
Particle interactions
we sarv last tirne that i.he ma[hematical description of Lhe physics for a simple frel<ì
the.rry was exactly the same as the description oI a collection of harmonic oscillators.
The ficld var-iablc /(z,f) can be decomposed into Fourier modes
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and lhe amplitude @" of each mode is described by the equations of a harmonic os_
cillator with frequency ø, x n. Quantum mechanicall¡ the energy in each oscillato¡
(i.e. for-each allorved wavele'gth) is quantized, .'d we can define creation a'd a.nihi-
lation operators al. and a, that add or subtrat t one quantLrn of energy fio'r the field
u¡ci.lllciun wit h waveJengrh ),.

As we discovered, the quantum spectrum ol thìs system matches exactly wiih our
cxpectatio' for a, systcnr with arbitrary rrurnbcrs of pìrotorrs confi'ecl in a, regiorr 0 !
z ! 'L. Assrming that quantizing the electro'ragnetic field (which is cìescribecl by the
s¿nre classic¿l wave equation) will give ana,logous results, we now have ¿ cler"iuati,on
of the photon picture of lighi. This deriv¿tion tells us that a photon is a qnantum
of energ¡' ìn the harmonic oscillaLor s¡'stem that describes the oscillations of the field
tr,t somc pa,rticultrr wavclcrrgth. with this irrterpr ctation, wc can sav that irr our'{ìelrl
theory s¡'s¿srn;

o The creation operator al creates a particle rvith waveÌength À,.

o The annihilation operator ¿¿ removes a pariicle with wavelength ),.
Using the creatìon and annihilation oper¿tors, we c¿n u.rite a basis of energy eigenstaLes
for the field theory as
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where l0) is thc vacuum state, and the energ¡. of this state relative to thc vacuum state
is

E - Eo - àrr(¡¿, + 2¡/, + 3^h +...) .

For this simple field theory, \\¡e càn sa)¡ that the rrumber of particles will not change
under time evolution.

Question: why can we say this?
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Phvsically, the lact that particle number (or the momenta of the particles) doesn'l
change stems from the f¿ci that the r¡'ave equation i¡'e st¿rted l'ith is linear. This
means Lhat classically, any tu'o solutions can be superimposed to give a new solution.
In particular, the classical time evolution for an initial state with two approaching
wavepackets will be the superimposed time evolution of the individual wavepackets; as
a resull, the packets will pass right through each other.

Adding interactions
In this section, we'll see that adding non-linear terms in the wave equation (or equit-
alently, non-qnadratic terms in the expression for the energy) will vield a iheory in
which the number of particles (or the momentâ of ihe indivìdual particles) can change
j.l tinc. Colsidcr as arr examplc thc ficld thecrry fi orl l¿,rst tirre. but with a ucw terrl
added to the energv:

but suppose that al some time, the equations governing the sysiem are perturbed so
th¿t new expression for the energy includes a term
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This new term will result in a perturbation to the quantum Hamiltonian.
Show that with the nev/ term in the Hamiltonian, the number of particles
can chalge under time evolution.
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nlore space:
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We have seen so far that bv quantizing freÌds, we can describe quantum systems

with arbitrary numbers of particles. The particles that we obtained fïom quantizing the
simple lvave equation had the same energies as a system of massless particles (photons),

and dicl not interact with each other. Holvever, as lve have started to see, by modifying
the classical lvave equation, we can describe particles with other properties:

Non-linear terms <+ Inieracting particles

Linear term with no derivatives <+ Nlassive particles (homework)

Fields u'ith more components <+ Pàrticles with multiple stales (e.g. polarizations)

Since our current understanding of nature is that all matter ancl light are made up

of clementar5. pariicles interacting with one ânother, it may now be remotely plausible

that quantized fields could give the right framework for a quantitative description of
thc physics. But how do we hnr¡w rvhat classical field thcory to start with to clcscribc

particular kinds of particles with particuÌar kinds of interactions? To describe photons,

the natural guess is to quantize the eÌectromagnetic frelds. since these provide the

classical description of lighl. But the classical description of electrons ancl other màtter
particles doesn't involve fieÌds at alÌ.

In order to proceed, it will be useful to have a more systematic rvay of rvriting dou'n

field thcorics, ald sorte morc sophisticated tools fol anaþzing thcir phvsicarl propertics.

The riglrt tool for our purposes is description of field theories in telms of an ACTION
PRINCIPLE.

Ilomework problem: to hand in Monday

a) For a string of length -L fixed at both ends and described by an action

r ¡L t1 1 ì
s - J 

dt 
Jn 

dr \rt," )t,n't' j
rvith boundary conditions þ(, - 0) : <þ(.r - tr) - 0, calculate the expected value ol

þ'(Llz), the squared displacement of the center of the string, if the string is in its
ground state. (Hini: try to convert your calculation into one involving creation and

annihilation operators.)
b) Your result from part a) may be unsettling. It arises L¡ecause of the unphysical

assumption that the string can support excitations with an arbitrarily short u'avelengLh.

Redo bhe calculation of part a) and give ihe numerical result for 1lO'{f 14 assuning

that the minimum possible rvavelength is at the atomic scale (À,,,i',:10 10m). Take

tlre tenslon to be 1N, the density to be \0g lm, and the length -L to be 1m.


