

At $t=0$, a wave traveling to the right at $2 \mathrm{~m} / \mathrm{s}$ looks like the picture above. What does the displacement at $x=6$ look like as a function of time?

EXTRA:

How would your graph change if the speed were $1 \mathrm{~m} / \mathrm{s}$?
How would your graph change if wave traveled at $2 \mathrm{~m} / \mathrm{s}$ to the left?

The graph above shows the displacement at a point $x=2 \mathrm{~cm}$ for a transverse wave traveling to the left at $2 \mathrm{~cm} / \mathrm{s}$. If we take a picture of the wave at $t=2 s$, what will it look like?

EXTRA:

How would your graph change if the speed were $1 \mathrm{~cm} / \mathrm{s}$?

How would your graph change if wave traveled at $2 \mathrm{~cm} / \mathrm{s}$ to the left?

A wave at $t=0$ is described by the displacement function $F(x)$ graphed above. If the pulse moves a distance A to the right, the wave will be described by a displacement function
A) $F(x+A)$
B) $F(x-A)$
C) $F(x)+A$
D) $F(x)-A$
E) still $F(x)$

Suppose the pulse is travelling to the right at speed v. What is the displacement function after a time t? How does your answer change if the motion is to the left?

A wave at $t=0$ is described by the displacement function $F(x)$ graphed above. If the pulse moves a distance A to the right, the wave will be described by a displacement function
A) $F(x+A)$
B) $F(x-A)$
C) $F(x)+A$
D) $F(x)-A$
E) still $F(x)$

Suppose the pulse is travelling to the right at speed v. What is the displacement function after a time t? How does your answer change if the motion is to the left?

Two wave pulses are travelling towards each other as shown. When they meet, they will:
A) Bounce off each other and reflect backwards
B) Destroy each other, leaving a few random ripples going in either direction
C) Pass right through each other

Two pulses are travelling towards each other, each moving $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$.

Draw the waveform after I second has passed.

Two pulses are travelling towards each other, each moving $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$.

Draw the waveform after I second has passed.

