Constraints on the formation of magnetars from associated supernova remnants

Jacco Vink

SRON Netherlands Institute for Space Research

Astronomical Institute, Utrecht University

The central question:

What is the origin of the high magnetic fields of magnetars?

Two possible formation scenarios

- 1. pre-supernova star has high magnetic field progenitor (fossil field hypothesis, see also Lilia Ferrario's talk)
- 2. proto-neutron star is spinning close to break-up limit
 - P~ 1 ms, progenitor star has high angular momentum
 - \rightarrow α -dynamo \rightarrow magnetic field amplification $10^{12} \rightarrow 10^{15}$ G

(Duncan & Thompson, 1992)

For comparison: typical isolated neutron stars have $B \sim 10^{12}$ G & $P_i \sim 10$ ms

Problem for rapid spinning scenario:

If magnetars are from massive stars (suggested by some observational evidence), stellar winds may have removed most angular momentum

Implications of ms proto-neutron stars

(c.f. Duncan&C.Thompson '92, T.Thompson et al. '04, Allen&Horvath '04)

- Dynamo results in magnetars fields on time scales of τ_d <10 s
- B~10¹⁵G magnetic breaking $\tau_{\rm B}$ < 400 s (10¹⁵ G/B)²(P/1ms)² (upper limit, as propellor effect gives more rapid slow down)
- Short time scale suggests spin-down energy absorbed by supernova
- Rotational energy $E_{rot} = 3 \times 10^{52} \text{ erg}$
- If all E_{rot} converted to magnetic energy: $\langle B_{NS} \rangle \sim 3 \times 10^{17} \text{ G}$
- If $\langle B_{NS} \rangle \sim 10^{15-16}$ G, magnetars leads to rotation powered *hypernovae*

Can be tested with X-ray data of supernova remnants!

Association of SNRs and magnetars

- 4 SGRs and 8 AXPs known
- 1 SGR associated with supernova remnant:
 - N49/SGR0526-66 (LMC)
- 3 AXPs associated with SNRs:
 - Kes 73/1E1841-045 (~ 7 kpc)
 - CTB109/1E2259+586 (~3 kpc)
 - G29.6+0.1/AX J1845.0-0258 (~3 kpc)

Constraints on the formation of magnetars from associated supernova remnants

Vancouver, August 12, 2005

Deriving the explosion energy

• At late times evolution is assumed to be self-similar (Sedov):

$$r^5 = 2.02 E_k t^2/\rho_0, v_s = 2/5 r/t$$

- Density low \rightarrow time dependent ionization (NEI) \rightarrow n_e t
- From X-ray data: $n_e t$, $kT (= 3/16 < m > v_s^2)$, emission measure $(\int_e n_e dV)$, and radius Sufficient to determine energy, age, density (e.g. Hamilton et al. '83, Jansen&Kaastra '93, Borkowski et al.'01)
- Some redundancy from observations, e.g. age: t=2/5 r/v, or n t
- Potential caveat: kT (electrons) $\neq kT$ (protons)
- However, equilibration is also dependent on n_e t (incorporated in some spectral mode codes)
- Spectral codes: XSPEC (Hamilton/Borkowski), SPEX (Kaastra, Mewe)
- Method used by e.g. Hughes et al. '98 for LMC SNRs: E = 0.5-7 foe

Kes 73/1E1841-045

- Spherical morphology
- Distance ~ 6-7.5 kpc (HI abs.)
- Radius = 4 kpc
- Spin down age: 4500 yr
- Spectral modeling:
- $-kT = 0.7 \text{ keV} \rightarrow V_s = 800 \text{ km/s}$
- $-n_e t = 4x10^{11} cm^{-3} s$
- $n_e = 4 \text{ cm}^{-3}$
- mass $= 27 M_{\text{sun}}$
- no overabundances

$$E_0 = (0.8\pm0.6) \times 10^{51} \text{ erg}$$

 $t = 970\pm100 \text{ yr}$

N49/SGR 0526-66

- Non-spherical, SNR-cloud interaction
 - (e.g. Park et al. '03)
- Distance ~ 50 kpc
- Radius = 10 kpc
- Spindown age: 1900 yr
- Connection SGR/SNR requires ~1000 km/s kick (Gaensler et al '01)
- Spectral modeling indicates:
- $-kT = 0.5 \text{ keV} \rightarrow V_s = 700 \text{ km/s}$
- $-n_e t = 4x10^{12} \text{cm}^{-3} \text{s}$
- $-n_{\rm e} = 3 \, \rm cm^{-3}$
- mass = 346 M_{sun}
- no overabundances

$$E_0 = (2.0\pm0.4) \times 10^{51} \text{ erg}$$

 $t = 5800\pm2000 \text{ yr}$
(see also Hughes et al. '98)

CTB109

- CTB 109 (1E2259+586): complex morphology
- AXP showed SGR-like burst
- Very long spindown age: 220 kyr

 $E_0 = (0.7\pm0.3) \times 10^{51} \text{ erg}$ from literature (Sasaki et al. '04)

Cassiopeia A

- Cas A: central compact object is potential magnetar (evidence for big SGR-like?- flare in ±1950, Krause et al '05)
- Not in Sedov phase, but measured shock velocity of 5000 km/s
- Evidence for jet/counter jet, mini GRB? (Vink '04, Hwang et al. '04)
- Energy in jets may be as high as $5x10^{50}$ erg For Hans-Thomas Janka:
- Jets enriched in Si/S, some Fe, no Ne, Mg

$$E_0 = (2-2.5) \times 10^{51} \text{ erg}$$

 $t = 330 \text{ yr}$
(Laming&Hwang '03, Vink '04)

Potential Caveats

- Some SNRs in the Sedov phase, but in "ejecta phase" Only issue for Kes 73:
 - M rather low (argues against Sedov phase)
 - but abundance (sub)solar (against ejecta phase)
- Strongly non-uniform density structure
- Very efficient cosmic ray acceleration may have drained energy

But...

Caveats apply also to ordinary SNRs, which have similar measured energies

Conclusions

No evidence that birth of magnetar coincides with a hypernovae!

- Magnetar hosts Kes 73, N49 and CTB109 are not more energetic than other supernova remnants
- Typical energies of $(0.5 2) \times 10^{51}$ erg, so additional energy from magnetic breaking: $\leq \sim 10^{51}$ erg
- Equating energy to rotational energy gives:

$$P_i > 5.6 (E/1e51)^{1/2} \text{ ms}$$

(with P_i spin after formation of magnetar)

No evidence that proto-NSs spun close to break-up limit

Discussion

- 1. Most plausible formation scenario:
 Progenitor's magnetic field instead of angular momentum determines magnetic field of neutron star/magnetars (c.f. Lilia Ferrario's talk)
- 2. Rotational energy lost before magnetic breaking is important:
 - a) spin energy is completely converted to magnetic energy

$$\rightarrow$$
 interior $<$ B $> ~ 3x10^{17} \text{ G} > B_{bip} ~ 10^{15} \text{ G}$

- b) excess spin energy is lost through gravitation radiation
 - r-mode instability (e.g. Anderson et al. '99)
 - requires rapid gravitational energy dissipation:

$$\tau_{dynamo} = 10 \text{ s} < \tau_{Grav} < \tau_{Breaking} < 400 \text{ s}$$

in conflict with recent estimates τ_{Grav} ~ few days (Arras et al. '03)

c) magnetic field is buried for some time preventing breaking but expect presence of pulsar wind nebula!

Most likely formation scenario for magnetars: massive stars with high magnetic fields

