Three Basic Charge Distributions

Unevenly charged planes

On a piece of paper, both draw and determine the strength of the electric fields in each the regions labelled 1, 2, and 3.

(assume they are infinite planes)

Unevenly charged planes

3

Which is true about the electric field in the regions 1 and 3?

- a) $E_1 < E_3$, opposite directions
- b) $E_1 < E_{3}$, same direction
- c) $E_3 = E_1$, opposite directions
- d) $E_3 = E_1$, same direction
- e) $E_1 > E_3$, opposite directions
- f) $E_1 > E_3$, same direction*

*stand to answer f)

Unevenly charged planes

3

Which is true about the electric field in the regions 1 and 3?

a) E₁ < E₃, opposite directions
b) E₁ < E₂ same direction
c) E₃ = E₁, opposite directions
d) E₃ = E₁, same direction
e) E₁ > E₃, opposite directions
f) E₁ > E₃, same direction*

*stand to answer f)

The Capacitor

Imagine two planes of equal charge. What is the field in between, above, and below the planes?

Capacitor field

Motion of Charges in Electric Fields

Charge in an Electric Field

The force on a charge q in an electric field E is given by

$$\vec{F} = q\vec{E} \qquad \qquad \vec{a} = \frac{q}{m}\vec{E}$$

Electric Field Hockey PhET

Charge in a field

A proton is moving to the right with some velocity. Which best describes the path the proton will take?

Charge in a field

A proton is moving to the right with some velocity. Which best describes the path the proton will take?

Electrophoresis

Electrophoresis

The electric field pushes the DNA, but the fluid slows it. The drag force at low Reynolds number is

$$\vec{F}_{\rm D} = -b\vec{v}$$

Adding this to the electrostatic force yields and equilibrium at

$$\vec{v} = \frac{q}{b}\vec{E}$$

The speed the DNA moves depends on the electric field strength.

Electrophoresis

Clicker Question

How does the force between a dipole and a positive charge depend on distance?

a) r b) 1/r c) 1/r² d) 1/r³ e) 1/r⁶

oles? (+

Extra: How about two dipoles?

Clicker Question

How does the force between a dipole and a positive charge depend on distance?

The Electric Dipole

A dipole is held next to a positive charge.

Which best describes what happens when the dipole is released?

a) rotate counterclockwise

- b) rotate counterclockwise and move left
- c) rotate counterclockwise and move right
- d) rotate clockwise
- e) rotate clockwise and move left
- f) rotate clockwise and move right*

*stand to answer f)

The Electric Dipole

A dipole is held next to a positive charge.

Which best describes what happens when the dipole is released?

a) rotate counterclockwise

- b) rotate counterclockwise and move left
- c) rotate counterclockwise and move right

d) rotate clockwise

e) rotate clockwise and move left f) rotate clockwise and move right*

*stand to answer f)

Torque on a Dipole

A dipole in a electric field feels a torque.

$\mathbf{E} = \mathbf{O}$ in a Conductor

The electric field in a conductor in electric static equilibrium is zero. Why?

Exercise: Assume that $E \neq 0$ inside the conductor. What happens to free electrons? What field gets created?

$$\vec{F} = q\vec{E}$$

$\mathbf{E} = \mathbf{O}$ in a Conductor

The charges arrange themselves such that the field they generate completely cancels the field inside the conductor.

Reminder: charge sits on the surface of a conductor

Note: the electric field gives you another way to explain polarization in a metal

E = 0 in a Conductor

In reality the field lines look more more like this.

Note: Electric field is perpendicular to surface of the conductor.

Fields and Potentials

Gravity

Moving a charge +q from point A to point B.

$$W_{\text{ext}} = \Delta U = -\vec{F} \cdot \Delta \vec{s}$$
$$= qEd$$

Clicker Question

Moving a positive charge from A to B requires

- A) more work
- B) less work
- C) the same work

than moving a positive charge from A to C.

Clicker Question

Moving a positive charge from A to B requires

than moving a positive charge from A to C.

There is no change in potential energy when moving a charge along the dotted line. This is because the force and path are perpendicular.

$$dU = -\vec{F} \cdot \vec{ds}$$

Line Integral

The potential energy can be determined using a line integral!

$$\Delta U = -\sum_{i} F_{i} \Delta s_{i} \cos(\theta_{i})$$
$$= -\int_{s} \vec{F} \cdot d\vec{s}$$

To get the total change in energy, you add up all the small changes in energy.

Path Independence

$$\Delta U = -\int_{s} \vec{F} \cdot \vec{ds}$$

The Blue Path, the Red Path, and the Green Path all have the same change in potential energy. The path does not matter.

Conservative Force

The work done along this path can be simplified to a straight line. This is called **path independence**.

Path independence is a **quality of conservative forces**.

Conservative forces can always be written in terms of a potential.

$$F_s = -\frac{dU}{ds}$$

