
Chapter 11. Complexity and stability in network theory 
 
      A major problem for civilization is to wed the complexities of our society 
with stability.  This is particularly pressing with respect to the civic disarray 
prevailing in many countries, the economy and the ecosystem.  As society 
becomes more complex does it necessarily become more unstable? The 
immune system and the central nervous system are both very complex systems.  
How do they achieve their evident stabilities? Can they teach us anything in this 
regard? These are deep questions, and most people imagine that the systems are 
so different that we are unlikely to be able to use ideas from one system in 
thinking about another.  However, analogy is an incredibly powerful mediator 
of "original" ideas, and we need all the original ideas we can muster for the 
above problems. The analogy between the brain and the immune system seems 
to have played an important role in Jerne’s thinking when he formulated the 
idiotypic network hypothesis. In this chapter we will see that a more complex 
version of the symmetrical network theory is also viable. This immune network 
theory led to the formulation of a speculative neural network model, in which 

neurons exhibit hysteresis.160   
      So far in our immune network modelling we have focused mainly on only 
two representative complementary clones, that have some characteristic 
strength of interaction. The two-variable model can also be interpreted more 
broadly as simulating two classes of clones ("antigen-specific" and 
"antiidiotypic") that have some average or effective strength of interaction.  We 
would now like to know what happens with a more extensive network, in 
which each clone interacts with several others, each with an individual 
interaction strength.  If the interaction strength (say, the affinity) between a V 

region of a clone  i and a V region of a clone  j is ijK , we have a clonal affinity 

matrix ijK , with i and j going from 1 to N, where N is the number of clones. 

We might expect that most of the ijK  are zero, with each clone interacting 

with only a small fraction of all the rest.  This is a realistic assumption if only 
high affinity interactions are important in regulation, but that has not been 
established. Different types of interactions are bound to have different affinity 
thresholds. For example, it is conceivable that low affinity interactions between 
the idiotypes of antigen-specific B cells and antiidiotypic helper T cell idiotypes 
are important in the development of the B cell repertoire, with higher affinity 
interactions being important for killing of lymphocytes by antiidiotypic 
antibodies. 

                                                
160 G. W. Hoffmann, M. W. Benson, G. M. Bree and P. E. Kinahan (1986) A teachable 
neural network based on an unorthodox neuron. Physica 22D, 233-246. 
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The unpredictability axiom 
 
      It can be argued that the proper functioning of the network cannot be 
dependent on the initial detailed structure of the V region interaction matrix 

( ijK ). The germ line cannot reasonably have a structure that leads to a specific 

V-V interaction matrix structure in heterozygous animals. This follows from 
the following considerations: 
    • Consider a mouse which is the off-spring of a father of an inbred strain A 
and a mother of another inbred strain B. Half of its V region genes are from 
the A strain, and half are from the B strain. The V regions of the A strain have 
not been selected to interact specifically with B strain V regions, nor with the V 
regions of any of many other strains that may be present and available for 
mating. 
    • We cannot predict which V regions will all be present in the offspring of 
any mating of two heterozygous mice, except to say that about half of the genes 
used can be expected to come from the father and about half from the mother. 
Heavy chains encoded by VH genes from the father can combine with VL 
chains encoded by either parent, and similarly VH genes from the mother can 
combine with VL from either parent. The same is true for T cell receptors. 
Specific T cell receptors are formed using two genes with variable parts, namely 

T cell receptor α and β chains. Clonal selection of T cell V regions is strongly 
influenced by major histocompatability complex (MHC) genes, including both 
MHC class I and MHC class II, as elaborated in the next chapter. Furthermore, 
in the context of network theory, antibody V regions influence the expression 
of complementary V regions in both T cells and B cells. This is a complex 
situation, and yet the immune system functions satisfactorily with a wide range 

