This section includes a dis-
cussion of the preparation of pure states using a Stern-Gerlach apparatus and the
measurement of the components of spin using a a Stern-Gerlach apparatus. The
density operator corresponding to a pure state is also discussed. The density op-
erator is characterized by the orientation of the unit length polarization vector for
the particle which vector also characterizes the orientation of the Stern-Gerlach
apparatus used for preparing the state of the particle.

Mixed states of the particle are described in Section 6.3. The density operator
for a mixed state has the same form as the density operator for a pure state: for
the mixed state, the length of the polarization vector is less than unity. The spin
temperature for the particle is discussed in Topic 6.3.2.
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6.2 Description of pure states

Let | + >,] — > be a set of orthonormal vectors which span the 2—dimen-
sional vector space for a spin £ particle. That is,

l=]4><+| + | —><—| (6.1)
<H | =< — - >=1 (6.2)
<4 —>=<— |+ >=0 (6.3)

Pauli operators are defined by

ol=|4+><—| + |~><+| (6.4)

o= i+ ><—| +i|-><+] (6.5)

A=<+ - | —><—| (6.6)
Comments

1. Eigenvalue decomposition of o°

| 4+ > are eigenvectors of ¢* belonging to eigenvalues +1.
(6.6) is the eigenvalue decomposition of o3.
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2. Pauli matrices

The matrix representation of ¢!, 0%, 0% with respect to | & > are the Pauli
matrices (A.62) to (A.64).

3. Expressions for operators

Every operator in the vector space can be written as a linear combination of
the unit operator (6.1) and the three Pauli operators (6.4) to (6.6).

4. Spin

The spin S of the particle is defined as

§=he (6.7)

& =07+ 0% + ok (6.8)

where ¢, 7, & are unit vectors along the coordinate axes.

5. Commutation relations

It follows from (6.4) to (6.6) that

[Sﬂ',sﬂ = i S! (6.9)

-3 =

§. G = s(s + 1)h? (6.10)

1

where s = 5
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6. Eigenvalue decomposition of 7 -

Let #7 be a unit vector whose spherical polar coordinates are (6, ).

772 = sin 6 cos Lp;-i- sin @ sin gof—f— cos 0k (6.11)
The vectors
0 o . O
fm+ >= cos§|+>+e“°sm§|—> (6.12)
o . O ¢
fm— >= —¢ "’sma |+>+cos§|—> (6.13)

are eigenvectors of & - m belonging to eigenvalues 41 and —1, respectively.

The eigenvalue decomposition of & - m is

Fg-m=|m+><m+| — |m-><m—| (6.14)

| m% > are a complete set of orthonormal vectors which span the vector
space.

l=|m+><mt| + |m—><m—| (6.15)
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<m+4|m+>=<m— |m—>=1

(6.16)

<m+ | m—>=<m—~ |mt >=10 (6.17)
It follows from (6.12) and (6.13) that
6 i . O
| + >= cos 5 | m+ > —e “°sm§ lm— > (6.18)
—io . O b
| —>=¢€ '“’031115 |m+>+cos§ | m— > (6.19)
7. Rotation of £ to i
Let
R=Im+><+| 4+ |m—><— (6.20)
Then R is unitary
RR'=R'R=1 (6.21)

and
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[m+ >=R|+ > (6.22)
| m—>=R|~ > (6.23)

Ro3Rt =3.m (6.24)

R corresponds to the rotation of £ to 7.

Exponential form of rotation operator

(6.20) can be written in the form

R = o—iS e /h —iS20/h iS o[k (6.25)

which corresponds to a rotation by —¢ about the z-axis followed by a rotation
by ¢ about the y-axis followed by a rotation by ¢ about the z-axis.

In general, the rotation of % to % is described by the unitary operator

=57 /R, ~iS*0 (R —i5y/h (6.26)

where -
e—-zS n/h (6.27)

corresponds to a arbitrary initial rotation by # about the z-axis. Specifying
n {e.g, n = —) comresponds to specifying the overall phase of the two
eigenvectors of & - 1.
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9. Matrix representation

The matrix representation of R with respect to | = > is

(R) = <+iR|+> <+|R|->
\<—-|R|+> <—-|R|->
(6.28)

. ( COos % ~e ¥ gin % )
- i o 8 g
e'¥ sin 2 Cos 3

1
(6.28) is the rotation matrix D2 | (¢,#,0) which appears in the discussion
of the helicity states of a spin 1 particle in QLB: Some Lorentz Invariant

2
Svstems Chapter 3.

10. Polarization vector

The polarization vector for a state of a spin % particle is the average value
of & for the state.

The polarization vectors for the states | m+4 > are

<m=% | F|mEt>=£m (6.29)

11. Preparation by a Stern-Gerlach apparatus

The states | n£ > may be thought of as being prepared by a Stern-Gerlach
apparatus whose inhomogeneous magnetic field is in direction 7.

We call such an apparatus an mSG apparatus.
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An mSG apparatus measures S - 7. The possible results of a measurement

of S are £14.

The states | = > may be thought of as being prepared by a kSG apparatus. A
kSG apparatus measures S - k = S3. The possible results of a measurement

of S are :l:%ﬁ, and —%ﬁ.

The uvnitary operator R (6.20) corresponds to rotating a Stern-Gerlach appa-
ratus whose inhomogeneous magnetic field is in the k -direction such that the
inhomogeneous magnetic field after the rotation is in 17 -direction. That is, it
corresponds to rotating a kSG apparatus so that it becomes an mSG apparatus.

12. Probabilities

We consider states prepared by an mSG apparatus and measured by a kSG

apparatus.

If the system is known to be in the state | m~- > then

g
|< 4 | m+ >| 2:c052§
¢
|< — | m+ > 2 zsi112-2-

(6.30)

(6.31)

are the probabilities that on measurement of 52 the system be found in the

states | + >.

If the system is known to be in the state | m— > then
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6
|<+1m—>|2:g¥§ (6.32)
< —|m—>] 2= cong (6.33)

13.

are the probabilities that on measurement of S the system be found in the
states | &4 >.

Density operator for a pure state

The density operator corresponding to a pure state of a system is given by
(5.1). The density operators for the states | sn+ > may be written in the form

1, . .
| mE ><mk | = (15 7) (6.34)

14.

where 17 is the polarization vector for the state.

(6.34) illustrates an important feature of the density operator formalism: in
contradistinction to (6.12) and (6.13), (6.34) is expressed explicitly in terms
of the polarization vector 1 which characterizes the state, which vector also
describes the orientation of the Stern-Gerlach apparatus used to prepare the
state.

We note also that (6.34) is characterized by two real numbers, as opposed to
three which characterize a general pure state as described by a state vector

(the third corresponding to the overall phase of the vector).

Density operators and rotations

It follows from (6.22) and (6.23) that the density operators for the states
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| m* > and | + > are related by

_ i
|mEt><mt|=R|£><%|R (6.35)

3

z 7.7) = Ro = T\ pt
2(1:|:cr m)=R (lia k)R (6.36)

where R is given by (6.20).

That is, the effect on the density operator by R is simply, of course, to
change the polarization vector from % to 7.

6.3 Description of mixed states

So far in this chapter, we have only considered pure states of a spin % particle.
We consider mixed states of a spin % particle in this section.

It is shown in Topic 6.3.1 that the density operator for a mixed state has the
same form as the density operator for a pure state, the only difference being that
the polarization vector for a mixed state is shorter than unity. Thus, a mixed state
of a spin %— particle is characterized by three parameters which are the length and
orientation of the polarization vector for the particle. The spin temperature for
the particle is discussed in Topic 6.3.2.

- Polarization vector

We recall from Section 6.2 that the states | m4- > of a spin % particle may be
thought of as being prepared by a Stern-Gerlach apparatus whose inhomogeneous
magnetic field is in the m—direction (that is, by an mSG apparatus). An mSG

66



apparatus prepares pure states of the system: one can decide with certainty whether
an mSG apparatus has prepared the state | m+ > or the state | m— >.

We now imagine preparing a state of the system with an inefficient mSG-like
apparatus which does not allow one to decide with certainty whether the apparatus
has prepared the state | m+ > or the state | m~ >. This will be the case if the
gradient of the inhomogeneous magnetic field in the Sterm-Gerlach apparatus is not
sufficiently strong. We call such an inefficient mSG--like apparatus an mFSG
apparatus (F for fuzzy).

We can only assign probabilities for preparing the state | m+ > or the state
| m— > with an mFSG apparatus. These probabilities are specified by the
characteristics of the mFSG apparatus.

Let p;y+ be the probabilities for preparing the states | m+ > with an mFSG
apparatus. Then

0<pmt <1 and  0<pp- <1 (6.37)

Pt + Pm— = 1 (638)

As given by (5.15), the state prepared by the mFSG apparatus is represented
by the density operator

U=|m+t>pms <m+| + |m—>pm_ < m— (6.39)

Measurement of S - 7% with an mSG apparatus for the system in the state ¥
yields the values -3—%& and —-%ﬁ with probabilities p,,4+ and p,,.., respectively.
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It follows from (6.34) that (6.39) can be written in the form

1 o =
v=s(1+5.7) (6.40)
where
= {(Pm4 — pm— )12 (6.41)

It follows from (6.40) that

m = Tr (V) (6.42)

i is the polarization vector for the state W. It follows from (6.41) that

<
|7 ]< 1 (6.43)

That is, a mixed state is characterized by a polarization vector with length less
than unity.
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Measurement of S° with a kSG apparatus for the system in the state ¥ yields
the values +3# and —1#4 with probabilities

0 Y

P+ cos? 5 + Pr— sin? 3 (6.44)
g )

P+ sin® 3 + Ppm— cos? 3 (6.45)

For example, if the polarization vector for the state WV is 0.6k, then the above
probabilities are 80% and 20%, respectively.

If the state ¥ is unpolarized, that is,

]
Pm+ = Pm==75 (6.46)
m =0 (6.47)

1
=3 (6.48)

then each of the above probabilities is 50%.
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- Spin temperature

In Section 5.5 we determined the state (5.38) of a system which had been
prepared such that only its average energy is specified. In this topic, we specialize
(5.38) for a spin % particle prepared in a constant, homogeneous magnetic field
B. We show that (5.38) may be written in the form (6.40) where the polarization
vector is

= tanh (%ﬁﬁwg) b (6.49)
where, as in (5.40),
B = ! (6.50)
kT '

and wy is the Larmor precession frequency (8.1), « is Boltzmann’s constant and
b is a unit vector in the direction of B.

