Particle interactions

We saw last time that the mathematical description of the physics for a simple field
theory was exactly the same as the description of a collection of harmonic oscillators.
The ficld variable ¢(z,%) can be decomposed into Fourier modes

Pla,t) = ;cﬁn(t)sin (%)

and the amplitude ¢, of each mode is described by the equations of a harmonic os-
cillator with frequency w, o< n. Quantum mechanically, the energy in each oscillator
(i-e. for each allowed wavelength) is quantized, and we can define creation and annihi-
lation operators af, and a,, that add or subtract one quantum of energy from the field
oscillation with wavelength X,,.

As we discovered, the quantum spectrum of this system matches exactly with our
expectation for a system with arbitrary numbers of photous confined in a region 0 <
r < L. Assuming that quantizing the electromagnetic field (which is described by the
same classical wave equation} will give analogous results, we now have a derivation
of the photon picture of light. This derivation tells us that a photon is a quantum
of energy in the harmonic oscillator system that describes the oscillations of the field
at some particular wavelength. With this interpretation, we can say that in our feld
theory system:

e The creation operator a] creates a particle with wavelength A,.
e The annihilation operator a, removes a particle with wavelength A,,.

Using the creation and annihilation operators, we can write a basis of energy eigenstates
for the field theory as
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where [0} is the vacuum state, and the energy of this state relative to the vacuum state
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For this simple field theory, we can say that the number of particles will not change
under time evolution.

Question: why can we say this?
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Physically, the fact that particle number (or the momenta of the particles) doesn’t
change stems from the fact that the wave equation we started with is linear. This
means that classically, any two solutions can be superimposed to give a new solution.
In particular, the classical time evolution for an initial state with two approaching
wavepackets will be the superimposed time evolution of the individual wavepackets; as
a result, the packets will pass right through each other.

Adding interactions

In this section, we'll see that adding non-linear terms in the wave equation (or equiv-
alently, non-quadratic terms in the expression for the energy) will vield a theory in
which the number of particles (or the momenta of the individual particles) can change
in time. Consider as an example the ficld theory from last time, but with a new term

added to the energy:
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but suppose that at some time, the equations governing the system are perturbed so
that new expression for the energy includes a term

B = _/UL dz{r¢'} .

This new term will result in a perturbation to the quantum Hamiltonian.
Show that with the new term in the Hamiltonian, the number of particles
can change under time evolution.
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We have seen so far that by quantizing fields, we can describe quantum systems
with arbitrary numbers of particles. The particles that we obtained from quantizing the
simple wave equation had the same energies as a system of massless particles (photons),
and did not interact with each other. However, as we have started to see, by modifying
the classical wave eguation, we can describe particles with other properties:

Non-linear terms & Interacting particles
Linear term with no derivatives <> Massive particles (homework)
Fields with more components < Particles with multiple states (e.g. polarizations)

Since our current understanding of nature is that all matter and light are made up
of elementary particles interacting with one another, it may now be remotely plausible
that quantized fields could give the right framework for a quantitative description of
the physics. But how do we know what classical field theory to start with to describe
particular kinds of particles with particular kinds of interactions? To describe photons,
the natural guess is to quantize the electromagnetic fields, since these provide the
classical description of light. But the classical description of electrons and other matter
particles doesn’t involve fields at all.

In order to proceed, it will be useful to have a more systematic way of writing down
field theories, and some more sophisticated tools for analyzing their physical propertics.
The right tool for our purposes is description of field theories in terms of an ACTION
PRINCIPLE.

Homework problem: to hand in Monday

a) For a string of length L fixed at both ends and described by an action
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with boundary conditions ¢(z = 0) = ¢(x = L} = 0, calculate the expected value of
?(L/2), the squared displacement of the center of the string, if the string is in its
ground state. (Hint: try to convert your calculation into one involving creation and
annihilation operators.)

b) Your result from part a) may be unsettling. It arises because of the unphysical
assumption that the string can support excitations with an arbitrarily short wavelength.
Redo the calculation of part a) and give the numerical result for /¢2(L/2} assuming
that the minimum possible wavelength is at the atomic scale (Anin = 1071%m). Take
the tension to be 1N, the density to be 10g/m, and the length L to be 1lm.



