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I. INTRODUCTION

In 1950 Landau and Ginzburg proposed a theory which phenomenologically describes much of the behavior seen
in superconductors. Not only does it encapsulate the work done by F. London and H. London in explaining the
Meissner effect, but was used to postulate some very remarkable phenomena. The focus of this paper is Abrikosov’s
prediction of the vortex, a line defect in the superconductor which carries quantized magnetic flux. It is important
to note that Ginzburg and Landau derived this theory phenomalogically, before the BCS theory of superconductivity
was introduced, and that many years Gorkov showed that it comes from BCS naturally.

We will start with the Landau-Ginzburg free energy and a derivation of the equations of motion [1]. In part III
the equations of motion will then be used to show that the theory contains the Meissner effect [2]. Part IV will
discuss cylindrically symmetric solutions which lead to vortices and the quantization of magnetic flux [1] [3]. Also,
the equations of motion will be solved to investigate the structure of the condensate in a vortex [4]. Using this, the
energy of a single vortex [1] will be discussed in part V and the interaction energy between two vortices will be found
[5] in part VI. This will give us insight into the stability of vortices in type I and type II superconductors. Finally, in
part VII, the critical magnetic fields for type I [3] and type II [1] superconductors will be found.

II. THE GINZBURG-LANDAU ENERGY

The Ginzburg-Landau energy is based on the work of Gorter and Casimir who introduced the idea of an order
parameter |ψ|2 proportional to the density of superconducting electrons to describe the state of a superconductor.
They postulated a free energy for a superconductor near critical temperature Tc.

E = −v |ψ|2 +
u

2
|ψ|4 (1)

Landau noticed this idea could be expanded by considering a complex order field ψ (x) which could be used to describe
fluctuations in the order parameter by adding a gradient to Gorter and Casimir’s guess of the free energy. He and
Ginzburg could then write the free energy of a superconductor near the critical temperature Tc. To investigate at a
superconductors in magnetic fields, similar to F. London and H. London, they added the field energy and a guage
invariant derivative to arrive at,
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This energy can be minimized to yield the Landau-Ginzburg equations. Minimizing with respect to the vector
potential A gives us,
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The right hand side can be written in terms of a Noether current[6],
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This identification of the currect is critical and will later lead to the result that flux is quantized inside a vortex.
Minimization of the free energy with respect to the order field ψ yields,
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ψ = u |ψ|2 ψ − vψ (6)

This will be used to determine the structure of the flux tube.
Note that the Ginzburg-Landau equations are invariant under the guage transformation

A (x) → A (x) + ∇ϕ (x) (7)

ψ (x) → e
iq

~c
ϕ(x)ψ (x) (8)

This transformation can be used to remove the phase of the order parameter.
Now that we have established the field equations we can begin to apply them. The first will be a demonstration of

the Meissner effect and a derivation of the London pepetration depth.

III. THE MEISSNER EFFECT

The Meissner effect follows from equation 3 quite nicely. Consider it in cartesian coordinates for now, where a
superconducting state exists for x > 0 and a normal state for x < 0. Using curl identities and taking a rewriting the
current we can write equation 3 as,
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We will use the polar decomposition of ψ as a ansatz.

ψ (x) =

√

v

u
ρ (x) eiϕ(x) (10)

For now ρ(x) = [0, 1] where 0 indicates a normal state and 1 indicates a superconducting state. The states between
are called mixed states. Substititing this ansatz into equation 9 yields,
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Let’s assume we are looking in a region of the superconductor without many disturbances. This is the same as setting
ρ(x) = 1.
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~qv

mcu
∇ϕ(x) − 4πq2v

mc2u
A(x) (12)

Taking the curl of both sides gives us the London equation,

∇×∇×B(x) = −4πq2v

mc2u
B(x) (13)

with a penetration depth λ =
√

mc2

4πq2 v
u

. The solution is B(x) = e−
x
λ which indicates that the magnetic field penetrates

λ past the surface of the superconductor. Comparing this to the London equation we notice that v
u

indeed matches
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up with the density of superconducting electrons. It is also instructive to note that q = 2e and m = 2me. This is
consistent with the picture that Cooper pairs are responsible for the condensate. Having made sure that the theory
contains the fundamental results of the London equations we can now see what new phenomena the theory predicts.

IV. VORTEX LINES

The vortex line solution comes from solving the equations of motion in cylindrical coordinates. A vortex is a
cylindrcally symetric line defect which exists in an otherwise undisturbed superconductor. It is similar to a the fluid
vortices that are formed when water goes down a drain. In a superconductor the electrons rotate around a core
where the density of superconducting electrons drops to zero. We’ll first investigate how this structure leads to the
quantization of magnetic flux.