of combinations of VH, VL, T cell receptor α, T cell receptor β, MHC class I 
and MHC class II genes. We can reasonably conclude from this that the correct 
functioning of the system is not dependent on a particular fine structure of the 
V-V interaction matrices for B cells and/or T cells. For the time being, for 
simplicity we will use just one interaction matrix to model B cell V regions 
interacting with each other, for T cell V regions interacting with each other, and 
for B cell V regions interacting with T cell V regions.  
    • Many mutations in antibody V region genes (“somatic mutations”) occur in 
the course of immune responses, and the selection of the resulting clones 
depends on their affinities for the antigen and their affinities for other V 
regions. These somatic mutations add to the unpredictability in the V region 
interaction matrix. 
    • If we have an F1 cross between two viable inbred strains A and B, one of 
which is a recent laboratory developed strain with a new, mutant V region, the 
mutation leads to new V-V interactions that could never have been selected 
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during evolution.  An F1 hybrid AxB is typically more healthy and viable than 
the parent strains. (This phenomenon is called “hybrid vigour.”) An abrupt 
change in the V-V matrix thus does not typically cause a problem for the 
immune system. 
      We conclude that the rules that govern the interactions in the network must 
be such that the network functions properly even if there is a significant 
element of randomness in the generation of the V region interaction matrix.   
As a model-building construct, we can take this one step further and define a 
class of models that satisfy the condition that they function satisfactorily even if 
the V region interaction matrix is generated by a random number generator.  
This class of models is said to satisfy the "unpredictability axiom" of immune 
network theory.     
      An attractive aspect of the unpredictability axiom is its simplicity.  Another 
way of stating it is to say that acceptable models must be robust with respect to 

the fine structure of the V region interaction matrix ijK .   

      Some models fail to satisfy the unpredictability axiom. For example, the 
Richter model requires that the interaction strengths between species Ab1, 
Ab2, Ab3, Ab4 and Ab5 are in narrowly defined limits.   
 
The unpredictability axiom is an approximation 
 
      While the mechanisms we have discussed make the fine structure of the V 
region network unpredictable, the constraint of  self-tolerance means that there 
must be reproducibility in the repertoire at another level. The combination of 
self antigens and dynamical V-V interactions must lead to a reproducible shape 
space network topography that ensures self-tolerance. An apt analogy may be 
that a mosaic (fine structure) can depict a single scene (overall picture) in a 
myriad of different ways. In particular, the positive selection of T cells by the 
MHC, as discussed in chapter 12, leads to a repertoire being selected that is 
reproducible in its bias. In fact, the T cell specificities selected depend more 
strongly on the MHC of the individual than on the T cell V region genes. The 
mature T cell repertoire is strongly biased to include mainly V regions that have 
some affinity for self MHC. Thus while the unpredictability axiom is a useful 
construct, the concept of a V region interaction matrix generated solely by a 
random number generator is not strictly applicable to T cells. It should 
however be legitimate to model the T cell repertoire by a process involving 
random generation combined with positive selection by self molecules, 
especially MHC molecules.  
      The formation of complete heavy and light chain genes involves linking 
DNA that encodes the constant regions with the DNA that encodes the 
variable (VH and VL) parts. The B cell repertoire evolves with time. Early in 
ontogeny, there is one pattern of V gene expression for B cells (V genes close 
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in the genome to the C genes are preferentially expressed), while in a mature 
animal there is more random expression.  A plausible interpretation is that in 
the young animal V regions combine with C regions to form a complete gene 
for a heavy chain or light chain more easily if they are close together. In the 
mature animal the network of idiotypic specificities has developed further, and 
the expression of many quasi-randomly distributed V regions is suppressed. 
The system then utilizes whichever V regions are compatible with the rest of 
the network, which is then a stronger constraint than the constraint that the V 
regions are close in the genome to the C region gene.  
      In chapter 17 I will make the case that the repertoire of serum IgG 
antibodies is tightly regulated by T cells, with the result that the V region 
repertoire of these antibodies is far from random. The non-randomness is with 
respect to a shape space axis defined by MHC molecules. The repertoire can 
nevertheless be random with respect to other shape space axes, and the 
unpredictability axiom remains a useful construct.  

 
How unique is the virgin state of the two-variable symmetrical model? 
 