Comments

1. Stationary state

(5.38) is a stationary state of the system.

The polarization vector (6.49) is constant in time; it is parallel to the magnetic
field B and does not precess.
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Spin temperature

The parameter T in (6.49) is the spin temperature for the state (5.38).
T is not the temperature of the surroundings.
The state of the particle is specified by its spin temperature.

Ranges of parameters

The ranges of 4, T' and tanh (15%w,) are

—oo< 350 0<fF< 40 (6.51)
0>T > -0 +0>T>0 (6.52)
—1 < tanh (é—ﬁﬁwg) < +1 (6.53)

In particular, the system has a positive spin temperature when its polarization
vector points along the direction of the magnetic field and a negative spin
temperature when its polarization vector points opposite to the direction of
the magnetic field.

Derivation of (6.49)

The Hamiltonian for the particle is given by (8.7). It follows that

e P — cosha+&-Dsinha (6.54)

where

1
a = 5Bl (6.55)
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It follows from (6.54) that

Tre P8 = 2. cosh a (6.56)

Tr (&*e—ﬂﬂ ) — 9sinhab (6.57)

(6.49) follows from (6.41), (6.56) and (6.57).

A second derivation of (6.49)

We assume that the fixed Cartesian reference frame in the laboratory is defined
such that B = Bk in which case the Hamiltonian is given by (8.16) and the
eigenvalues and eigenvectors are given by (8.23) and (8.24).

(6.49) follows using (5.81) and (5.86) and the density operators for the states
| £ > as given by (6.34).
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Chapter 7 SPIN 1 PARTICLE

7.1 Introductory remarks

In this chapter we describe the spin states of a spin 1 particle. As in Chapter 6,
our purpose is to discuss the quantum mechanics of spin more fully than is given
in QLB: Some Lorenitz Invariant Systems Chapter 3. The mathematical description
and the physics of a spin 1 particle is richer than that of a spin % particle discussed
in Chapter 6. As in Chapter 6, for simplicity we disregard entirely any change
in position or momentum of the particle.

Spin operators and pure states are described in Section 7.2 and spherical tensor
operators are discussed in Section 7.3. The density operator corresponding to a
pure state and to a mixed state is described in Section 7.4. The characterization
of a state of a spin 1 particle in terms of a polarization vector and a polarization
ellipsoid is also discussed in Section 7.4,

7.2 Spin operators and pure states

The spin § of a spin 1 particle is defined as

§=5%+5%+ Sk (7.1)
where 7, f, % are unit vectors along the coordinate axes and where
ST = ke la >< b (7.2)

where | 1 >,| 2 >,| 3 > are a set of orthonormal vectors which span a
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3—dimensional vector space. That is,

3

Y la><al=1 (7.3)

a=]

<a| b>=éy (7.4)
Comments

I. Commutation relations

It follows from (7.2) that

[,9'3'.,5'1*] = ifie ;S (7.5)

§.8 = s(s+ 1)k (7.6)

where ¢ = 1.

2. Matrix representation of S7

It follows from (7.2) that the matrix elements of 7 with respect to | 1 >,
| 2 >, | 3 > are

<a| S| b>= 87, = —ificiy (7.7)

That is,
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00 0
(SLy=h{0 0 — (7.8)

0 i 0

0 0 4
($%)=H[ 0 0 0 (7.9)
| —i 0 0

(7.10)

—
5]

&
o

S
[}

or

O e D

o o |
o,

oo O

S

(7.8) to (7.10) are identical to the matrices S; given by (5.42), Rose (1957).

. 3. Products of spin operators

It follows from (7.2) that!

SISk = b0~ i >< k| (7.11)

SISES = —ibieson | @ >< b | +ieja | @ >< 1| (7.12)

' In the following we often set & = 1.
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G516k glgm
(7.13)

= jk(‘slm_l'?><7n |)'"6Im |j><k|+5kl|j><'m"|

A special case of (7.12) is

(59)" = &7 (7.14)

It follows from (6.9) that | 1 >,| 2 >,| 3 > are simultaneous eigenvectors
of (817, (52)% and (53)".

4. Traces of products of spin operators

It follows from (7.2) and (7.11) to (7.13) that

TrS? =0 (7.15)

TrSI 5% = 26, (7.16)
Trs?Sks! = -.z'ejk, (7.17)
TrS7S*S1S™ = §:461m + 8jmbii (7.18)

It follows from (7.18) that
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Tr[(Sj)z(Sk) 2] = Tr [Sj (S’“)QSJ'] =1+ 6; (7.19)

and that all other traces (7.18) vanish.

5. Rotations about the coordinate axes

The operator R7(§) corresponding to a rotation by ¢ about the j—axis is

R0 =c78 =1 - i sinf+ (59) (cosf — 1)
(7.20)
=cosf+ (1 —cosl) [ j><j|—€jgpla><b]| %148

with the second and third equalities following using (7.14) and (7.2).

It follows from (7.2) that the matrix elements of R7(6) with respect to
1 >, 2 >,] 3 > are

<a|R0)|b>= R, (6)
(7.21)
= bap €080 + 64654(1 — cos ) — €;4p8in 0

That is,
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1 0 0
(R(6)) = (0 cos 0 —sine) (7.22)

0 sin@ cosl

cos@ 0 sind

(RE,(8)) = 0 1 0 (7.23)
—sinf 0 cosf
cosl —sin@ O

(Rgb(ﬂ)) = | sinf cosf 0 (7.24)
0 0 1

(7.23) and (7.24) are the transpose of (A.55) and (A.56), respectively.

Rotation of k to %

The unitary operator

R — e—isagﬁ/ﬁe—iszafﬁ (725)

correspmds to a rotation of k to a vector 17 (6.11) which has spherical polar
coordinates (6, ¢). It follows from (7.2} and (7.20) that

RSR =§.m (7.26)
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The corresponding equation for a spin -;- particle is (6.24).

Matrix representation of R

We denote the matrix elements of the rotation operator R (7.25) with respect
to {1 >12>13>by

<a|R|b>= Ry (7.27)

It follows from (7.20) that

cosfcosypy —sing sinfcose
(Rap) = | cosfsing cose  sinfsing (7.28)
—sinf 0 cos f

(7.28) is a special case of (4.43), Rose (1957),

Eigenvectors of 5°

It follows from (7.14) that the eigenvalues of 57 are +£1,0. We denote the
corresponding eigenvectors of S by | £ >,| 0 >. Solving the eigenvalue
problem for $° yields

1 ,
|+ >= Ee‘“(l 1> 44 |2>) (7.29)
|0 >=¢ 3> (7.30)

It follows from (7.29) and (7.30) that
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R Y =T 6o | _
11 >= 2(6 |4+ > it | >) (7.31)
12 >= —%(—e—f5+ [+ >+t | = >) (7.32)
13 >= i |0 > (7.33)

The usual cheoice for the phase factors, which we use from now on, is

efr =1 =1 (7.34)

(7.29) and (7.30) are a set of orthonormal vectors which span the vector
space, that is,

S Jpm<pl=1 (7.35)
u==,0
<p| ¢ >=8u (7.36)

9. Another form for S’

1t follows from (7.2) and (7.31) to (7.33) that
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I
51:$(1+><0| + |0><+| +10><—| 4+ |=><0]) (737
s@:%p |+ ><0] + |0><+] — |0><—| + |=><0])

(7.38)
P=lt><+] + |-><—| (7.39)

(7.39) is the eigenvalue decomposition of $3.

10. Another matrix representation of S’

We denote the matrix elements of 57 with respect to | £ >,| 0 > by

<pl$iu>=5, (7.40)

It follows from (7.37) to (7.39) that

L [0 10
(Sh)y=—7%|1 0 1 (7.41)
e

V2lo 1 0
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0 — O
: 0 —2 (7.42)
0

10
(55.)=10 0 o (7.43)
0 0

(7.41) to (7.43) are identical to the matrices $7 given by (5.52), Rose (1957).

[1. Another matrix representation of R

We denote the matrix elements of the rotation operator R (7.25) with respect
to| £ >, 0> by

<pl| Rip >= Ry (7.44)

It follows from (7.20) and (7.31) to (7.33) that

—tp .28 1 e —ip .2 8
e~'¥ cos® 3 75¢ sinf e '"¥gin %
Ty A Ao
(Ruu) = 7 5111299 cgs g 7z 511126’0 (7.45)
17 R - 1 Wz i v
¥ sin® 3 ol sin e'? cos” 3

(7.45) is a special case of the rotation matrix Dl(aﬂfy) given by (4.46), Rose
(1957).
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12. Eigenvectors of 5 - /%

It follows from (7.26) that the eigenvalues of 5. are +1,0. We denote the
corresponding eigenvectors of 5 - m by | m% >,| m0 >. It follows from
(7.26) and the eigenvalue problem for S - that

| mp>=R|p> (7.46)

where | + >,| 0 > are the eigenvectors of S* and R is given by (7.25). It
follows using (7.45) that

- 8 1 : 0
| m+ >=¢e7'% cos? 3 | + > +—= sinf | 0 > +e'? sin® 3 | — > (7.47)

V2

1 : 1 .
| m0 >= ——=c"%sinf | + > +cosf |0 > +—=ePsind |~ > (7.48)

V2 V2

: - 6
| m— >= 7% sinzg |+ > -I-L‘ sinf | 0 > 4¢'* cos® 5 p—- > (7.49)

V2

(7.47) to (7.49) are a set of orthonormal vectors which span the vector space,
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that is,

Z | mp ><mp | =1 (7.50)
p==,0
<mp|mp >=8,, (7.51)

13.

14.

Preparation by a Stern-Gerlach apparatus

The states | mp > may be thought of as being prepared by a Stern-Gerlach
apparatus with inhomogeneous magnetic field in direction 7.

As in Chapter 6, we call such an apparatus an mSG apparatus.

An mSG apparatus measures 5 - 1%. The possible results of a measurement
of S-m are ph where p = £1,0.

The states | > may be thought of as being prepared by a kSG apparatus. A
kSG apparatus measuores . k=55 The possible results of a measurement
of §% are ph where p = £1,0.

The unitary operator (7.25) corresponds to rotating a Stern-Gerlach apparatus
with inhomogeneous magnetic field in the k -~direction such that the inho-
mogeneous magnetic field after the rotation is in / —direction. That is, it
corresponds to rotating a kSG apparatus so that it becomes an mSG apparatus.

