
Notes on wavefunctions

The double slit experiment

In the double slit experiment, a beam of light is send through a pair of slits,
and then observed on a screen behind the slits. At first, we might expect
to see a pair of bright lines on the screen, behind the two slits. In reality
(assuming the separation between the slits is similar to the wavelength of the
light), the brightest region is exactly in the middle, between the two slits.
Surrounding this bright region are a series of bright and dark areas. If we
define θ to be the angle of deflection of the light (see the diagram in the
notes), the bright spots occur for sin(θ) = nλ/d with (n = 0, 1, 2, . . . ) and
the dark regions occur for sin(θ) = (n + 1

2
)λ/d with (n = 0, 1, 2, . . . ).

The explanation for this pattern of bright and dark spots is based on the
interference of light from the two slits. At the location of the slits, the light
waves are in phase with each other: the electric field oscillates up at one
slit when it oscillates up at the other slit. The light waves then propagate
outward from these two slits toward the screen. In the middle of the screen
between the two slits, the distance to each slit is the same, so the light waves
from these two slits are still in phase with each other. The two light waves
constructively interfere, and we see a bright spot. As we move away from the
center, we come to a place where the distance between the two slits differs
by half a wavelength. Here, the two light waves are out of phase with each
other; thus, we have destructive interference (the waves cancel each other
out) and we have a dark spot.

The points on the screen at angles sin(θ) = nλ/d are exactly the ones for
which the distance to the two slits differs by an integer number of wavelengths
(so that we get constructive interference) while the angles sin(θ) = (n+ 1

2
)λ/d

are the ones for which the distance to the two slits differs by n+ 1
2

wavelengths
(so that we get constructive interference). The details of this may be found
in the text, but for our purposes, there are two essential points to take away:

• The pattern on the screen is explained by understanding how light from
the two slits combines.

• The pattern on the screen is explained using the fact that light is a
wave with a particular wavelength.
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The double slit experiment: photon explanation

What happens if we reduce the light intensity so much that only one photon
at a time passes through the apparatus? In this case, we’ll need to replace the
screen with a more sensitive detector that can tell when and where a single
photon hits (such a detector could be built from an array of photomultipliers
or with a device similar to the “film” in digital cameras). In this case, we find
that each photon hits a specific spot on the screen, but after many photons
have hit, the distribution of hits reproduces the pattern of bright and dark
regions that we had before.

How could we possibly get the same pattern as before if the pattern was
caused by light from the two slits combining and interfering? If we just
send individual photons through, don’t they have to go through just one
slit or the other? If so, how can there be anything like interference? The
answer is that the individual photons don’t just go through one slit or the
other. Somehow, each photon is able to go through both slits and interfere
with itself! To convince ourselves that this is true, we only need to repeat
the experiment, but randomly cover up one slit or the other each time we
send a photon through. If individual photons can only go through one slit
or the other, this should not affect the pattern of hits, except that we should
have half as many photons hitting the screen. But in fact, when we cover
slits in this way, the pattern of hits completely changes. We conclude that
the single photons must know about both slits; rather than being pointlike
particles, the photons must be spread out in some way, enough so that they
can pass through both of the slits.

But wait! didn’t we say that each photon hits a specific spot on the
screen? Now it sounds like we have a contradiction: we said each photon
must be spread out enough to go through both slits, but also that each
photon is detected at a single location on the screen.

Quantum superpositions

To resolve this, we need to bring in the idea of a QUANTUM SUPERPO-
SITION that we used to understand the polarization experiments. Here are
the basic rules:

• We can have photons with specific positions, but these are special
states, which we call POSITION EIGENSTATES.
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• General states are combinations, or “quantum superpositions” of these
position eigenstates. They don’t have a definite location.

• When a measurement of position is made, the photon becomes one of
the eigenstates. It randomly “chooses” a position, with the relative
probability for each possible position related to the amount of that
eigenstate present in the quantum superposition.

How does this apply to our photons? We can say that the photons approach-
ing the double slits are in spread-out quantum superpositions involving many
different position eigenstates. It is possible for the photon to go through both
slits, since it can be in a state which is the superposition of being at one slit
and being at the other slit. As the photon approaches the screen, it is still in
a superposition, so there is no predetermined location where it will hit. But
hitting the screen is like making a measurement of the photon’s position, and
at that time (according to the third rule) the photon will turn into one of
the position eigenstates, and therefore hit the screen at a definite location.

Same story for electrons and other particles

It turns out (in accord with de Broglie’s prediction that particles like electrons
will exhibit a wavelength) that the double slit experiment produces exactly
the same results for electrons and other particles, and requires exactly the
same type of explanation in terms of quantum superposition. Thus, going
forward, the discussion will apply equally well to electrons, neutrons and
other particles as it does to photons.