      Before developing an N variable model with a random set of V-V 
interaction strengths, we revert briefly to the two-variable model. We address 
the question of whether the two-variable symmetrical network model, as 
formulated, is just one of many possibilities. A comprehensive analysis of all 
non-linear models is not feasible, but we can explore the question of 
uniqueness of the virgin state of the symmetrical network model. We first make 
the case that V-V interactions are operative in the virgin state. Then we use 
stability considerations to add to the case that the virgin state involves the 
postulated interactions. 
      We recall that, in the immune state of the model: 
• Antigen-specific clones kill off the antiidiotypic clones.  
• This leaves the antigen-specific clones relatively isolated from V-V 
interactions.  
• There is a balance between influx and non-specific death for the antigen-
specific clones. 
    In the virgin state meanwhile: 
• The level of antigen-specific cells has to be lower in the virgin state than in 
the immune state.  
• The virgin state then cannot also be a balance between influx and non-specific 
death, since this would lead to the same level of antigen-specific cells in the 
virgin and immune states. 
• It follows that we need V-V interactions in the virgin state, to keep the level 
of antigen-specific clones in the virgin state lower than for their level in the 
immune state. 
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      For any steady state, including the virgin state, we have of course a balance 
between birth and death rates. In addition to this balance, we have the 
requirement that the steady state be stable. In the context of the constraint that 
we need V-V interactions in the virgin state, we can ask what birth and death 
terms are feasible from the point of view of the virgin steady state being stable. 
We will again see that the constraint of stability is a powerful one in 
discriminating between models that can work and models that cannot work.  
      For antigen-specific cells, the rate of birth can reasonably be expected to 
have, on the basis of mass action kinetics, one of the following three forms:  
• a constant influx term. 
• a term that depends linearly on the number of antigen-specific cells, and 
which is independent of any interactions with antiidiotypic cells. This term, 

acting alone, would give an exponential increase in the number of 1x  (antigen-

specific) cells. It could be ascribed to stimulation by a self antigen, that is 
present at a constant level.   
• a term that likewise depends linearly on the number of antigen-specific cells, 
but which is also dependent on stimulatory interactions with antiidiotypic cells 
or their V region bearing products. This could involve interactions with single 
or multiple cells or cell products, and hence may be either linear or non-linear 

(more than linear) in 2x . 

      Similarly, the rate of death of antigen-specific cells can reasonably be 
expected to be given, on the basis of mass action kinetics, by one of the terms: 
• a natural death term     
• death mediated by antiidiotypic cells, with a rate that depends linearly on the 
cells being killed, and a linear or nonlinear dependence on antiidiotypic cells or 
their products. (A constant rate of death is not physically reasonable, since it 
could lead to negative population levels.) 

    The feasible virgin state terms may thus have one of the following forms (in 
which, without loss of generality, we use units of time and concentration such 
that the rate constants are unity): 
 

1
1 21

dx
x x

dt
ν= −  

                                  (11.1) 

2
2 11

dx
x x

dt
ν= −  

 
or  
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1
1 2 1 2

dx
x x x x

dt
µ ν= −  

                                  (11.2) 

2
2 1 2 1

dx
x x x x

dt
µ ν= −  

 
Here µ  is an integer greater than or equal to zero, and ν is an integer greater 

than or equal to 1. The steady state in all cases is at 1x = 1, 2x  = 1.  

      Following the established procedure, we can then readily show that the 
eigenvalue equation at the steady state for the system (11.2) is: 
 

0
λ ν µ

ν µ λ
− − + 

= − + − 
                                     

 

The eigenvalues are then ( )ν µ± − . We must have ν µ≠ , otherwise 

1 2dx dx

dt dt
=  for all values of 1x  and 2x , and there is no regulation. Then one of 

the eigenvalues is positive, and the system is unstable.  
      In the case of equation (11.1) the eigenvalue equation is  

 

1
0

1

λ ν
ν λ

− − − 
= − − − 

                                   

  

and the eigenvalues are 1 ν− ± .  If 1ν > one of the states is unstable. If 0ν =  
we would have a putative virgin state that is a balance between the source term 

and the non-specific death term. This would give a level of 1x  in the virgin 

state that is the same as that in the immune state, which is unacceptable. The 

only remaining possibility is 1ν = , in which case the eigenvalues are 0 and –2. 
The zero eigenvalue is indicative of neutral stability, which turns out not to be a 
problem. The reader can readily verify that the addition of even a very small 
non-specific death term (which we need anyway for the immune state) changes 
the zero eigenvalue to it having a negative value, and the steady state becomes a 
bona fide attractor. We will see below that in an N-variable generalization of 
the model we do not even need the non-specific death term for this purpose. 
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      Table 11-1 summarizes the results we have obtained in this section.161 (In 
the table “d.e.” is an abbreviation for differential equation.) Stability analysis is 
seen here to be an extremely powerful method for identifying models that do 
not work, and by elimination, for finding at least one model that does work. 
    We conclude that the virgin state must have the form 
 