Probabilities

We consider states prepared by an mSG apparatus and measured by a kSG
apparatus.

If-the system is known to be in the state | m+ > then
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0
<+ im+>| ?= cos4§ (7.52)

<0 |m+>] %= %sinzﬁ (7.53)
< —|m+>| *= siu“g (7.54)

are the probabilities that on measurement of S* the system be found in the
states | £ >,| 0 >.

If the system is known to be in the state | m0 > then

1
|< £1m0>| ?= 5 sin” @ (7.55)

|< 0] m0>| 2=cos*f (7.56)

are the probabilitics that on measurement of S* the system be found in the
states | £ >,| 0 >.

If the system is known to be in the state | mm— > then
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<+ me>| 2= sint ] (7.57)
|<0|m—>| = %sin2 8 (7.58)
|[<—im—>| 2= cos4-g (7.59)

are the probabilities that on measurement of S° the system be found in the
states | £ >,| 0 >.

7.3 Spherical tensors

As shown in Chapter 6, every operator in the spin % vector space can be
written as a linear combination of the unit operator (6.1) and the three Pauli
operators (6.4) to (6.6). The corresponding statement for the spin 1 vector space
is more complicated: there are nine basic operators for the space as opposed to

four for the spin % vector space.

For example, it follows from (7.35) that a hermitian operator A in the spin
1 vector space can be written in the form

A= > lp>auu <y (7.60)

Hop'=,0

where
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Gt =< p | A =<y | Al p >=d, (7.61)

where | + >, | 0 > are the eigenvectors of 5% belonging to eigenvalues =, 0.

Expansion (7.60) in terms of the nine operators | 4 >< u' | may be convenient
in many instances; it is not particularly convenient, however, when the effect of
rotations is to be considered.

We construct a set of eight spherical tensor operators 73, which, in addition
to the unit operator, are appropriate for expanding an arbitrary operator in the
spin 1 vector space. The T}, are constructed in order that they transform simply
under rotations.

We define the operators Ty, as follows:

Tip = S° (7.63)
1
Toaz = 5(8" £i5?)’ (7.64)
Tot1 = %{Sl +452, 5%} (7.65)
3 2 2
== (8§ =2 _
Tyo \/;[( ) 3] (7.66)
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where 51,52, 9% are the spin operators discussed in Section 7.2.

Properties
1. Adjoint
It follows from (7.62) to (7.66) that
Ty = ()" Tiem (7.67)
2. Matrix_elements
It follows from (7.62) to (7.66) that
< T | ¢ >= ¢ (Up'm | 1p) (7.68)
5 1
— e = — 7.69
C1 \/; [59) \/5 ( )
where | u > is the eigenvector of $* belonging to eigenvalue ph and
(j1j2mymy | jams) is a Clebsch-Gordon coefficient.
(7.68) is an example of the Wigner-Eckart theorem: the dependence of
< p | Ty | ¢ > on p,m,u resides entirely in the Clebsch-Gordon
coefficient (1lp'm | 1p).
3. Traces
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It follows from (7.62) to (7.66) that

Tt Ty = 0 (7.70)
Tt (Tim T ) = 1806 .71
%nl =y =1 (7.72)

4. Commutation relations

It follows from (7.62) to (7.66) that

(51 2697, T = VI F )£ m+ 1) Ty (7.73)

[5'3, Tgm] =m T, (7.74)

5. Transformation under rotations

It is shown in Chapter V, Rose (1957) that it follows from (7.73) and (7.74)
that
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+
R(e, 8,7 Tim B (0, 8,7) = Y, Do, 8, e (775)

mi=—1
where
R(a, B,) = ¢S 0gmis"8 =iy (7.76)
and where
Dy (@, 8,7) (7.77)

is a rotation matrix. In particular,

RTIR' = ,/ Z Yim (0, 0)T) (7.78)

where V;,,,(6, ¢) is a spherical harmonic and

R = R(p,0,0) = e p—iS7 (7.79)

R corresponds to the rotation of % to a vector which has spherical polar

90



coordinates (8, ).

In view of (7.75), the Ty, are called spherical tensors of rank [.

6. Spin operators

It follows from (7.62) and (7.63) that

1
51 = —2(—T11 + T1-1) (7.80)
52 = %(T]] +T7-1) (7.81)
53 =Ty (7.82)

7. Scalar product of spin operators

Let & = alv + a2 + a3k. It follows from (7.80) to (7.82) that

+1
= 47
iS=3 aml,= 1/~3_a > Yim(0,0)T1,, (7.83)

n=— m=—1

where
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1 :
a4y = :—1——“\/_'—2—((11 + ?,G.z) (784)

(1,]0 = a,3 (7.85)

are the spherical components of @ and {a, @, ) are the spherical polar coor-
dinates of .

8. Products of spin operators

It follows from (7.5) and (7.6) and (7.62) to (7.66) that

2 1
(87 =3 - ZTnt3 (Tzz + Tyo3) (7.86)
n2_2_ Yo lop o1 7.87
(‘-)—.3 \/—zo 2(22+ —2) (7.87)
2 3

(5% = St/5 I (7.88)
§162 ;;-(Tm — Tz + To—2) (7.89)
§19% = (T + T1o1) + 2(=Tor + Toy) (7.90)

' 2v/2 2

23 L _ i

‘5 5 = -—2\/5( le + Tl_l) + 2(T21 + T2-1) (7.91)
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9. Operators | p >< ' |

The operators | g >< u' | which appear in (7.60) may be written in terms of
the operators | @ >>< b | which appear in (7.2) using (7.29) and (7.30). These
latter operators may be written in terms products of spin operators using (7.5)
and in terms of the T}, using (7.86) to 7.91). Finally, then, the operators
| u >< ¢ | may be written in terms of the Ty, as follows:

1 1
+><+|==+Tiw+—5T 7.92
l + | 3+ 10 7 20 (7.92)
|0><O|—l T +—1'T (7.93)

=35~ T 7 20 :

l 2
|—><“|:§*\/;T20 (7.94)

1 1
= - —_—— 7.95
L+ >< 0] 2T11 ﬁTzl (7.95)
05c — | = -2 T — —= T (7.96)
=5 Tu- Ty -
|+ >< ~ =1y (7.97)

10. General hermitian operator
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A hermitian operator A is expressed in terms of the operators | p ><C p' |
by (7.60); it may be written equivalently in terms of the spherical tensor
operators Ty, as follows:

’ {
1
A=< TeA+ N3N Ty, (7.98)
I=1,2m=-1
where
afy = (=) Gl—m (7.99)

and where, using (7.71),

Alm — 5—; Tr (TlmA) (7100)

TrA and the aj, are expressed in terms of the a,, as follows:

TA= Y  au (7.101)
p==,0
1
ay] = E(G.(H_ - a_g) (7102)
ajp = Q44 — d—— (7.103)
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a2 = ¢4 (7104)

1
ap1 = —E(G[H +a—yp) (7.105)

aop = (a++ +a__ -~ 2(100) (7106)

5

A general operator on the spin 1 vector space is specified by nine complex
numbers: its trace and the coefficients of the eight TIL:,' For a hermitian
operator on the space, the trace is real and the coefficients satisfy the eight
conditions (7.99).

Accordingly, (7.98) expresses a general hermitian operator A in terms of nine
real numbers: its trace, three real numbers related to the coefficients of the
rank one tensor Tfm and five real numbers related to the coefficients of the

rank two tensor T, .

7.4 Density operators

We recall from Topic 5.3 that the general state of a system is represented by
a unit trace hermitian density operator. It follows from (7.98) that the general
state of a spin 1 system is represented by the density operator

1 +
U=+ ) amTy, (7.107)

{=1,2 m=-1
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where a;,,, satisfies (7.99) and

= = Tr (Tir ¥) (7.108)
7y

... Density operator for a pure state

The density operator for a pure state is discussed in Section 5.2. In this topic
we apply the formalism to pure states of a spin 1 particle prepared and measured
by a Stern-Gerlach apparatus.

Density operator corresponding to | x>

It follows from (5.1) that the density operator U# corresponding to the
eigenvector | u > of S* belonging to eigenvalue u# is

VP = | p>< p (7.109)

it follows from (7.92) to (7.94) that

V=Y T (7.110)

1=1,2

[WEN
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where

ai":—al_:l (7.111)
=0 (7.112)
a;:az_:——l-a‘g_:% (7.113)

Density operator corresponding to | my >

It follows from (5.1) that the density operator W™ corresponding to the
eigenvector | my > of .S - 17 belonging to eigenvalue pf is

U = | ' my >< mpu | (7.114)

It follows from (7.78) and (7.110) that

+!
mp _ 1 t
Pt = §+ E E a?m[fl}ml (7.115)
=1,2 my=-1

where
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i 4

Uy = a1 af Yim, (6, %) (7.116)

where (8, ) are the spherical polar coordinates of the unit vector m.

The pure state (7.115) is labelled by four real parameters (o}, ah, 6, ). The

geometrical interpretation of these parameters is given below.
Probabilities

As given by (5.3), the probability P(,u,, q;mu') that the system be found in

the state | ¢ > when it is known to be in the state Py s

P(p,\lﬂ”“') —cp | U™ g (7.117)

It follows using (7.68) and (7.115) that

(o) -

+ Z “‘21—!—1 af cl Z (L1, g | 1, 2) Yo, (8,0)

(7.118)

my=—1

(7.118) 1s identical to (7.52) to (7.59).
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Polarization vector

— myp -
As given by (5.9), the average S  of the spin S for the system in the state

me g

=i ]
§ = T (Fom) (7.119)
= mi
S is the polarization vector for the system in the state W™#,
It follows using (7.80) to (7.82) with (7.108) that
?']Pm'u = aél sin f cos (7.120)
Sz aiL sin #sin ¢ (7.121)
57 = a* cos 6 (7.122)

That is, (a, 0, ) are the spherical polar coordinates of the polarization vector
1% P

= my

5 . The polarization vector is directed along the inhomogeneous magnetic field

of the mSG apparatus which prepared the state ¥™#,
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Polarization ellipsoid

As given by (5.9), the average of (Sj )2 for the system in the state U™ is

epe———TTL

[(s9y] = T [(s9)"wm] (7.123)

It follows using (7.86) to (7.88) with (7.108) that

{( %'1)2} oyl ab (3sin? f cos® o — 1) (7.124)
b 5T 7 9 08" @ .
—————T
[(5'2)2] = % + \/Lg a"; (3 sin® @ sin? w— 1) (7.125)
—
(527 = % + "\}_6 a“(3cos? 0 — 1) (7.126)
In particular,
=T g )
S =] =3-F % :
LG AN P
(s3] = Sty (7.128)
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and

[(Sl)zri _ [(5’2)2]}& _ 1 (7.129)
(53] i (7.130)
[(.5'1)2] v [(,5‘2)2]“ =1 (7.131)
[(53)2] _ (7.132)
Comments

[. Semiaxes of the polarization ellipsoid

The above results correspond to an ellipsoid (the polarization ellipsoid) centred
at the origin of the coordinate system. The semiaxes (c!™#, c*™* 3™#) along
the coordinate axes of the polarization ellipsoid for the system in the state
W7 are defined by

I = ([(Saﬂ “) (7.133)

(7.133) involves the parameters (af, 0, ).

