Problem Set 7

Problem 1

Finish the worksheet from Wednesday's class and read over the posted notes on general representations of the Lorentz group. I will summarize the important lessons from the worksheet on Friday. You don't need to hand this in.

Problem 2

If \mathcal{J}_{i} and \mathcal{K}_{i} are the matrices corresponding to the rotation and boost generators in some representation of the Lorentz group, they must satisfy the following commutation relations:

$$
\begin{align*}
{\left[\mathcal{J}_{i}, \mathcal{J}_{j}\right] } & =i \epsilon_{i j k} \mathcal{J}_{k} \tag{1}\\
{\left[\mathcal{J}_{i}, \mathcal{K}_{j}\right] } & =i \epsilon_{i j k} \mathcal{K}_{k} \tag{2}\\
{\left[\mathcal{K}_{i}, \mathcal{K}_{j}\right] } & =-i \epsilon_{i j k} \mathcal{J}_{k} . \tag{3}
\end{align*}
$$

If we define

$$
\begin{equation*}
\mathcal{A}_{i}=\frac{1}{2}\left(\mathcal{J}^{i}+i \mathcal{K}^{i}\right) \quad \mathcal{B}_{i}=\frac{1}{2}\left(\mathcal{J}^{i}-i \mathcal{K}^{i}\right) \tag{4}
\end{equation*}
$$

calculate $\left[\mathcal{A}_{i}, \mathcal{A}_{j}\right],\left[\mathcal{B}_{i}, \mathcal{B}_{j}\right]$, and $\left[\mathcal{A}_{i}, \mathcal{B}_{j}\right]$.

Problem 3

You may wish to look over the posted notes on angular momentum in quantum mechanics.
a) Consider a quantum system consisting of two completely independent parts A and B, each with a finite number of quantum states (e.g. two separate particles with some spin). If J_{A}^{i} and J_{B}^{i} are the rotation operators acting on these two parts, what are $\left[J_{A}^{i}, J_{A}^{j}\right],\left[J_{B}^{i}, J_{B}^{j}\right]$, and $\left[J_{A}^{i}, J_{B}^{j}\right]$? Compare the result to your answer to problem 2.
b) Suppose now that the two systems are each spin half particles, so that each subsystem has a two-dimensional Hilbert space. Write down a basis of states for the full system. In this basis, write down the explicit matrices for $J_{A}^{x}, J_{A}^{y}, J_{A}^{z}, J_{B}^{x}, J_{B}^{y}, J_{B}^{z}$.
c) Can you use your results and the discussion of part a) to write down a set of matrices \mathcal{J}_{i} and \mathcal{K}_{i} that represent the Lorentz group?

Problem 4

Read chapter 4 of Tongs notes:
http://www.damtp.cam.ac.uk/user/tong/qft/four.pdf
and/or sections 3.1-3.4 of Peskin and Schroeder
Simplify the following expressions:
a) $\gamma^{3} \gamma^{3}$
b) $\gamma^{1} \gamma^{2}+\gamma^{2} \gamma^{1}$
c) $\gamma^{0} \gamma^{2} \gamma^{0}$
d) $\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}$
e) Suppose we have a Dirac spinor field $\psi_{\alpha}(x)=(A t, 0,0,0)$. If we perform a boost in the z direction by velocity $v=3 / 5 c$, write an expression for the field that we obtain after the boost. Your expression should be explicit, but it's okay if it involves the exponential of a matrix. Hint: For a vector field, the Lorentz transformation matrix corresponding to a boost with velocity v in the x direction is

$$
\left(\begin{array}{cccc}
\gamma & \gamma \beta & 0 & 0 \\
\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=e^{i a K_{x}}
$$

where

$$
K_{x}=-i\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and $\tanh (a)=\beta$.