2 1 2
1d x

S k x x
dt

= −  

                                    (11.3) 

2 1 2
2d x

S k x x
dt

= −  

 
That is, the virgin state is necessarily a balance between non-specific influx and 
killing that is linear in the concentration of the complementary cells.  
      A crucial caveat however remains. We have assumed in the above that the 

influx rates of 1x  and 2x  cells are identical. If we consider the more general 

case of influxes given by 1S  and 2S , with 1S   not necessarily equal to 2S , we 

have: 
 

1 2 1 2
1d x

S k x x
dt

= −   

                                    

2 2 1 2
2d x

S k x x
dt

= −   

 

For 1 2S S≠  subtraction of the first equation from the second yields  

 

1 2
1 2 0

dx dx
S S

dt dt
− = − ≠                                    

 
 
 
  

                                                
161G. W. Hoffmann (1982) The application of stability criteria in evaluating network 
regulation models. In "Regulation of Immune Response Dynamics" vol. I, C. DeLisi 
and J. R. J. Hiernaux, Eds., CRC Press, 137-162. 
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Table 11-1 Eigenvalues (λ ) and stability characteristics of two-variable symmetric models. 
From G. W. Hoffmann (1982) in "Regulation of Immune Response Dynamics" vol. I, C. 
DeLisi and J. R. J. Hiernaux, Eds., CRC Press, 137-162. 
 
  
                                                                     Dominant positive (birth) term in the differential     

                                                                                              equation for 1x  

                                                                1               1x                     1x 2x         1 2 ( 1)x x ν ν >   
__________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Dominant negative (death)                                 

term in the d.e. for 1x                    

     1x                                             λ = -1, -1          No                  λ = 1, -1          λ = ν , -ν    

                                                         Stable              regulation        Unstable           Unstable 
 

   1x 2x                                        λ = 0, -2          λ = 1, -1         No                  λ = ( 1)υ± −  

                                                        Stable              Unstable        regulation           Unstable 
 

  1 2 ( 1)x x µ µ >                          λ = -1 -µ ,    λ = µ , -µ     λ = ± µ -1     If ν µ=  no          

                                                           -1 +µ         Unstable          Unstable          regulation 

                                                        Unstable                                                     If ν µ≠  

                                                                                                                          ( )λ µ ν= ± −   

                                                                                                                             Unstable 

 
  
 

Integrating, we obtain 1 2x x−  as a function of time: 

 

1 2 1 2( )x x S S t c− = − +                                     

 

where c  is a constant of integration. Thus for 1 2S S≠  the difference 1 2x x−  

between the two population levels increases or decreases monotonically with 
time; if they are both to stay positive, one of them must go to infinity. 

Satisfying the condition 1 2S S=   would be fortuitous; there is no reason why 

complementary clones (or groups of complementary clones) should be 
produced at precisely the same rates.  
      The bare bones virgin state of our two variable model, as it stands, is thus 
less than robust in this regard. The question then arises of whether making the 
network larger or having a greater density of network interactions would 
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increase our chances of having a stable network.  The answer is yes, but this 
was a surprise for mathematicians working in the area of complex systems.  
 
Stability versus complexity? Models with N variables 
 
      Some physicists have studied ecological network models (predator-prey 
models) that have some similarity to the immune system network models.  

Books by May162 and Siljak163 have made the case that as systems become 
more complex, they are likely to become less stable. For example, in support of 

this proposition, numerical studies by Gardner and Ashby164 and an analytical 

study by May165 showed that, in the following linear system, stability is 
opposed to complexity:  
 

1

N
i

i j j
j

dx
a x

dt =

=∑                                     (11.4) 

 

The fraction of the matrix elements ija that are non-zero is called the 

connectance. The probability of stability decreases with the connectance, and 
with the size of the system (N). That is, the probability of stability for the 
system decreases as its complexity increases. May suggests that this is a general 
property of complex systems; the theme of his book is that complexity is 
opposed to stability.  