A. Flux Quantization

An indication that somthing interesting is happening comes form our definition of the current j given by 4. If we
solve equation 4 for the vector potential we get,
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In cylindrical coordinates, equation 6 incidates that as r → 0, ρ→ 0. If the superconductor is not in a voltage potential
then current can only be produced by disturbances in the superconductor. Far away from r = 0, the superconductor
is in an undisturbed state so j = 0.
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Substituting the ansatz for ψ gives,

A =
~c

q
∇ϕ (x) (16)

Integrating on a closed contour around the vortex leads to a quantization condition,

∮

A · dl =
~c

q

∮

∇ϕ (x) · dl =
hc

q
2πn (17)

where n is an integer. We can use Stokes theorem to see that the contour integral of A is also the flux through the
surface.

∮

A · dl =

∫

∇×A · dS =

∫

B · dS = Φ (18)

Equating the two expressions indicates that the flux is quantized with quantum number n.

Φ = nΦo with Φo =
2πhc

q
(19)

The integer n is called the winding number and is an indication of the strength of the vortex. It can be shown that
in certain situations a single vortex of winding n = N will decay into N vorticies each with a winding number of
n = 1 [7]. Also notice that the flux away from the vortex is independent of the radius of the loop we integrate around.
These will be considerations in choosing the ansatz in the next section.

Right now it is unclear where the flux actually is. As it has been derived it looks like it penetrates the entire plane.
To find where this might be localized we have to solve the other equation of motion governing the density of the
superconductor.
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B. The Structure of the Vortex

The problem with solving the field equations in cylindrical coordinates is that they are coupled, non-linear differential
equations. We are looking for defects so we will no longer assume that ψ(x) is constant. To make it easier to decouple
and linearize these equations it is convenient to define,

ψ =

√

v

u
ρ (r) eiφ (20)

A =
~q

c

a (r)

r
φ̂ (21)

where ρ (r) , a (r) → 1 as r → ∞ and ρ (r) , a (r) → 0 as r → 0 and r and φ the cylindrical coordinates. Following
the discussion in part A the phase of ψ(x) is chosen to mimic a vortex with winding number n = 1.

We can further define,

ρ (r) = 1 + σ (r) (22)

a (r) = 1 + rα (r) (23)

such that σ (r) , α (r) → 0 as r → ∞. Let’s start by subsituting 20 and 21 into equation 3.
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Writing the cross products in cylindrical coordinates and using 22 and 23 we get,
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We can linearize this equation by taking r → ∞. We keep only the terms linear in α and σ and the lone 1
r2 goes to

zero. This leaves us with a modified bessel equation of the first order.
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Where λ is the London peretration depth we derived earlier. We want a solution that goes to zero as r → ∞ so we
choose the solution to be a modified bessel function of the second kind, α = 1

λ
K1

(

r
λ

)

. Going back through all the
substitutions and then using a guage transformation we find that the vector potential is,
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qλ
K1

( r

λ

)

φ̂ (27)

This is the Meissner effect in cylindrical coordinates. As we move from the core of the vortex into the superconducting
material the magnetic field decays.

We will now look at the structure of |ψ|2 as a function of the radius. All we know know is that it starts at zero in
the core and goes to u

v
at infinity. We start by substituting 20 and 23 into 6.
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Substituting in 22 and 23 and linearizing yields,
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This is a modified bessel equation of the zeroth order. The solution is,

σ(x) = K0

(√
2

ξ
r

)

(30)

The quantity ξ =
√

~2

2mv
is called the coherence length. It gives a length scale for the change in density |ψ|2 from the

non-superconducting core at r = 0 to the undisturbed superconductor r = O(ξ).
We can start to understand what is happening in a vortex. It is a disturbance which has a non-superconducting

core of radius ξ it carries quanta of magnetic flux. Because the superconductor displays the Meissner effect this flux
can only be carried along the core of the vortex, where superconductivity is destroyed. Essentially the vortex is a
tube of magnetic flux allowing a magnetic field to penetrate the superconductor.

V. THE ENERGY OF A VORTEX

Having solved the field equations for ψ(x) and A(x) it is now possible to get a rough estimate of the energy of a
vortex. If we take the field equation 6 and substitute it into equation 1 we get an expression for the free energy.
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u
ρ4 +

(∇×A)2

8π

}
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We know that zeroth order Bessel functions have the following property,

dK0(µr)

dr
= −µK1(µr) (32)

and, in cylindrical coordinates, is a Green’s function for

(∇2 − µ2)K0(µr) = −2πδ2(r) (33)

Using these on 27, when r 6= 0, we get,
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It can be shown that at large r the leading order of ρ4 is ξ2

2r2 [1]. Using all of this the energy becomes,
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The first term is easily integrated, but is unbounded at its limits. Instead of r = ∞ we use a cutoff r = Λ which is
the size of the container holding the superconductor. We remove the singularity at r = 0 by neglecting the core of
the vortex r < ξ. The second term is evaluated by using

∫∞
0
rK2

0 (r) = 1
2 . The energy per unit length of the vortex

becomes,
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The fact that a cutoff is required indicates that a vortex can only exist in a container of finite size. Now that we
have calculated the energy for a single vortex it will be interesting to look at two vorticies and the interaction energy
between them.