Mathematical description of quantum superpositions

Review of the polarization story

How do we describe these quantum superpositions precisely? Let’s first recall
the polarization story. There, we represented polarization states by unit
vectors |θ〉. We said that for a given polarizer experiment, there are special
states for which we can predict for sure whether or not the photon will pass
through. These are the polarization eigenstates. For example, for a polarizer
oriented vertically, we have two polarization eigenstates, which we call |0◦〉
and |90◦〉 (representing the unit vectors pointing vertically and horizontally).
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All other polarization states can be written as superpositions of these two
eigenstates:

|θ〉 = a0◦ |0◦〉+ a90◦|90◦〉
where a0◦ and a90◦ are two numbers that determine which state we are talking
about (for example a0◦ = a90◦ = 1/

√
2 gives us a photon polarized at 45

degrees). Thus, the eigenstates act like basis vectors.
For general states, we can’t predict with certainty whether or not they

will pass through the polarizer, but we can say that with probability |a0◦ |2
the photon will become the |0◦〉 eigenstate when it hits the polarizer and pass
through, and with probability |a90◦|2 it will become the |90◦〉 eigenstate and
be absorbed.

Superpositions of position eigenstates and wavefunctions.

Now on to the position eigenstates. In this case, we have a lot more eigen-
states: in an experiment where we measure a particle’s location, the result
could be anywhere, so we have one eigenstate for every position in space.
We’ll label these states |x〉 = |(x, y, z)〉, so for example, |(0, 0, 0)〉 represents
a state where we have an particle with a definite location at the origin. In
the model of quantum superposition, these again behave like basis vectors.1

So we can consider a more general state which is a superposition of these.
For example

a(0,0,0)|(0, 0, 0)〉+ a(1,2,3)|(1, 2, 3)〉
represents a state of a particle that doesn’t have a definite location. For
this particular state, if we make a measurement of the electrons position, we
will find it at ~x = (0, 0, 0) or at ~x = (1, 2, 3) with probability |a(0,0,0)|2 and
|a(1,2,3)|2 respectively.

The most general state we could imagine is a superposition of not just
two, but all the possible eigenstates. To describe such a state, we need a
number for each eigenstate that tells us how much of that state we have in the
superposition (like the numbers a(0,0,0) and a(1,2,3) in the previous example).
We’ll denote this number by ψ(x, y, z). To write this general state, we want
to add up all the eigenstates |(x, y, z)〉 with ψ(x, y, z) as the coefficient. Since

1Note: these are no longer vectors in a two-dimensional space. Since we have an infinite
number of basis vectors, we should just thing about them as living in some kind of abstract
space of all the possible states; in particular it is not correct to thing of the basis vector
|(x, y, z)〉 as pointing in the three-dimensional where the particles live.
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the states are labeled by continuous parameters, we need an integral rather
than a sum, so we write

∫ ∫ ∫
ψ(x, y, z) |(x, y, z)〉 dxdydz

or in a more compact notation

∫
d3x ψ(x) |x〉 .

To summarize, the integral here is just a sum over all the possible positions,
and in the sum we are adding up eigenstates with ψ(x) telling us how much
of each to add.

In practice, the function ψ(x) tells us everything we can know about the
state of the particle. This is known as the WAVEFUNCTION for the particle.
If we make a measurement of position, |ψ(x)|2 tells us the probability density
for finding the particle at location x. For example, to find the probability
that the electron will be measured in a spatial region V , we integrate |ψ(x)|2
over this region. Since the net probability of finding the electron somewhere
in space must be 1, we require that any physical wavefunction must have
|ψ(x)|2 integrate to 1 over all space.

Measurement

The wavefunctions for particle states are generally spread out (non-zero for
a wide range of positions). However, when we measure the location of a par-
ticle, we always find it in one place. Furthermore, an immediately repeated
measurement of the particle’s location will give the same result (otherwise,
it would be somewhat meaningless to say that the electron is at the location
where we measure it). This implies that the wavefunction generally changes
in a measurement: after the location is measured, the particle does have
a definite location so the state is now (approximately) one of the position
eigenstates. The wavefunction changes from being spread out (non-zero for
a wide range of positions) to being localized (non-zero only for one location
or a small range of locations). This is often referred to as the COLLAPSE
of the wavefunction.

Why should a measurement have any effect on the state of the particle?
Can’t we measure the particle without disturbing it? The answer is that
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in order to learn something about the particle, we have to interact with it
somehow (e.g. by scattering a photon off it or having it hit a detector). In
doing this, we always affect the state of the particle, apparently in such a
way that the wavefunction collapses to the wavefunction for an eigenstate.

Classical versus quantum

The wavefunction (or the idea of quantum superposition) represents an en-
tirely new description of physical systems. In the classical (pre-quantum)
picture, the state of a particle at a given time is completely specified by
giving its position and velocity. From these, the position and velocity at
any later time can be predicted using Newton’s Laws. Now, instead of these
six numbers (three position coordinates and three velocity components), we
need to give a whole function ψ(x) to describe the state of a particle at some
time.

Just as position and velocity evolve with time in the classical picture,
the wavefunction for a particle evolves with time (as we saw in the double-
slit simulation). We therefore need something to replace Newton’s laws;
something that will allow us to predict the wavefunction at some later time
given the wavefunction at some initial time. This evolution equation for
wavefunctions is known as the SCHRÖDINGER EQUATION. Our next task
will be to “derive” this based on some simple observations and principles.
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