101



In particular, (7.127) and 7.128) correspond to an ellipsoid of revolution about
- the z—axis: (7.129) and 7.130) correspond to a prolate ellipsoid; (7.131) and
7.132 correspond to an extreme oblate ellipsoid (a disc).

2. Stern-Gerilach apparatuses in series

The observable .5 9% is measured by a Stern-Gerlach apparatus with inhomo-
geneous magnetic field in direction 7 (an mSG apparatus).

The observable (Sj )2 is measured by two jSG apparatuses in series: that is,
by two jSG appartuses such that the entire output from the first jSG appara-
tus is the input to the second jSG appartus. The output from the first jSG
apparatus is not observed.

~~ Density operator for a mixed state

The density operator for a mixed state is discussed in Section 5.3, In this topic
we apply the formalism to a mixed state of a spin 1 particle prepared by a fuzzy
Stern-Gerlach apparatus and measured by efficient Stern-Gerlach apparatuses.

We recall from Itemn I3 in Section 7.2 that the states | myg > of a spin 1
particle may be thought of as being prepared by a Stern-Gerlach apparatus whose
inhomogeneous magnetic field is in the m—direction (an mSG apparatus). An
mSG apparatus prepares pure states of the system: one can decide with certainty
whether an mSG apparatus has prepared the state | m+ > or the state | m0 >
or the state | m— >,

We now imagine preparing a state of the system with an inefficient mSG-like
apparatus which does not allow one to decide with certainty whether the apparatus
has prepared the state | m+ > or the state | m0 > or the state | m— >, This
will be the case if the gradient of the inhomogeneous magnetic field in the Stern-
Gerlach apparatus is not sufficiently strong. As in Chapter 6, we call such an
inefficient mSG—like apparatus an mFSG apparatus (F for fuzzy).
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We can only assign a probability for preparing the state | mg > which
probability is specified by the characteristics of the mFSG apparatus.

Let pp, be the probability for preparing the state | my > with an mFSG
apparatus. Then

0 < pomy < 1 (7.134)
> =1 (7.135)
u==,0

As given by (5.15), the state prepared by the mFSG apparatus is represented
by the density operator

P = Y, U (7.136)
u==,0

It follows from (7.115) and (7.116) that the mixed state (7.136) is labelled by
the four real parameters (a1, ag, 6, @) where

a= Y pal (7.137)
p==,0

(0. ) specify the direction of the inhomogeneous magnetic field of the mFSG
apparatus which prepared the state U™; (a1, 6, ¢) are the spherical polar compo-
nents of the polarization vector for the state; (a2, 8, ¢) determine the semiaxes of
the polarization ellipsoid for the state.

103



Measurement of S - 17 with an mSG apparatus for the system in the state U™
yields the value pA with probability p,,.

Measurement of S% with a kSG apparatus for the system in the state U™
yields the value p# with probability

P, ¥ = 3 prrP (1, 9™ (7.138)
ui==,0

Unpolarized state

If the state W™ is unpolarized, that is, if

Pm4 = Pm0 = Pm— = 13 (7.139)

then
o= % | (7.140)
a =0 (7.141)

It follows from (7.141) that, not unexpectedly, the polarization vector for the
unpolarized state vanishes and the polarization ellipsoid is a sphere with radius
s{s +1) where s = 1.
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Chapter 8 PARTICLE IN A MAGNETIC FIELD

8.1 Introductory remarks

In this chapter, we describe interaction of a particle with spin with a magnetic
field. Our purpose is to apply the methods of . quantum: mechanics to the
important processess of spin precession and magnetic resonance.

We consider the interaction of a particle with spin with a constant, homoge-
neous magnetic field in Section 8,2. We show that the average magnetic moment
of the particle precesses about the direction of the magnetic field with the Larmor
frequency. The phenomenon of magnetic resonance is discussed in Section 8.3.
Magnetic resonance of a spin %— particle and of a spin 1 particle are discussed
in detail.

8.2 Particle in a constant magnetic field

Observation

A particle with spin is subjected to a constant, homogeneous magnetic field
B. Tt is observed that the average magnetic moment of the particle precesses
about 5 with angular frequency

geB (8.1)

T 2me

g is the gyromagnetic ratio of the particle, m is its rest mass, e is the charge
of a proton and ¢ is the speed of light.
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wy is the Larmor precession frequency. For a proton in a one Tesla field,
wo/2m = 42 MHz; for a proton in the Earth’s magnetic field, wy /27 = 850 Hz.

Analysis

We describe the quantum mechanics of the system. We work in the
Schrodinger picture as described in Section 4.2.

We characterize a fixed Cartesian reference frame in a laboratory by unit
vectors 1, ;,l": along the coordinate axes. We disregard any change in position
of the particle. The fundamental dynamical variables are the three Cartesian
components 51, 52, % of the spin § of the particle.

§= 5T+ 827+ 5% (8.2)

The fundamental algebra is given by

[Sf, S’”] = ifie; 8" (8.3)

-y

G5 = s(s+ 1)k (8.4)

where s is the spin of the particle.

Since change in position of the particle is disregarded, the angular momentum
J of the particle is

J=5 (8.5)




The magnetic moment 7 of the particle is

=253 (8.6)

H=-f B (8.7)

The state of the particle at time ¢ is | ¢»(¢) > as given by (4.3).

Comments

Precession of the polarization vector

The particle experiences a torque T due to the magnetic field B. The torque
on the particle is the time rate of change of its angular momentum, that is,

T(t) = —J(¢) (8.8)

where f(t) and J| (t) are the torque and angular momentum in the Heisenberg
picture. It follows from (4.8) that
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T(t) = UN)TU ()

J(t) = Ut)JU (1)

(8.9)

(8.10)

On carrying out the differentiation in (8.8) , it follows using (4.4), (8.9) and

(8.10) that
BT = [f H] 8.11)
Substitution of (8.5) and (8.7) into (8.11) yields
T=jix B (8.12)

As given by (4.5), the average torque ?(t) acting on the particle in the state

| () > is

Tty =< (1) | T | () >

(8.13)

It follows from (8.12) that

() = (1) x B

(8.14)
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where

() =< () | 7 19() > (8.15)

ji(t) is the average magnetic moment of the particle in the state | ¥(f) >.
(8.14) states that the average torque acting on the particle is perpendicular
to the average magnetic moment and the magnetic field. Accordingly, the

torque causes a precession of j(t) about B as is observed.

Precession frequency

To determine the precession frequency, we take B = Bk in which case

H=—wS* (8.16)
where wy is given by (8.1).
It follows from (4.7) that
E(t) = chos wot + Fsin wyt (8.17)
12(t) = —p! sinwgt + p2 coswot (8.18)
u3(t) = 3 (8.19)

We assume that the average magnetic moment at time zero lies in the
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ﬁ:—plane and makes an angle § with the magnetic field. That is,

i= {sin @ }‘—}— cos f F;:‘]ﬁ (8.20)

where T = \/ji- 1. It follows that

E(t) = [sin 8 7() + cos 0 i-’]p' 8.21)

where

5(1?) = sinwgt 3 1+ cos wyl _; (8.22)

(8.22) defines a vector which rotates about the F—axis with angular frequency

@Wo-
Thus, fi(#) precesses about B with angular frequency (8.1) as is observed.

Average energy and uncertainty for a spin % particle

For a spin % particle, the eigenvalues and corresponding eigenvectors of
(8.16) are
1
€y = +3ﬁwg leg >=|— > (8.23)
1
€1 = —§ﬁw{] | ey >=|+ > (8.24)
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where | 1 > are the eigenvectors of ¢® as discussed in Section 6.2.

The evolution operator (4.4) may be written in the form

2 i
U(t) = cos %)— + 1% sin wTO (8.25)

The average energy £ and the uncertainty in energy AE for the particle in
the state

[9(t) >=U(1) | m+ > (8.26)

are
E =< (t) ] H | (t) »>= —é—ﬁwg cos @ (8.27)
AE =I| (H =) | p(t) >||= %rzwg sin (8.28)

It follows from (8.27) and (8.28) that

—%ﬁwﬂ <E< —l—%ﬁwg (8.29)

0<AE<L %fzwg (8.30)

111



It follows from (8.30) and the time-energy uncertainty relation (3.26) that

1
o

Atpin(t) = (8.31)

That is, it takes a time interval of at least WLO to measure a change in the
state of the particle.

For example,

—~1-— ~ 1 ns (8.32)

wp
for a proton in a 4T magnetic field.
Since the speed of light ¢ = 30 cm/ns, it follows that a fast moving proton

must travel of the order of 30 cm in a constant, homogeneous 4 T magnetic
field in order to have its polarization vector rotated by an observable amount.

The magnet used for rotating the polarization vector of the proton beam at

TRIUMF is a one-metre long superconducting solenoid which produces a
magnetic field of the order of 4T.

8.3 Magnetic resonance

Observation

A particle with spin is subjected to a magnetic field B whichis a superposition
of a constant, homogeneous field By and a rotating field B, which is perpendicular
to Eg.

It is observed that the rotating field causes the average spin vector of the
particle to change sign. The probability of this “spin flip” can be made equal to
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one when the frequency of the rotating field is equal to the Larmor precession
frequency of the particle in the field By. This is the phenomenon of magnetic
resonance.