VI. INTERACTION ENERGY BETWEEN TWO VORTICES

The philosophy behind calculating the intervortex force is to find the energy of the entire system and then subtract
off the energy of the individual vorticies as originally outlined by Kramer [8]. The technique we will use was introduced
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by Speight [5]. The same philosophy is used but the actual calculation becomes much less cumbersome. We will reduce
the theory to a non-interacting, linear one and model the vorticies as point sources. The interaction energy is then
easily calculated from this linear theory. Start by linearizing the theory, only keeping terms that are quadratic in σ,
where σ is defined as earlier.

Efree =
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u
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(∇σ)2 +

1

8π

(

(∇×A)2 +
A

λ2

)

+ 2
v22

u
σ

}

(37)

And the source terms are,

Esource =

∫

dx2 {τσ + j ·A} (38)

where τ and j are the sources for the fields σ and A. Minimizing this we get the equations of motion,
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We want to solve for the sources j and τ such that they have the same asymtotic solutions we obtained earlier in 27
and 30. Using 33 and the derivative of 33 we can solve for the sources.
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The interaction energy is found by substituting j = j1 + j2, A = A1 +A2, τ = τ1 + τ2 and σ = σ1 +σ2 into the total
energy E = Efree + Esource and subtracting of the energies of the vortices, leaving only cross terms. The subscripts
1 and 2 refer to two seperate vorticies and positions x1 and x2 respectivly. The cross terms left over are interpreted
as the interaction energy.

Einteraction =

∫

dx2 {τ1σ2 + j1 · A2} (43)

Using 21, 22, 41 and 42 the interaction energy can be written,
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where d = x1 − x2.
There are two terms working to oppose each other. The first term is a repulsive force similar to the force between

two wires with currents in opposite directions. The current in this case is caused by the electrons rotating around the
vortex. Twovortices placed side by side will have currents running in the opposite direction and be repelled. We can

see from equation 42 that the current is in the φ̂ direction around the vortex. The second term is an attractive force
caused by the superconductor prefering to be in a state with no defects and attemping to restore order by making
only one vortex. When the first term is larger Einteraction is positive and the vorticies repel. When the second term
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is larger the vortices attract. What governs this is the relative size of λ and
√

2
ξ

. For vortices to repel,

d

λ
<

√
2d

ξ
(47)

rearranging yields,

κ >
1√
2

where κ =
λ

ξ
(48)

The dimensionless quantity κ is the famous Ginzburg-Landau parameter used to determine whether a supercon-
ductor is type I or type II. A type II superconductor is one which allows partial penetration of a magnetic field.
A type I superconductor is one which fully displays the Meissner effect. If κ > 1√

2
then vortices repel from each

other and they will form a triangular lattice [9] [10], each vortex carrying a quanta of flux Φ0. This accounts for the
partial penetration of the magnetic field exhibited by type II superconductors. If κ < 1√

2
then all the vortices attract

each other and collapse. The superconductor now has no mechanism to carry flux and exhibits the Meissner effect,
behaving like a type I superconductor.

VII. CRITICAL MAGNETIC FIELDS

Type I and type II supercondunductors have another distinguishing feature, the magnetic fields at which the
Meissner effect is destroyed. A type I superconductor will display the Meissner effect until a critical external field BcI

destroys the superconducting state.
A type II superconductor will display the Meissner effect until a critical field BcII

when vortices start to form
and allow part of the field to penetrate it. Increasing the magnetic field strength further will create more and more
vorticies until there are so many superconductivity is destroyed.

Let’s first consider a type I superconductor. The density ψ is uniform and there is no magnetic field inside so
equation 1 quickly becomes,

Econdensate =
V u

2
|ψ|4 − V v|ψ|2 (49)

where V is the volume of the superconductor. This has a minima at |ψ|2 = v
u
. Applying an external magnetic field

changes the energy by −B2

8π
. If we set Econdensate = 0 the condenstate has been destroyed and we get a critical

magnetic field.

BcI
=

√

4πv2

u
(50)

Now consider a type II superconductor. There are both energy gradients and magnetic fields inside the supercon-
ductor. We use the energy of a vortex we calculated earlier and this time the magnetic field inside the vortex Bint

couples with the external filed Bext through the interaction term.
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The last term can be simplified as this integral is the flux quantization,
∫

dx2Bint = 2π ~c
q

. The energy E = 0 is when

a vortex will first form inside the superconductor.

BcII
=

4π~qv

mcu

(

1

4
+

1

π
log(

Λ

ξ
)

)

(52)

Comaparing the two critical fields we see that BcII
is much smaller than BcI

. This is expected because a type II
superconductor only has to let one quantum of flux through at BcII

, where BcI
has the energy to destroy the entire

state.
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