      On the other hand, the following N  dimensional generalization of the 
interactions operative in the virgin state of our symmetrical network theory 
provides a counter-example to May's thesis: 
 

1

N
i

i ij j
j

d x
S x K x

dt =
= − ∑                                     (11.5) 

 

                                                
162 R. M. May (1974) "Stability and Complexity in Model Ecosystems", 2nd edition, 
Princeton University Press. 
163 D. D. Siljak (1978) "Large-Scale Dynamic Systems: Stability and Structure,” 
North-Holland, New York. 
164 M. R. Gardner and W. R. Ashby (1970) “Connectance of large dynamic 
(cybernetic) systems: critical values for stability.” Nature 228, 784. 
165 R. M. May (1972) “Will a large complex system be stable?” Nature, 238, 413-414.  
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where ijK = jiK . This equation is an N  clone version of equation (11.3) 

above. The fraction of non-zero terms in K , the matrix with elements i jK , is 

the connectance, and we denote it by C . The larger the value of N , and the 

higher the value of C , the more likely this system is stable, as shown in 

Figure 11-1, which shows the probability ( , )SSP N C  of the system having a 

stable steady state as a function of  C  for three values of N , as determined by 
numerical integration. Hence the more complex this system is, the more likely it 
is to be stable. By numerical integration of equation (11.5) I showed that, for 

large N , there is a sharp transition from the system being certainly unstable to 

being certainly stable, as C  increases.166  The threshold connectance needed 

for a system with N  clones to have a stable steady state, ( )TC N  is defined as 

the value of C  for which there is a 50% probability of stability. Figure 11-2 

shows ( )TC N  as a function of N , the number of clones. The value of 

( )TC N  for ( , )SSP N C  is roughly equal to 0.7N − .  It can also be seen in 

Figures 11-1 and 11-2 that, to a good approximation, each clone must interact 
with at least two others for the system to be stable. Put another way, every 
clone needs at least two "enemies" (or regulators) for the system as a whole to 
be stable. 
      Another feature of this system, first established numerically, is that when 
the connectance is high enough to yield a stable steady state that solution is 
unique, even though the system is highly dimensioned (many clones) and the 

K  matrix (the matrix with elements ijK  with ijK = jiK ) is generated by a 

random number generator. The evidence for this is that the same steady state 

solution that is found is independent of the initial values of the ix . This fits 

well with the finding that immune responses that involve IgM but not IgG do 
not exhibit memory. In such responses the system is perturbed from its initial 
steady state, but reverts to that same steady state after the antigen is eliminated. 
      The system (11.5) has also been investigated analytically by Spouge, who 
emphasized that for this system, unstable subsystems can be combined to yield 

a stable, more complex system.167 
 
 

                                                
166 G. W. Hoffmann (1982) The application of stability criteria in evaluating network 
regulation models. In Regulation of Immune System Response Dynamics, C. DeLisi and 
J. R. J. Hiernaux (Eds.) vol. I, 137-162. 
167 J. L. Spouge (1986) Increasing stability with complexity in a system composed of 
unstable subsystems. J. Math. Analysis and Applications 118, 502-518. 
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Figure 11-1. The probability ( , )SSP N C  of the system (11.5) having a stable steady 

state as a function of the size of the system (value of N ) and the connectance 

(fraction of non-zero terms in the matrix K ). Also shown is the probability 

2( , )P N C , of all the clones in the system having non-zero interactions with two or 

more other clones. 
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Figure 11-2. The threshold level of connectance, ( , )SSP N C , required for the 

system (11.5) to be stable, as a function of N , as determined by numerical 
integration. The threshold is defined as the level at which there is a 50% 
probability of the system being stable. Also shown are thresholds for each clone 

interacting with at least one other clone, 1( , )P N C , at least two other clones, 

2( , )P N C , and for the matrix of interaction strengths being non-singular, 

( , )NSP N C . Values used for determining 1( , )P N C  and 2( , )P N C  were 

obtained analytically. The value of ( , )SSP N C  is seen to be well-approximated 

by the threshold for each clone interacting with at least two other clones.   
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Perturbing the system with IgM antibody 
 
      The system (11.5) models non-specific influx and killing by IgM. It suggests 
that adding IgM of some specificity would shift the steady state of this  system.  
Such an effect has been observed by Forni and colleagues, who found that 
injecting  mice  with  IgM  specific  for  sheep  red  blood  cells  or  specific for 

dextran resulted in the production of antibodies with the same specificity.168 
This was without any injection of the antigen. The IgM was either immune 
serum that was depleted of IgG, or monoclonal IgM antibodies. As little as 
40ng of IgM induced a 4-fold increase in anti-SRBC plaque forming cells. This 
amount compares with the normal total level of IgM in mice of about 

200µg/ml. Since this system is relatively simple, more quantitative analysis may 
prove to be fruitful.  
 
