Problem Set 5

Problem 1

Starting with the classical expression

$$
P_{x}=-\int d^{3} x \dot{\phi} \partial_{x} \phi
$$

for the conserved x -momentum in a $3+1$ dimensional scalar field theory, show that the momentum operator is:

$$
P_{x}=\int \frac{d^{3} p}{(2 \pi)^{3}} p_{x} a_{\vec{p}}^{\dagger} a_{\vec{p}}
$$

From this (and using the commutation relations for a and a^{\dagger}, show that the state

$$
a_{\vec{p}}^{\dagger}|0\rangle
$$

is an eigenstate of momentum with eigenvalue p_{x}.

Problem 2

Starting from $\left[a_{p}, a_{q}^{\dagger}\right]=2 \pi \delta(p-q)$ for a $1+1$ dimensional field theory, calculate $\left[\phi\left(x_{1}, t_{1}\right), \phi\left(x_{2}, t_{2}\right)\right]$. What does the result give when $t_{2}=t_{1}$?

Problem 3

Starting with the expression for the field in terms of creation and annihilation operators, calculate the correlation function $\langle 0| \phi(\vec{x}) \phi(0)|0\rangle$. Express your result explicitly as a function of $|x|^{2}$ using Bessel functions and determine explicitly the asymptotic form of the function for large $|x|$. What happens to the correlation function as we increase the mass? If you have trouble evaluating the integral explicitly, do it numerically, produce a plot, and determine the large $|x|$ behaviour.

Tip: For integrals like

$$
\int d^{d} k e^{i k \cdot x} f\left(|k|^{2}\right)
$$

a useful trick is to recognize that they can only depend on the length of \vec{x}, since a rotation on \vec{x} leaves the integral invariant (we can compensate by rotating the integration variable). Thus, it must be that

$$
\int d^{d} k e^{i k \cdot x} f\left(|k|^{2}\right)=F\left(|x|^{2}\right)
$$

To find F, we can use the same equation but assume that \vec{x} points only along the x direction:

$$
\int d^{d} k e^{i k_{x} x} f\left(|k|^{2}\right)=F\left(x^{2}\right) .
$$

You are welcome to use Maple/Mathematica/Wolfram Alpha for integrals that you find here.

Problem 4

a) Write the most general action for a vector field A_{μ} in $3+1$ dimensions that is local, Poincaré- invariant, gives rise to a linear equation of motion, and is such that the classical evolution is completely determined by A and \dot{A}. Treat as equivalent terms that differ by a total derivative, since these give the same result for field configurations that vanish at infinity.
b) Find the most general action if we additionally require that the theory has a symmetry under transformations $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda$, where λ is an arbitrary function of space and time.
c) In $2+1$ dimensions, there is another possible term for part a). What is it?

