

Which of the following diagrams best represents the potential energy function for an electron moving along the x-axis between two positive charges?

Which of the following diagrams best represents the potential energy function for an electron moving along the x-axis between two positive charges?
A)

(c)

Each charge has Coulomb potential:

$$
\begin{aligned}
& u_{1}(x)=-\frac{e}{r_{1}} \quad u_{2}(x)=-\frac{e}{r_{2}} \\
& \stackrel{r}{\longleftrightarrow} \stackrel{r_{2}}{\longleftrightarrow} u(x)=u_{1}(x)+u_{2}(x)
\end{aligned}
$$

The quantum picture explains the stability of atoms because:
(choose the best answer)
A) The energy levels are discrete.
B) There is a finite minimum energy that the electron can have
C) There is no definite value for the electron's position.

The quantum picture explains the stability of atoms because:
(choose the best answer)
A) The energy levels are discrete.
B) There is a finite minimum energy that the electron can have \rightarrow no other state fir electron to go to ground stree completely stable
C) There is no definite value for the electron's position.
$\psi_{1}(x)$ and $\psi_{2}(x)$ energy-eigenstate wavefunctions for an electron corresponding to two different energies. If we have an electron with initial wavefunction

$$
\psi(x, t=0)=\frac{1}{\sqrt{2}}\left(\psi_{1}(x)+\psi_{2}(x)\right)
$$

we can say that:
A) The probability density for this electron will be constant in time.
B) The probability density for this electron will change with time.
$\psi_{1}(x)$ and $\psi_{2}(x)$ energy-eigenstate wavefunctions for an electron corresponding to two different energies. If we have an electron with initial wavefunction

$$
\psi(x, t=0)=\frac{1}{\sqrt{2}}\left(\psi_{1}(x)+\psi_{2}(x)\right)
$$

we can say that:
A) The probability density for this electron will be constant in time.
(B) The probability density for this electron will change with time.

$$
\begin{aligned}
& \psi(x, t)=\frac{1}{\sqrt{2}}\left(\psi_{1}(x) e^{-i \frac{E_{1}}{\hbar} t}+\psi_{2}(x) e^{-i \frac{E_{2}}{\hbar} t}\right) \\
& |\psi(x, t)|^{2}=\frac{1}{2}\left|\psi_{1}(x)+\psi_{2}(x) e^{i\left(\frac{\left.E_{1}-E_{2}\right)}{\hbar} t\right.}\right|^{2}
\end{aligned}
$$

T phase doesn't cancel out \Rightarrow P $P(x, t)$ will depend
on tire on time

For the electron state in the previous question, a measurement of energy is performed. The result we will find is:
A) $E_{1}+E_{2}$
B) something between E_{1} and E_{2}, but the result is not predetermined
C) either E_{1} or E_{2}, with equal probability
D) most likely the lowest energy value, E_{1}

