Wave packets in deep water are observed to travel with a velocity proportional to the square root of the wavelength:

We can say that these waves are superpositions of pure waves $\cos(kx-\omega t)$ with:

$$A)$$
 $\omega = a \cdot k$

B)
$$\omega = a \cdot k^2$$

$$C)$$
 $\omega = a \cdot \sqrt{k}$

D)
$$\omega = a \cdot \frac{1}{\sqrt{k}}$$

$$E) \omega = a \cdot \frac{1}{k^2}$$

EXTRA: how fast do the ripples travel relative to the packet?

Wave packets in deep water are observed to travel with a velocity proportional to the square root of the wavelength:

We can say that these waves are superpositions of pure waves $\cos(kx-\omega t)$ with:

A)
$$\omega = a \cdot k$$

B) $\omega = a \cdot k^{2}$
C) $\omega = a \cdot \sqrt{k}$
D) $\omega = a \cdot \frac{1}{k^{2}}$
E) $\omega = a \cdot \frac{1}{k^{2}}$

Vocane =
$$\frac{d\omega}{dk}$$

want $\alpha \sqrt{\lambda} = \sqrt{\frac{2\pi}{k}}$
 $\omega \sim \sqrt{k}$

EXTRA: how fast do the ripples travel relative to the packet? $V_{phase} = \frac{\omega}{k} = \frac{a}{\sqrt{k}} \rightarrow ripples travel$ at double the $V_{group} = \frac{d\omega}{dk} = \frac{1}{2} \frac{a}{\sqrt{k}}$ speed of packets.

What feature of the Schrödinger equation implies that the sum of any two solutions is a solution?

- A) The fact that it has only one time derivative.
- B) The fact that each term has only a single ψ .
- C) Nothing in particular; this is true for any differential equation.
- D) The fact that ψ is a complex function.

What feature of the Schrödinger equation implies that the sum of any two solutions is a solution?

- A) The fact that it has only one time derivative.
- B) The fact that each term has only a single ψ.
 - C) Nothing in particular; this is true for any differential equation.
 - D) The fact that ψ is a complex function.