Stability of systems with symmetric versus asymmetric interactions 
  
      Another idea developed by May in his book is that symmetric interactions 
are more destabilizing than asymmetric interactions.162  This can be made 
plausible by considering the following two matrices: 

 

1

2

a b

b a

 
=  
 

A  

 
and    
 

1

2

a b

b a

 
=  − 

B  

 

where a , 1b , and 2b  are real, and 1b  and 2b  have the same sign. The matrix 

A 's eigenvalues are 1 2a b b± , so A  is stable if and only if 0a <  and 

1 2b b a< . That is, there are two conditions to be fulfilled. B 's eigenvalues 

are 1 2a i b b± , so B is stable if and only if 0a < . That is, there is only one 

condition to be fulfilled. It is more probable that just one condition is satisfied 
than two, so the more symmetric system is less likely to be stable. 

                                                
168 L. Forni, A. Coutinho, G. Köhler and N. K. Jerne (1980) IgM antibodies induce the 
production of antibodies of the same specificity. Proc. Nat. Acad. Sci. (USA) 77, 
1125-1128. 
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      Our virgin state system is however stable even though it is completely 
symmetric, so also in this regard it is a counter-example to the generalizations 
proposed by May.   

 
How many stable states? 
 
      The number of different stable states of an immune system is potentially 
very large. For example, even if there are only 1000 different, independently 
regulated antigens (which is not known to be the case, and may be too low), 
and if the system can be in any one of at least 3 stable states (virgin, immune 
and suppressed) for each one, then we would have 3 to the power 1000 

(about 47010 ) different stable states of the system as a whole, a greater-than-
astronomical number.  
 
Dynamics of an N-variable model displayed in two dimensions  
 
      A significant conceptual barrier to the further development of the 
symmetrical network theory was the problem of finding a way to depict the 

dynamics of an N -dimensional system on a two-dimensional page. A solution 

was found with the realization that each clone with population size ix can be 

associated with an antiidiotypic field, iY , where  

 

1

N

i ij j
j

Y K x
=

=∑                                    (11.6) 

 

I have called iY  the connectivity of the clone i , which is not to be confused 
with the connectance of the system (the fraction of non-zero elements in 

K )169.  The dynamics of the N -variable system (11.5) can then be 

represented by N  trajectories in the /i ix Y  phase plane as shown in 

Figure 11-3. The parameters for this example yield a stable steady state, with all 

of the N  trajectories converging onto points on the line  
 

i ix Y S=                                    (11.7) 

 
which is a locus of equilibrium for the system. 

                                                
169 G. W. Hoffmann, T. A. Kion, R. B. Forsyth, K. G. Soga and A. Cooper-Willis (1988) 
in "Theoretical Immunology, Part Two", A. S. Perelson, Ed., Addison Wesley Publishing 
Company, Redwood City, California, 291-319. 
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Figure 11-3. Phase plane dynamics for the system (11.5), a simple model of the 

interactions of clones in the virgin state. Each clone has a population size ix  and a 

field iY , where 
1

N

i i j j
j

Y K x
=

=∑ . Providing the size of the system (number of clones, 

equals the value of N ) and the connectance C  (fraction of non-zero i jK ) are large 

enough, all the trajectories converge onto the line i ix Y S= , which is a locus of 

equilibrium. Otherwise some clone population levels go to zero, while others increase 

without limit. The parameters here are N = 20, S = 10, C = 0.5, non-zero i jK  

values randomly distributed between 0.0 and 1.0, and initial values of the ix  randomly 

distributed between 0.0 and 1.0. Reproduced from G. W. Hoffmann et al. (1988) in 
"Theoretical Immunology, Part Two", A. S. Perelson, Ed., Addison Wesley Publishing 
Company, Redwood City, California, 291-319.  
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      Following this approach, the two-variable system of equation (10.2), that 
includes a constant source term, IgM killing, IgG killing, non-specific death, 
and sharp thresholds for inhibition by specific T cell factors, can be very simply 

generalized to N  dimensions by replacing 1x  by ix , and replacing 2x  by  the 

field (connectivity) of clone i , namely iY  (with 1i =  to N ): 

 