Analysis

We describe the quantum mechanics of the system. We set up the quantum
mechanics in the Schrodinger picture as described in Section 4.2 and solve the
equation of motion in the interaction picture as described in Section 4.4,

The physical system is characterized as in Section 8.2. The Hamiltonian is
given by (8.7) where, in this case, the magnetic field B acting on the particle is

B = By+ B (8.33)

where
By = Bok (8.34)
é] = By (COS wi i — sinwt ;) (8.35)

By, By and w are constants. w is the angular rotation frequency of Bi.

The Hamiltonian for the particle in the magnetic field (8.33) is

H=Hy+ H; (8.36)
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where

Hy = —w5? (8.37)

Hy = —w; (S coswt — 52 sin wt) (8.38)

where wq is the Larmor frequency (8.1) and

_gehBy

(8.39)

W] =
2me

To determine the time evolution of the system in the magnetic field, in view
of (4.11), we solve the equation of motion in the interaction picture.

We recall from Section 4.4 that in the interaction picture the state of the
system | ¥'(¢) > satisfies (4.17), that is,

iﬁ% |9/ (1) >= Hi(t) | #'(2) > (8.40)

where

Hi(t) = eTHol/R g o= ifot/R (8.41)
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Evaluating the right side of (8.41) using (8.37) to (8.39) yields

Hi(t) = —w; [S" cos (wy — w)t + 52 sin (w — w)t] (8.42)

We solve the equations of motion for a spin % particle and a spin 1 particle
in the following topics.

- Spin —% particle

The eigenvalues and corresponding eigenvectors of Hy (8.37) are given by
(8.23) and (8.24).

We take the initial state | »(0) > of the system to be ground state of Hy.
That is,

| 4(0) >=| + > (8.43)

To solve (8.40) we use (6.1) to write

| '(t) >= a,(t) | p > (8.44)
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where

an(ty= < p|'(2) > (8.45)
Z |au(t)]? = (8.46)
It follows from (8.43) that
ap(0) = opt (8.47)

| a,(t)]? is the probability that the polarization vector of the particle at time

'u—)
tis pgk.
| a_(#)| ? is the probability of a “spin flip”.

Substituting (8.44) into (8.40) yields two coupled first-order differential equa-
tions for a4 (1) and a—(¢). Solving these equations subject to the initial conditions

(8.47) yields

3 2
Lag(t) % = (%‘) cos? % n % (8.48)
la (1) ]2 = (%)Zsinz% (8.49)
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where

0= w}z -+ 42 (8.50)
&= w—uwy . (8.5

Comments

1. Resonance function
The function

wi\ 2 w%

S N (8.52)
(Q) (w—wg)z—i—w%

in (8.48) and (8.49) characterizes a resonance; it is symmetric about w = wy,
has a maximum equal to unity when w = wq and drops to half-maximum
when w = wy =+ wy.

wy characterizes the width of the resonance. There is a sharp resonance if
w, < wg, that is, By <« By,

When w = wy,

t
lag(t) ]2 = cos2%1- (8.53)
la_(t) % = sin? Ezl—t (8.54)
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2. Magnetic resonance

It follows from (8.54) that

| a_ (wi]) 12 =1 (8.55)

That is, a spin flip is certain when the angular frequency w of the rotating
magnetic field B (8.35) is equal to the Larmor precession frequency wq (8.1)
and the particle is subjected to the rotating magnetic field for the time 7 /w;.

The particle absorbs energy #Awy from the magnetic field 51 in making a
transition from the ground state | + > to the excited state | — >.

This is the phenomenon of magnetic resonance.

3. Applications of magnetic resonance

Magnetic resonance was first used in the 1940’s to determine gyromagnetic
ratios of nuclei.

It has since become one of the most widely-used diagnostic tools in all of
science.

One reason for this wide range of applicability lies in the fact that, as seen
from (8.1) and (8.39), the resonance parameters wp and wy depend upon a
number of other parameters (By, Bi, g, m) which can be controlled or varied
depending upon the application under consideration.

~ Spin ] particle

The eigenvalues and corresponding eigenvectors of Hy (8.37) are
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€3 = +hwy | €3 >= ! - > (8.56)
g =10 fea >=1]0> (8.57)

€7 = —huwy | ey >=1{+ > (8.58)

where | + >, | 0 > are the eigenvectors of S3 as discussed in Section 7.2.

We take the initial state | 1{0) > of the system to be ground state of Hj.
That 1is,

| $(0) >= |+ > (8.59)

To solve (8.40) we use (7.35) to write

|9 (t) >= > au(t) | p> (8.60)

where

ap(t) = < p|P'(t) > (8.61)
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3 lau®)]? =1 (8.62)

p==4,0

It follows from (8.59) that

a,(0) = 6,4 (8.63)

| a,(t}| % is the probability that the polarization vector of the particle at time
t is ,uﬁ.

| @_(t)] 2 is the probability of a “spin flip”.

Substituting (8.44) inte (8.40) yields three coupled first-order differential
equations for a(¢), ap(t) and a—_(t). Solving these equations subject to the
initial conditions (8.63) yields

s L0 82\°
| (t+(f) l 2 = (%) ((‘,OS2 -2— + 'w—%> (864)
|ag(t) |2 =2(—=] sin’ ——(cos —+ = (8.65)
( 0 ) 2 2w
4
la_(t)]? (%) sin® %3 (8.66)

where ) and é are given by (8.50) and (3.28).
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Comments

1. Resonance function

The resonance function

W1 4* w% .
(—5) B ((w—wgf—l—w%)

(8.67)

in (8.64) to (8.66), because of the higher power, characterizes a sharper
resonance than (8.52) which appears in the spin % equations (8.48) and (8.49).

When w = Wy,

las(t)]? = cos® %t (8.68)
| ag(t) | 2 = -;- sin? wyt (8.69)
i
la_(t)| %= sin? leu (8.70)
2. Magnetic resonance
It follows from (8.70) that
la_ (1) 12 =1 (8.71)
wi
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That is, a spin flip is certain when the angular frequency w of the rotating
magnetic field §1 (8.35) is equal to the Larmor precession frequency wy (8.1}
and the particle is subjected to the rotating magnetic field for the time 7 /w;.
This is the phenomenon of magnetic resonance.

Energy transitions

The interaction of the magnetic moment of the particle with the magnetic
field §] (8.35) does not cause a direct transition from the ground state | + >
to the second excited state | — >; the Hamiltonian H; (8.38) does not connect
these states directly. The particle absorbs energy #w, from the magnetic field
B) in making a transition from | + > to the first excited state | 0 >; it then
absorbs further energy #wy in making a transition from { 0 > to the second
excited state | — >.

The probability | ap(t) | * (8.69) that the particle is in the first excited state
| ¢ > has a maximum equal to %: there is leakage to the second excited state
| — > during the energy absorption process and leakage to the ground state
| + > during the energy emission process.
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Chapter 9 OBSERVABLES WITH
CONTINUOUS SPECTRA

9.1 Introductory remarks

In this chapter we consider the description of a physical system whose
observables have continuous values. Such a system is described in an infinite-
dimensional separable Hilbert space. An example of such a system is the single
spinless particle discussed in QLB: Some Lorentz Invariant Systems Chapter 2.
The position and momentum of the particle have continuous values.

The Dirac method for handling an observable with continuous values is used
throughout QLB. The Dirac method introduces the notion of an eigenket of
an operator and defines a complex function (wave function) of a real variable
associated with a vector in the infinite-dimensional separable Hilbert space.

Our purpose in this chapter is to discuss the Dirac method more fully than
is given in other parts of QLB. The spectral theorem for Hermitian operators is
discussed in Section 9.2 and the Dirac method is discussed in Section 9.3.

The particular case of the position and momentum of a spinless particle
confined to move in one dimension is considered in Chapter 10.

9.2 Spectral theorem

Central to the description and analysis of a physical system whose observables
have continuous values is:
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Spectral Theorem for Hermitian Operators

For each Hermitian operator A defined on a separable Hilbert space there is
a unique family of operators E(a) such that

+o0
A= /adE(a) 9.1
+oo
1= / dE(a) (9.2)
E(—oc) =0 (9.3)
E(+oc) =1 (9.4) 1
E(a)E(d') = E(a')E(a) = E(minimum of ¢ and o) (9.5)
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Comments

1. Nomenclature

(9.1) is the spectral decomposition of A.

The value ¢ in the integrand in (9.1) is a spectral value of A.
The spectram of A is continuous in the range (—oo, 4-00).
(9.2) is the resolution of the identity.

In view of (9.5), the family of operators F{a) is a family of projection
operators.

2. Stieltjes integral

The integral in (9.1) and (9.2) is a Stieltjes integral.

The Stieltjes integral of f(x) with respect to g(z)

A
[ rteya ©.6)
is defined as
ﬂ n
[ 1) dota) = tim 3 f(en)loCer) - glans) X
e k=1
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where

o= <1< <=0 (9.8)

Tpo1 <&y Sy (9.9)

3. Riemann integral and Stieltjes integral

The Riemann integral of f(x)

/f(:z:) dx (9.10)

a4

is the special case of the Stieltjes integral (9.6) when

glzy ==z (9.11)

4. Stieltjes integral with respect to a discontinuous function

The Stieltjes integral (9.6) of f(z) with respect to g(z) can be defined for a
discontinuous function g(x).

For example,
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400
f f(z)db(z) = £(0) (9.12)

“+oo

f db(z) = 1 (9.13)

—

where 6{z} is defined by

O(x) = +1 if x>0
9.14)
= 0 if 2<0

5.

Eigenvalue Decomposition Theorem

The Eigenvalue Decomposition Theorem given in Section 3.2 is a special
case of the Spectral Decomposition Theorem when A is defined on an
n—dimensional vector space:

Let | a1 >,| a3 >,---,| an > be the eigenvectors of A belonging to
eigenvalues a;,ag, -+, a, of A defined on an n—dimensional vector space.
The eigenvectors | a3 >, a3 >,---,| an > may be chosen to satisfy

< ag | ap >= b

We label the eigenvalues such that —oo < a3 € a2 £ -+ < ay < +oc.
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(3.1} and (3.2} follow from (9.1) to (9.5) when

E(a)= > |ap><ay| (9.15)

ﬂ,kSG

9.3 Dirac method

Dirac invented a method for handling an observable with a continuous spec-
trum which does not explicitly involve the Stieltjes integral. The Dirac method re-
places the Stieltje integral by the Riemann integral and uses the Dirac é—function.

