Problem Set 7

Problem 1

Finish the worksheet from Wednesday's class and read over the posted notes on general representations of the Lorentz group. I will summarize the important lessons from the worksheet on Friday. You don't need to hand this in.

Problem 2

If \mathcal{J}_i and \mathcal{K}_i are the matrices corresponding to the rotation and boost generators in some representation of the Lorentz group, they must satisfy the following commutation relations:

$$[\mathcal{J}_i, \mathcal{J}_j] = i\epsilon_{ijk}\mathcal{J}_k \tag{1}$$

$$[\mathcal{J}_i, \mathcal{K}_j] = i\epsilon_{ijk}\mathcal{K}_k \tag{2}$$

$$[\mathcal{K}_i, \mathcal{K}_j] = -i\epsilon_{ijk}\mathcal{J}_k . \tag{3}$$

If we define

$$\mathcal{A}_{i} = \frac{1}{2} (\mathcal{J}^{i} + i\mathcal{K}^{i}) \qquad \qquad \mathcal{B}_{i} = \frac{1}{2} (\mathcal{J}^{i} - i\mathcal{K}^{i}) , \qquad (4)$$

calculate $[\mathcal{A}_i, \mathcal{A}_j], [\mathcal{B}_i, \mathcal{B}_j], \text{ and } [\mathcal{A}_i, \mathcal{B}_j].$

Problem 3

You may wish to look over the posted notes on angular momentum in quantum mechanics.

a) Consider a quantum system consisting of two completely independent parts A and B, each with a finite number of quantum states (e.g. two separate particles with some spin). If J_A^i and J_B^i are the rotation operators acting on these two parts, what are $[J_A^i, J_A^j]$, $[J_B^i, J_B^j]$, and $[J_A^i, J_B^j]$? Compare the result to your answer to problem 2.

b) Suppose now that the two systems are each spin half particles, so that each subsystem has a two-dimensional Hilbert space. Write down a basis of states for the full system. In this basis, write down the explicit matrices for J_A^x , J_A^y , J_A^z , J_B^x , J_B^y , J_B^z .

c) Can you use your results and the discussion of part a) to write down a set of matrices \mathcal{J}_i and \mathcal{K}_i that represent the Lorentz group?

Problem 4

Read chapter 4 of Tongs notes:

http://www.damtp.cam.ac.uk/user/tong/qft/four.pdf

and/or sections 3.1-3.4 of Peskin and Schroeder Simplify the following expressions:

a)
$$\gamma^3 \gamma^3$$

b) $\gamma^1 \gamma^2 + \gamma^2 \gamma^1$
c) $\gamma^0 \gamma^2 \gamma^0$
d) $\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}$

e) Suppose we have a Dirac spinor field $\psi_{\alpha}(x) = (At, 0, 0, 0)$. If we perform a boost in the z direction by velocity v = 3/5c, write an expression for the field that we obtain after the boost. Your expression should be explicit, but it's okay if it involves the exponential of a matrix. *Hint: For a vector field, the Lorentz transformation matrix corresponding to a boost with velocity v in the x direction is*

$$\begin{pmatrix} \gamma & \gamma\beta & 0 & 0\\ \gamma\beta & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} = e^{iaK_x}$$

where

and $\tanh(a) = \beta$.