          2
2 2 3 3 4

i
i i i i i i i

dx
S k x Y e k x Y e k x

dt
= − − −                                 (11.8a) 

 
with                               
 

qie =  1 for i i qx Y C<  

 
and                                                       (11.8b) 
  

 qie =  0 for i i qx Y C>  

 

for i  = 1 to N  and q =  2 and 3. The  /i ix Y  phase plane is then divided into 

three regions by the lines 2i ix Y C=  and 3i ix Y C= ; see Figure 11-4 for an 

example with parameters that satisfy the inequalities:  
 

2

4
3 2

3 2 4

k S S
C C

k k k

 
< < < <  

 
                                   

 
This set of inequalities corresponds to one of the two regions of parameter 
space derived for the two-dimensional model; see the inequalities (10.15a) in 
the previous chapter. Each of the three regions contains a locus of equilibrium, 

that is obtained by setting 0idx

dt
= .  

      The locus for the immune and anti-immune states is:  
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Figure 11-4. The three regions in the /i ix Y  phase plane of the N -dimensional 

model, that each contain a locus of equilibrium. The regions are bounded by the lines 

2i ix Y C=  and 3i ix Y C= . The equations of the loci of equilibrium are (11.15) 

(immune and anti-immune states __ __ __); (11.16) (virgin state ______); and (11.17) 

(suppressed state __ _ _ _ __). Parameters: 2k  = 1, 3k  = 10, 4k  = 1, S  = 10, 2C  = 50, 

3C  = 2. Reproduced from G. W. Hoffmann et al. (1988) in "Theoretical Immunology, 

Part Two", A. S. Perelson, Ed., Addison Wesley Publishing Company, Redwood City, 
California, 291-319. 
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The locus for the virgin state is 
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and the locus for the suppressed state is 
 

4
i

S
x

k
=                                                                                                   (11.11) 

 
At a stable steady state for the entire system, the coordinates of each of the 

clones in the /i ix Y  phase plane is situated on one of the loci of equilibrium. 

Figure 11-5 shows a simulation in which 25 clones are all given equal low initial 
clone sizes, and some of them go to the virgin state while others go to the 
immune/anti-immune locus. Antigenic stimuli perturb the clones from the loci 
of equilibrium. Figure 11-6 shows trajectories of clones, that are initially all in 
the virgin state, following a small transient perturbation. (Here we added a 
transient term simulating antigen to the differential equation.) The clones all 
return to the locus of equilibrium for the virgin state. This response models 
what happens with stimulation by a T independent antigen; the response has no 
associated memory. A larger perturbation (Figure 11-7) results in some of the 
clones switching to the suppressed state locus, with the clones that return to 

the virgin locus now returning to new ( ,i ix Y ) coordinates, because of changes 

in their fields caused by clones that switched. This mathematical model does 
not include the role played by the A cell, and hence we do not see any clones 
switching to the immune state. 
      It is possible in this model to simultaneously have clones in all four of the 
virgin, immune, anti-immune and suppressed states.  The immune and anti-
immune states are along one locus of equilibrium, with immune state clones 

being at high ix  and anti-immune state clones being at low ix . Clones are then 

all initially at one of the steady states and are perturbed to various degrees by a 

transient pulse of antigen. The antigen causes an increase in the level of the ix  

and a decrease in iY  for clones in the immune state.  

      The system (11.8) is a simple generalization of the two-variable model, and 

provides a representation of N -variable immune network dynamics on a two-
dimensional page. It can however be argued that the model fails to accurately 
model the symmetry of the theory in one respect. The interactions between a 
clone i  and a clone j  should be equally inhibitable by clone i  specific T cell 
factors and clone j  specific T cell factors. If we model the concentration of 
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Figure 11-5. Trajectories in the /i ix Y  phase plane for the system (11.8). In this 

example 25 clones are randomly connected with a connectance of 0.3. All clones are 

given initial ix  values of 0.1. Here some clones veer to low ix  and large iY  (anti-

immune state), while others go to large ix  and small iY  (immune state), both of which 

are on the locus of equilibrium for the immune and anti-immune states, equation 

11.15. The non-zero ijK  are random numbers in the range 0.0 to 1.0. All of the other 

parameters are the same as for Figure 11-4. Reproduced from G. W. Hoffmann et al. 
(1988) in "Theoretical Immunology, Part Two", A. S. Perelson, Ed., Addison Wesley 
Publishing Company, Redwood City, California, 291-319.  