For example, the Dirac method replaces the Stieltjes integrals (9.12) and
(9.13) by Riemann integrals by writing

d0(z) = dzd(z) (9.16)

where &{x) is the Dirac é—function.

Regarding the Spectral Theorem, the Dirac method takes

dE(e) =da|a><a (9.17)

which equation introduces the eigenket | a > of A.
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Using (9.17) in (9.1} and (9.2) yields

+co
A:]d(zla>a<a (9.18)

— 00

+oo
h=/dﬂa><al (9.19)

-

It follows from (9.3) and (9.17) that

Ela) = / da' | a' >< a (9.20)

—o

(9.20) is the generalization of (9.15) for a Hermitian operator with a contin-
uous spectrum.

(9.4) follows from (9.20) and (9.5) holds provided

<a|d >=8(a—d) (9.21)

(9.18), (9.19) and (9.21) give the Dirac method for handling an observable
A with a continuous spectrum.
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(9.18), (9.19) and (9.21) are the continuous spectrum analogs of (3.1) to (3.3).

Comments

The eigenket | o >

| @ > is the eigenket of A belonging to spectral value a of A.
| @ > is not a vector in the Hilbert space because < a | a > is not finite.

Notation for vectors and eigenkets

Throughout QLB we use lower case Greek letters | 1) >,| ¢ >, to denote
vectors and lower case Roman letters | z >,| p >, -+ to denote eigenkets.

Wave functions

It follows using (9.19) that

+o0
| >= / da | a > (a) (9.22)
Pla) =<alyp> (9.23)

(9.23) defines a complex function 1{a) of the real variable a.
i(a) is the A—wave function for the vector | @ >.
Now
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<Ypla>=<aly>*=¢"(a) (9.24)

50

o0

1=<rp|d)>:/da<¢|a><a[d)>

— 0

(9.25)

"
= [ 1v(a) %4

(8.22) provides a correspondence between a vector | ¢ > in the the Hilbert
space of states and a function () in the Hilbert space of square-integrable
wave functions.

(9.22) provides a representation of the vector | ¢» > by the square-integrable
function v (a).

Probabilities

The probability P(a)da of obtaining a value in the range a t0 a + da on
measurement of A for the system in the state | ¢/ > is

Pla)da =<4 |a><al®>da=|v(a)|?da (9.26)
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It follows that

“+o0o

+oo
f P(a)da = / | ¥(a) |2da =] (9.27)

— 0

5.

Averages

The average A of the results obtained on measurement of A for the system
in the state | ¥ > is

+oo
E:<¢[A|¢>:/<fg!)|a>a<a]¢>do;
—
(9.28)
+0o0

:fa|¢(o:)]2da

—00
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Chapter 10 SPINLESS PARTICLE
IN ONE DIMENSION

10.1 Introductory remarks

QLB: Some Lorentz Invariant Systems Chapter 2 gives a description of a single
relativistic spinless particle of rest mass m. Proofs of some results stated there
are given in this chapter for a particle confined to move in one dimension.

Position and momentum eigkets and the relationship between them are given
in Section 10.2 and coordinate- and momentum-space wave functions are defined
in Section 10.3. The optimum state of position and momentum is given in Section
1{1.4 and the partial differential Schrodinger equation for the wave function of a
nonrelativistic particle moving in a central potential is derived in Section 10.5.
Some other derivations are given in Section 10.6.

10.2 Position and momentum

Fundamental dynamical variables for a spinless particle confined to move in
one dimension particle are the Cartesian coordinate X and momentum F of the
particle. These variables satisfy the fundamental quantum condition

(X, P = ik (10.1)

X and P are each a complete set of compatible observables; the spectrum of
X and the spectrum of P’ are both continuous in the range (—o0,cc).

We use the Dirac method as given in Section 9.3 for handling these observ-
ables. We denote the eigenkets of X and P by
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|z> and |p> (10.2)

respectively. These eigenkets may be used as bases for the Hilbert space. That
18,

+oo
X=/d:c];c>w<m] (10.3)
+o0
P=/dpip>P<Pl (10.4)
.where
o0 +o0
1:/dw|w><$]=fdp|p><pj (10.5)
and
<z|z' >=6(z—2) (10.6)
<plp >=8p-7) (10.7)




where é(x — z') and §(p — p') are Dirac delta functions.

We show in Section 10.6 that it follows from (10.1), (10.3) and (10.4) that

<z |P|a >=—ikis'(z — o) (10.8)
<p|X|p >=ihs'(p—p') (10.9)
<z|p>= L %effm/"* (10.10)
27h
where
dé(x)
) = 10.11

§() = —- (10.11)

10.3 Wave functions

The state | #2(¢) > of the particle at time ¢t is

| vty >=U(t) | ¢ > (10.12)

where U/(t) is the evolution operator for the particle and | ¢ > is the state of
the particle at time zero.
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The coordinate-space wave function for the particle is

Pz, t) =<z |¥(l) > (10.13)

and

b* (2, 1) (e, t)de (10.14)

is the probability that the position of the particle is between z and z + dz at
time .

The momentum-space wave function for the particle is

p(p,t) =<p i) > (10.15)

and

¥ {p, ) (p, )dp (10.16)

is the probability that the momentum of the particle is between p and p + dp
at time ¢.
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It follows using (10.5), (10.8) and (10.9) that

4

<o | P () >= (~if)"=

(1) (10.17)

n

<P X [9{D) 3= () 50(0.) (10.18)

where n 1S a positive integer.

It follows using (10.5), (10.10), (10.13) and (10.15) that

1 oo

iz, t) = (ﬁ) / dpe’P* By (p, t) (10.19)

—00

1 oo

6= (555) [ w0t (10.20)

—x

Comments

I. Fourier transforms

(10.19) and (10.20) show that the coordinate-space and momentum-space
wave functions of the particle are Fourier transforms of each other.

This remarkable result is a direct consequence of the fundamental quantum
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condition (10.1).

It follows using (10.5) that

o0 +oo
/dx@b*(w,t)w(fﬂ,t): /dptb*(p,t)tb(p,t) (10.21)

which is Parseval’s theorem on Fourier transforms.

10.4 Optimum state of position and momentum

In this section we specialize the material of Section 3.4 to consider the
optimum state | 1ap > of position and momentum.

It follows from (3.16) and (10.1) that the uncertainties AX and AP in the
position and momentum of the particle in the state | 1, > satisfy

k
(AX)AP) = 5 (10.22)
It follows from (2.13) that | )., > satisfies
X-X P-P
: = 10.
(AX +1 AP)|¢opt> 0 (023)

where X and P are the average position and momentum of the particle in the
state | opr >.
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We show in Section 10.6 that it follows from (10.23) that the coordinate-space
and momentum-space wave functions for | g, > are

i

1 = - - 2
beo_'pi(:t) — IZQW(AX)Q:I e—’tP X/Zﬁetpx/ﬁe—[(z—X)/?.AX] (1024)

1
2

: 1 iPX/2h —~iXp/h ~[(p—P)j2APT
Yom (D) = | mm—mm— e (10.25)
‘ ]t(?) {ZW(AP)Q € €
where
hopt() =<z | Yopt > (10.26)
hopt(p) =< p | Yopt > (10.27}
Comments

1. Gaussian wave functions

(10.24) and (10.25) are gaussian wave functions.
(10.24) gives a coordinate-space probability function centred at the average

position X of the particle with width dependent on the position uncertainty
AX.
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(10.25) gives a momentum-space probability function centred at the average
momentum P of the particle with width dependent on the momentum uncer-
tainty AP,

(10.24) and (10.25) are consistent with the fact that the Fourier transform of
a gaussian function is another gaussian function.

The phase factors in (10.24) and (10.25) have been chosen in order that
(10.24) and (10.25) are related by the replacements

Tep X P i e —1 (10.28)
as implied by (10.1) and (10.23).

Another form for | +,,; >; the state | g >

We show in Section 10.6 that | 4,5, > may be written in the form

| thopt >= e/ EX=XP)R |4~ (10.29)

where | 1y > satisfies

Al >=0 (10.30)
where
1/ X . P

It follows from (10.30) that
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<thg | X [t >=<1hg | P | 99 >=0 (10.32)

That is, | ¢ > is the optimum state of position and momentum with average
position and momentum both equal to zero.

Ladder operator

A defined by (10.31) is a ladder operator (lowering operator); that is, it obeys
(11.1).

(10.31) may be written as

1 X P
A= — — 10.33
NG (ﬁ/mc + zm(;) ( )

where the constant ¢ is defined by

1 kK
= 10.34
AX \/§mc (10.34)
AP ! (10.35)
= = .
V2

Choosing ¢ by (11.14) and (11.15) corresponds to regarding the particle as
a nonrelativistic harmonic oscillator. | ¥p > in this case is the ground state
of the oscillator,
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10.5 Partial differential Schrodinger equation

For a nonrelativistic particle moving in a potential V(X), the evolution
operator 1s

Uty = e tHHR (10.36)

and the Hamiltonian H is

H=—+V(X) (10.37)

2m

Differentiating (10.12) with respect to ¢ yields the Schrodinger equation

% | ¢(t) > (10.38)

H | (t) >= ifo

the coordinate representative of which

<o | H| o) >= ih

<o) > (10.39)

vsing (10.17), becomes
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B 9
" 2m 9zt

P, 1) + V(e)(z, 1) = iﬁ%d;(m,t) (10.40)

(10.40) is the partial differential Schrodinger equation for the coordinate-space
wave function #(z,t).

10.6 Some derivations

Derivation of (10.8) and (10.9)

It follows from (10.1) that

<z (XP-PX)|z'>=ith<a]|2 > (10.41)
which, using (10.3) and (10.6), becomes
(¢ —a') <z |P|a >=1ihé(z —2) (10.42)
It follows using (A.32) that (10.42) is solved by
<z|P|d >=~ihis'(z ~2) (10.43)

which is (10.8). (10.9) follows similarly.
(10.43) is a particular solution of (10.42); it follows using (A.31 ) that the
most general solution of (10.42) is
—its! (z — 2') + ab(z — 2) (10.44)

where « is real. Now
—ihs! (x - ;):') + a§(3: — x’)

. -—*(I,'I)a . 1 fi,
]61 (.L‘ _ .r’) = —tlz—z")a/ [_iﬁél (:c — :L"')] (10.45)
a a
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where
|z >= eiralk Lz >
a

(10.46)

The most general solution of (10.42) therefore corresponds to a choice of phase
factor in the position ket. The choice a = 0 is standard and can be made without

loss of generality.

