A photon is in a state:

$$\frac{1}{\sqrt{2}} |x_1\rangle + \frac{1}{\sqrt{2}} |x_2\rangle$$

a quantum superposition of two position eigenstates. This state describes:

- A) one photon at x_1 and another at x_2 .
- between x_1 and x_2 . B) a single photon at a position somewhere in
- measured it yet. don't know the location since we haven't ©) a single photon at a specific location, but we
- location. (1) a single photon that does not have a definite

ו

An electron is in a state

$$\frac{1}{2}|\mathbf{x}_1\rangle - \frac{\sqrt{3}}{2}|\mathbf{x}_2\rangle$$

If we measure the electron's position, the result that we are most likely to find is

- $A) x_1$
- $B) x_2$
- C) $\frac{1}{2}$ $x_1 \frac{\sqrt{3}}{2}$ x_2
- D) $\frac{1}{4}$ X₁+ $\frac{3}{4}$ X₂
- E) None of the above

An electron is in a state

$$\frac{1}{2}|\mathbf{x}_1\rangle - \frac{\sqrt{3}}{2}|\mathbf{x}_2\rangle$$

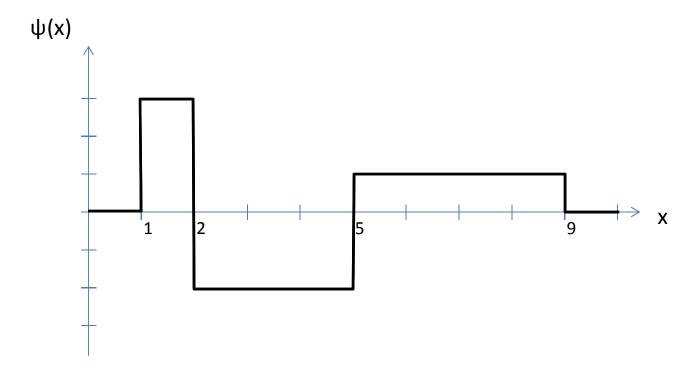
that we are most likely to find is If we measure the electron's position, the result

(B))
$$x_2$$
 \longrightarrow Prob. $\frac{1}{4} = \left|\frac{1}{2}\right|^2$

C)
$$\frac{1}{2} x_1 - \frac{\sqrt{3}}{2} x_2$$

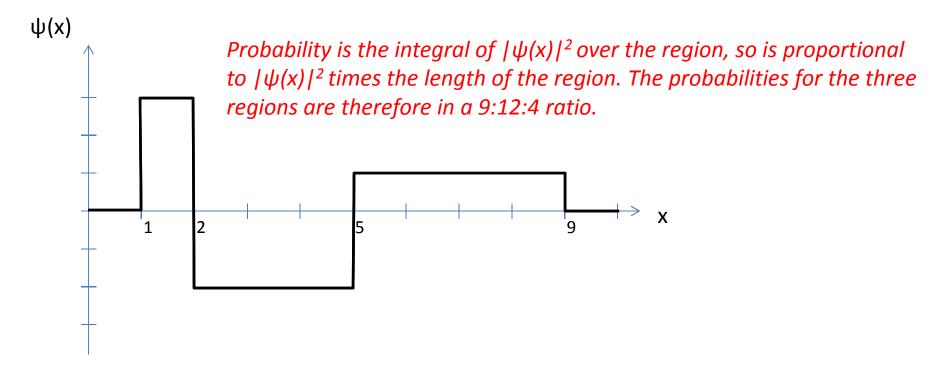
E) None of the above D) $\frac{1}{4} X_1 + \frac{3}{4} X_2$ times. the experiment a large # the average value

implies that electron's position give the same result. This Immediately repeated measurements of an


- the same when we do a measurement. A) The electron's wavefunction generally stays
- changes when we do a measurement. B) The electron's wavefunction generally

implies that electron's position give the same result. This Immediately repeated measurements of an

- the same when we do a measurement. A) The electron's wavefunction generally stays
- B))The electron's wavefunction generally changes when we do a measurement.


Original wavefunction -> superposition of position eigenstates, -> position not predetermined

measurement: " wavefunction has changed know position position eigenstate

The wavefunction for an electron in a one-dimensional wire is shown. If we measure the position, the electron is most likely to be found:

- A) Between 1 and 2
- B) Between 2 and 5
- C) Between 5 and 9
- D) All are equally likely
- E) The answer cannot be determined from the information given

The wavefunction for an electron in a one-dimensional wire is shown. If we measure the position, the electron is most likely to be found:

- A) Between 1 and 2
- B) Between 2 and 5
- C) Between 5 and 9
- D) All are equally likely
- E) The answer cannot be determined from the information given