 

 
 
 



Chapter 11. Complexity and stability in network theory 171 

Figure 11-6. Another example of trajectories in the /i ix Y  phase plane for the system 

(11.8). In this case all of the clones are initially in the virgin state (on the locus of 
equilibrium for the virgin state). A small transient perturbation by antigen causes the 
clones to leave the locus of equilibrium, and they then return to it. This simulates the 
effect of a T independent antigen that stimulates many clones, but does not cause an 
immune response with memory. The parameters are the same as for Figure 11-5. 
Reproduced from G. W. Hoffmann et al. (1988) in "Theoretical Immunology, Part 
Two", A. S. Perelson, Ed., Addison Wesley Publishing Company, Redwood City, 
California, 291-319.    
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Figure 11-7. A third example of trajectories in the /i ix Y  phase plane for the system 

(11.8). A larger pulse of antigen takes some clones into the zone of attraction of the 
suppressed state. The clones that do not switch return to new points on the locus of 

equilibrium for the virgin state, since their fields iY  have changed. The parameters are 

the same as for Figure 11-4. Reproduced from G. W. Hoffmann et al. (1988) in 
"Theoretical Immunology, Part Two", A. S. Perelson, Ed., Addison Wesley Publishing 
Company, Redwood City, California, 291-319. 
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the former by i ix Y , perhaps we should model the latter by j jx Y . Our 

expression for qe  includes the former but not the latter. This is equivalent to 

saying  that  the  model  should  include  not  only   antigen-specific   ( ix )   

and antiidiotypic cells ( iY ), but also anti-antiidiotypic cells, since the jx  would 

be antiidiotypic to ix , and the jY  would be antiidiotypic to the jx  clones. 

There are some experiments involving T cell regulation that demonstrate roles 
for three levels of T cells being involved in suppression, namely Ts1 that are 
antigen-specific and express a defined idiotype, Ts2 that are antiidiotypic, and 
Ts3 that bear the same idiotype as Ts1, and may or may not be 

antigen-specific.170 When the antigen is introduced, it selects an 
antigen-specific population which in turn selects an antiidiotypic population, 
and there is a positive feedback loop between these two populations. If the Ts3 
clones are not antigen-specific, we might expect the positive feedback loop 
between Ts1 and Ts2 to be dominant (because it is activated first), and the role 
of the next positive feedback loop, between Ts2 and Ts3 to be of secondary 
importance. On the other hand, if Ts2 and Ts3 are from populations of T cells 
that have a high initial level of connectivity to each other, the Ts2-Ts3 loop 
may also be important. We will describe a model that incorporates Ts1, Ts2 
and Ts3 cells in chapter 17. At this stage, however, we will keep the model as 
simple as possible. 
      In light of the above considerations, one way in which the model can be 

kept reasonably simple and potentially improved is by replacing i ix Y  in the 

expressions for 2e  and 3e  by i iX Y , where iX  is a weighted sum of the clone 

i  together with clones that are similar to clone i . In order to do this we need 
to have a quantitative measure of similarity of clones for each other. This 
similarity can for example be in the context of the set of V regions in the 

system. If the V region of a clone i  binds to the V region of a clone k  with an 
affinity ikK , and the clone k  has an affinity kjK  for clone j , then in the 

context of clone k , the similarity of clones i  and j  is proportional to ikK  

and to kjK . The significance of this similarity is furthermore proportional to 

the size of the clone k , namely kx . The similarity i jS  of clones i  and j  in 

the context of all N  clones in the system is then given by  
 

                                                
170 R. N. Germain and B. Benacerraf (1981) Hypothesis. A single major pathway of T-
lymphocyte interactions in antigen-specific immune suppression. Scand. J. Immunol. 
13, 1-10. 
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The greatest similarity of a clone is with itself, so the i jS  matrix can be 

expected to be diagonally dominant. We use i jS  to define iX  according to  

 

1

N

i i j j
j

X S x
=

=∑   

 
We then have the system 
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dt
= − − −                    for i  = 1 to N  

 
with                               
 

qie =  1 for i i qX Y C<  

 

and                                                               for i  = 1 to N  and q =  2 and 3 
  

qie =  0 for i i qX Y C>  

 
The reader may wish to explore the dynamical properties of this system. 

 