Derivation of (10.10)

It follows from (10.4) that
<z|Plp>=p<z|p>

which, using (10.5) and (10.8), becomes

L 0O
—th— < z|p>=p<z|p>
dx

Similarly, it follows from (10.3) that
o,
th—<plz>=z<pl|lz>
dp
Integrating (10.48) and (10.49) yields
<z |p>=e(p)er/h

and
<plz>=cyla)e /R

Now i
<plez>=<x|p>
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(10.48)

(10.49)

(10.50)

(10.51)

(10.52)



50
ca(x) = ¢,*(p) = constant =c¢ (10.53)

and
“+co
Slx—a')=<zl|2 >= f dp<zlp><pla >
—o0
(10.54)
=+
= cc* / dpetP(E=a )k - cc*2rhid(z — 2')

Choosing ¢ positive real yields (10.10).

Derivation of (10.24) and (10.25)

It follows using (10.17) and (10.22) that the coordinate-space representative
of (10.23) is
d z—X iP
— = — | thpi(z) =0 10.55
(ax xR )""’Pt(‘r) (10.55)

Solving (10.55) yields (10.24). (10.25) follows similarly or using (10.20).

Derivation of (10.30)

(10.30) follows from (10.23) and the identities

X - X=DxD! (10.56)

P_P=ppPDt (10.57)
where P

D = HPX-XP)[k (10.58)
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Chapter 11 LADDER OPERATORS

11.1 Introductory remarks

Ladder operators are referred to in QLB: Some Lorentz Invariant Systems
Chapter 2 with reference to countable bases for the Hilbert space for a single
spinless particle. In this chapter we give a more complete discussion of ladder
operators and we derive properties of these operators which are stated in QLB:
Some Lorentz Invariant Systems Chapter 2.

Ladder operators were introduced by Dirac to determine the energy eigenval-
ues of the nonrelativistic harmonic oscillator and they subsequently provided an
important bridge in the development of relativistic quantum mechanics.

Dirac’s method for determining the eigenvalues of the ladder operator number
operator is given in Section 11.2.

Ladder operators are used in Section 11.3 to determine eigenvalues of angular
momentum operators, The method is due to J. Schwinger; see J. Schwinger, On
Angular Momentum (1952) in L.C. Biedenharn and H. van Dam (1965).

Some derivations are given in Section 11.4.

11.2 One pair of ladder operators

We consider an operator A which with its adjoint A? obeys

[A,A*] =1 (11.1)
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We define a Hermitian operator N by

N=al4

(11.2)

We show in Section 11.4 that it folows from (11.1} and (11.2) that the
eigenvalues of N are the nonnegative integers and the corresponding eigenvectors
are obtained by operating with powers of A" on the eigenvector belonging to

eigenvalue zero.

More specifically,

Nln>=n|n> (11.3)
where
n >=ﬁ(ﬂ)n[0> (11.4)
and
<n|n >= (11.5)
n=40,1,2,--- (11.6)
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Furthermore,

Alln>=va+1|n+1> (11.7)
Alnd+l>=vn+1|n> (11.8)
and
Al0>=0 (11.9)
<0]|AT=0 (11.10)
Comments

I. Nomenclature

In view of (11.7) and (11.8), AT and A are called ladder operators; At is a
raising operator and A is a lowering operator.

N is the ladder operator number operator.

2. Comparison with boson operators

AT and A bear some formal similarity to creators and annihilators defined in
QLB: Quantum Mechanics in Fock Space Chapter 6 for a system of identical
bosons. Indeed, the harmonic oscillator ladder operators discussed in Topic
11.2.1 historically provided a bridge to the description of a system of identical
bosons.
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The similarity between boson operators and ladder operators is only apparent
however; creators and annihilators change the number of particles in & system;
ladder operators do not.

- One-dimensional harmonic oscillator

We show in this topic that the vectors | n > defined by (11.4) are eigenvectors
of the Hamiltonian for a one-dimensional nonrelativistic harmonic oscillator.

The nonrelativistic harmonic oscillator is discussed in depth in all standard
books on nonrelativistic quantum mechanics and these books should be consuited
for further details. Our purpose here is simply to define ladder operators in
terms of particle position and momentum and to relate the ladder operator number
operator to the harmonic oscillator Hamiltonian.

The description of particle of rest mass m confined to move in one dimension
is given in Chapter 10. When the particle is subjected to a force

F=—-kX (11.11)

where L is a constant, the Hamiltonian for the particle, in the Galilei approxi-
mation, is '

P? 1
H=—4 kX2 11.12
2m t 2 ( )
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On defining A by

1 X B
A:E(ﬁ/mcﬂ-z%) (11.13)

where ¢ is defined by

Fiw = mc? (11.14)

w=4/— (11.15)

it follows from (10.1) that (11.1) holds. A defined by (11.13) is a ladder operator.

It follows from (11.13) that

X = \/;rnc(A“rA) (11.16)
P:E%E(AT_A) (11.17)

and
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2 2
X2 = l(i) [1 42414 4+ (AT) + A2] (11.18)
2\ mc
2 _ 1 2 1 N2 42
P? = ~(me)*|1+24%4 - (4 ) -4 (11.19)
and therefore
1
H =hw (N + E) (11.20)
where N is given by (11.2).
The eigenvectors of H span the Hilbert space, that is,
N:Z|n>n<n| (11.2D
n=0
- 1
= - 11.22
H ﬁwgln>(n+2)<n| ( )
1= {n><n] (11.23)

n=0
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Commients

Countable set of basis vectors

As given by (11.23), the eigenvectors of N are a countable set of vectors
which span the Hilbert space.

This contrasts with the eigenkets of X and P which are labelled by a
continuous variable and are not vectors in the Hilbert space but which
nevertheless which may be used as bases for the Hilbert space as expressed
by (10.5).

The eigenvectors of N are used in QLB: Some Lorentz Invariant Systems
Chapter 2 to provide a countable basis for the Hilbert space for a single
spinless particle.

They are also used in OLB: Quantum Mechanics in Fock Space Chapter 3 to
provide a countable set of basis vectors for a one-particle system which is
appropriate for developing the occupation number representation for a system
of identical particles.

Normal order

(11.1) has been vsed to write (11.18) and (11.19) in normal order, that is,
with raising operators written to the left of lowering operators.

Ladder operator method

We determine the average and uncertainty of position and momentum for the
oscillator in the ground state | 0 > to illustrate the ladder operator method.

Using (11.9) and (11.10) with (11.16) to (11.19) immediately yields

X=7P=0 (11.24)
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AX = _\/_ZE (11.25)
1
AP = Emc (11.26)
h
(AXYAP) = 5 11.27

According to (10.22), | 0 > is an optimum state of position and momentum.
Indeed, (11.9) is a special case of (10.30).

Coordinate-space wave functions

It follows from (10.24) that the coordinate-space ground state wave function
Yo(zr) =< 2 | 0 > is

1

bale) = (%> i (11.28)
where
4= ﬁ/”;m (11.29)

It follows from (11.7), (11.13) and (10.17) that
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() = (2- )] %@ (1130)

|

2~
Sl

where 1, (x) =< x | n > is the coordinate-space wave function for the state
| n >.

(11.30) allows ¥, () to be determined from ¢¢{z). ,(z) involves the
Hermite polynomial

Ho(2) = /2 (x - —h) e~/ (11.31)

11.3 Ladder operators and angular momentum

We consider operators A,, Ay which with their adjoints AL,AE obey

[Aas Ag] =0 (11.32)

[AQ,,A‘},,] = bap (11.33)
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We define mutually commuting Hermitian operators Ny, Nz, N by

N, = Al A, (11.34)
Ny = Al A (11.35)
N=N,+ Ny (11.36)

It follows from an analysis similar to that given in Section 11.4 that

Ny | nyng >=ny | nyng > (11.37)
Ny | nung >=ng | nyng > (11.38)
N | nyng >=n|nyng > (11.39)
where
L ()™ (a1} 00 11.40
| Nyng >= \/W( u) ( d) I = ( 40)
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and

Ny +Ng=n (11.41)
Ny,ng = 0,1,2,--- (11.42)

Furthermore,
Al [ nung >= Vg +1 | 1 + 1ng > (11.43)
Ay | nyng >=vVny +1 | ny — Ing > (11.44)
AL fngng >=/ng+ 1| neng+1 > (11.45)
Ag | nyng >= /ng+ 1| ngng — 1> (11.46)

and

Ay [ Ong >=40 (11.47)
Ag | ng0 >=0 (11.48)
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We define

1 _ l t }

Jl = Z(AdAu+AuAd) (11.49)

:
7% = (A4, - AL4d) (11.50)

1
J7 = < (Al - AjAl) (11.51)

and

3 2 - o

(7) =T T= )+ () + (%)’ (11.52)
1t follows from (11.32) to (11.36) that

{JQ,J”} — iegped® (11.53)
(11.54)
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and

(f)2 - -N—(ﬁ + 1) (11.55)

1
I = 5(Nu = Na) = (N = 2Ng) (11.56)

N2
It follows from (11.37) to (11.42) that the eigenvalues of (J ) and J3 are,
respectively,

. 1 :
j+1) where j=0, 3 1, %, (11.57)
m where m=y j—-1, -, —J (11.58)
On writing
ny=7j3+m (11.59)
ng=j—m (11.60)

it follows from (11.37) to (11.42) that
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- 2
(1) 1im>=iG+1) 1 jm> (11.61)

I jm>=m|jm> (11.62)
JUjm>=+/jG+1)—(m+1)|jm+1> (11.63)
J7 | gm>=+jG+1)=(m—-1)]jm—-1> (11.64)
where
1 J+m Jj—m
| jm 5= !(AL) (AL) 100 > (11.65)

\/(j +m)l(; —m)!

Jt=J' 0% = Al 4, (11.66)
JT=JV—ig? = Al A, (11.67)
Comments

I. Commutation relations

(11.53) and (11.54) are the standard commutation relations satisfied by the
Cartesian components of angular momentum.
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2. Eigenvalues

11

2
(11.57) and (11.58) are standard results for the eigenvalues of (J) and J°.

Angular momentum ladder operators

(11.66) and (11.67) define angular momentum ladder operators.

(11.63) and (11.64) are standard results for angular momentum ladder oper-
ators.

Generators of ST/(3)

The discussion of this section can be extended to include any number of
ladder operators.

The generators of SU(3) can be defined in terms of three ladder operators
Ay, Ag. As similarly to the above definition of SU/(2) generators in terms of
Aus Ag-

.4 Some derivations

Derivation of (11.3)

The eigenvalue problem for NV is to solve

NiA>=X|A> (11.68)

for nonzero vector | A > and constant A.

It follows from (11.1) and (11.2) that
[N,Al=-A (11.69)

[N, A*] = At (11.70)
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and therefore

NA|A>=(A-1)A|A> (11.71)
CAN|AN>=X2< A A>2>0 (11.72)

and
NAT [ A=+ DA | A > (11.73)
<A AN S=A+ D <A A >20 (11.74)

It follows from (11.71) and (11.72) that

AZ=0 (11.75)
Al0>=0 (11.76)
It follows also from (11.73) that | 0 >, AT 10 >, (A*)?‘ |0 >, - are

eigenvectors of N are belonging to eigenvalues 0,1, 2, . -, respectively.

That there are no eigenvalues between 0 and 1 follows from (11.71) and
(11.75). That there are no eigenvalues between ! and 2 and between 2 and 3
etc. follows from (11.73).

The norm of the vectors AT | 0 >, (AT)2 | 0>, ---is expressed in terms
of the norm of | 0 > by (11.74).

This completes the proof of (11.3).
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Appendix: Mathematical Preliminaries

A.1 Some properties of operators

Jordan {1969) should be consulted for the mathematics of linear and antilinear
operators for quantum mechanics. We give a few properties of these operators
below.

Linear operators

A linear operator A satisfies

Aa=aA (A.1)

for any constant «. The adjoint A’ of a linear operator A is defined by

< | AT =< Av | (A2)

Antilinear operators

An antilinear operator A satisfies

Ar = —tA (A.3)
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The adjoint AT of an antilinear operator A is defined by

<y | Al |g>=<Ap|¢> (A.d)

Linear unitary and antilinear antiunitary operators

Linear unitary operators and antilinear antiunitary operators preserve the norms
of states. They satisfy

vut =utu =1 (A.3)

Notation for the inverse of an operator

= A7l (A.6)

% =AB'=B"'A when [A,B]=0 (A7)
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A.2 Commutator and anticommutator identities

The commutator [A, B] and anticommutator {A, B} of linear operators A and B
are defined as

[A, B] = AB ~ BA (A8)
{A,B} = AB + BA (A9)
It follows that

[AT,BTJ = —[4,B] (A.10)
{A1, B} = {4, B} (A1)

1 | 1

! 1 1
{E,B} = (A B) (A.13)
[A, BC] = [A, B|C + BIA,C] = {A, B}C - B{A,C) (A.14)
[AB,C] = A[B,C]+[A,C]B = A{B,C} — {A,C)B (A.15)
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[AB,CD] = AlB,C]|D + C[A, D|B + [A,C)BD + CA[B, D]
= A[B,C]|D + C[A, DB + [A,C]DB + AC[B, D]
(A.16)
= A{B,C}D ~ C{A,D}B — {A,C}BD + CA{B, D}
= A{B,CYD — C{A,D}B + {A,C}DB — AC{B, D}
[A,[B,C] + (B,[C, Al +[C,[A, B]] = 0 (A.17)

B — (AB 3Bl e A [A, B] = [B,[A,B]]=0 (A.18)

ABe ™ = B+ [A,B] + ;—I[A, [A,B]]+--- (A.19)

A.3 Summation conventions

Repeated Roman indices

We use the convention that repeated Roman indices are summed 1,2,3. That
is,

3
A'B?  implies Y A'B’ (A20)
i=1
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Repeated Greek indices

We use the Einstein summation convention that repeated Greek indices are
summed 0,1,2,3. That is,

3
AFB*  implies Y AMBH (A21)
u=0

A.4 Miscellaneous symbols

Kronecker delta §.;.

d11 = by = 33 = 1

. (A.22)
Si=0 (G #K)

Kronecker delta &,

600 26]] :622_—"633:1

(A.23)
o, =0 (u#v)

Dirac delta é(z) and §™{x)
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§(x) and &™(z) are defined by

(A.24)
=0 if z=10
oo
/ &(z)dz =1 (A.25)
myoy d™é(z)
&M (x) = T (A.26)
It folows that
+o0
/ §{a —b)f(b)db = f(a) (A.27)
+oo gm
/ &M (a— b)Y f(b)db = —Ei—ii) (A.28)
8(—z) = 6(x) (A.29)
8" (—z) = (——)m6m(m) (A30)
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wb(z) =0 (A3D
26l () = —6(z) (A.32)
1
5(:1:2 — az) = 5 jla |[5(,E +a)+ 6(z — a)] (A.34)
| 1 | oy = . Flza)
§{f(x)) ; Wau — ) {f(d:n) = 0; =1 # 0} (A.35)
1 7
8(x) = 5= f etke di (A.36)
§' () = 2% / ke'*® g (A.37)
Nl
§(k—k ) =— /dr?‘ j((k?‘)jg(k r) (A.38)

0
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Levi-Civita permutation symbol ¢.;;

€11 is defined as the totally antisymmetric quantity with

€123 = 1 (A.39)

It follows that

ikl mn = 5km51n - 6kn51m (A.40)

Permutation symbol #7797

¢#”77 is defined as the totally antisymmetric quantity with

O123 — (A.41)

Metric tensor ¢+

g"¥ is defined by

(A.42)

G = 9" (A43)
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It follows that

9" ggr = &4, (A.44)

A.5 Raising and lowering indices

Ay = guy A” (A.45)
Al = g A, (A46)
Al = gus A% (A47)
pr = gnagyrAUT (A.48)

A.6 Dot and cross products of operators

We define

A-B=Alps (A.49)
AB=A,B*=A"B,=A'B°- 4. B (A.50)

(Ax E)j = ;AR B (A.51)
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Then

A (21' x é) =0 if [AJ"',A’“] —0 (A.52)

We write

= A? (A.53)

g
b}

The superscript 2 thus refers both to the 2~component of a triad and to A-A
Which meaning of A2 pertains will always be clear from the context.

The dot and cross products (A.49) to (A.51) are only used for operators which
transform like vectors under rotations.

A.7 Rotation matrices

Rotation matrices r1(8),7%(8),r3(8) are defined by
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1 0 0
ri@) =0 cos# sind (A.54)

0 —sinf cosf

cos# 0 —sinf
7"2(6’) = 0 1 0 (A.55)

sinf 0 cosf

cosf  sind 0
r3(@) = | —sinf cosd 0 (A.56)

0 0 1

That is,

1) (6) = 6ap o8 0 4 8;46,3(1 — cos§) + €qp sin 8 (A.57)

(A.54) to (A.56) are involved in coordinate transformations under rotations.

r%(3) and »*(v) are identical to M (5) and M (), respectively, on page 65, Rose
(1957).

A.8 Lorentz transformation matrices

Lorentz transformation matrices {!(u), 1*(u), I*(u) are defined by
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coshu —sinhwe 0 0O

1, v | —sinhu coshu 0 0
u) = 0 0 Lo (A.58)

0 4] 0 1

coshu 0 —sinhu 0

2 N 0 1 0 0
Flu) = —sinhu 0 coshu O (A.59)

0 0 0 1

coshy 0 0 —sinhu

3 0 1 0 0
_ A
Flu) 0 a1 0 (A.60)
—sinhue 0 0 coshu
That is,
Pr(u) = 6

(A.61)

1« labels the rows and » labels the columns of I(u).

(A.58) to {A.60) are involved in coordinate transformations under Lorentz boosts.
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A.9 Pauli matrices

Pauli matrices o, 0y,0, are defined by

4 {01 X
Oy =7 _(] 0) (A.62)
0 —i
oy = 0% = (z. 0 ) (A.63)
s 1 0
PO — = A.. 4
OF:=0 (G _1> (A.64)
It follows that
oot = 5jk + 2€5x10 (A.65)
(3-21’)(3 E):E-B’Jﬂa (ﬂxé‘) (A.66)
(&'-E)” — A% if [AJ’,A’“J =0 (A.67)
e’ = cosha + o7 sinh a (A.68)
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A.10 Dirac matrices

1

Dirac matrices o', a?, o?, 3 satisfy

{ai, ak} =26, (A.69)
{o7,8) =0 (A.70)
g2 =1 (A71)
Dirac representation:
. 0 o
J = .
o’ = (0‘5' 0 ) (A.72)
1 0

A= (0 _1) (A.73)

Each element in the matrices on the right side of (A.72) and (A.73) 1s a 2 x 2
matrix.

A.11 +-matrices

~—matrices 7%, 41,42, 4%, +° are related to Dirac matrices o', o?, o®, 8 by

176




=8 (A.74)
v = B (A.75)
7 =75 = iy (A.76)
It follows that

{7* 7"} = 24" (AT7)
(¥} =0 (A.78)

2 2 2 2 2
() =-(1) == === (%) =1 (A.79)
VCLIPSVUNON (A.80)
= (A.82)
5t = 5 (A.83)
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Dirac representation

(A.84)

(A.85)

(A.86)

Weyl representation

(A.87)

(A.88)

(A.89)
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Chiral representation

L.

Notation

0 g -1

¥ = (_1 0 ) (A90)
. 0 ol

J — .

¥ = (—U] 0 ) (A.91)
5 (1 0

4P = (O _1) (A.92)

Comments

Each element in the matrices on the right side of (A.84) to (A.92) isa 2 x 2

matrix.

Unitary transformations

Let

1

Uy = —(1 £ ~+%0 A.93
" ﬁ( 7°~%) (A.93)

Vi =Ui = +£4°° (A.94)
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Then

Ul = %(1 F1°°) (A.95)
Vi=F1"" = - Vi (A.96)
Usny"UL = +4° (A.97)
Usy UL = 47 (A.98)
Usy’UL = 74 (A.99)
Upy*70UL = 4540 (A.100)
Vey 'Vl = —4° (A.101)
Viy VI = 7 (A.102)
Vay Vi = = (A.103)
R A (A.104)

3. Dirac, Weyl and chiral representations
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The Dirac, Weyl and chiral representations are related as follows:

U‘*"YgiracUI- = 'ﬁieyl (A.IOS)
T _

[]_7giracU -= ’thiml (A.106)

Vivﬁeylvz}i = ’Tfhira.l (A.107)
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