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Landau’s Fermi liquid paradigm

Lev Davidovich Landau:

“Electron states in solids are adiabatically connected to the states of
noninteracting electron gas”
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Despite enormous Coulomb forces (UC ∼ e2

a0
∼ 1− 10eV) at low energies most

metals behave like a free electron gas [Landau, 1957]

N electrons in a box Fermi sphere
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2m∗ , kF = (3π2n)1/3

Ground state (T = 0): all levels below Fermi momentum kF are filled; levels
above kF empty.
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Despite enormous Coulomb forces (UC ∼ e2

a0
∼ 1− 10eV) at low energies most

metals behave like a free electron gas [Landau, 1957]

N electrons in a box Fermi sphere
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ε(k) =
h̄2k2

2m∗ , kF = (3π2n)1/3

Ground state (T = 0): all levels below Fermi momentum kF are filled; levels
above kF empty.

Root cause: Pauli exclusion principle

→ phase space for scattering near FS is severely limited.
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Structure of electron propagator in FL

G(k, ω) =
1

ω − εk − Σ(k, ω)
=

zk
ω − Ek + iΓk

+Gincoh(k, ω)

with

z−1
k = [1− ∂ReΣ

∂ω ]ω=Ek, “quasiparticle weight”

τ−1 ≡ Γk ∼ (Ek − EF )2, “quasiparticle lifetime”
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Structure of electron propagator in FL

G(k, ω) =
1

ω − εk − Σ(k, ω)
=

zk
ω − Ek + iΓk

+Gincoh(k, ω)

with

z−1
k = [1− ∂ReΣ

∂ω ]ω=Ek, “quasiparticle weight”

τ−1 ≡ Γk ∼ (Ek − EF )2, “quasiparticle lifetime”

Spectral function:

A(k, ω) = −2ImG(k, ω)

' zkδ(ω − Ek) +Aincoh(k, ω)

coherent quasiparticle
ω

ω

A incoh

A(k,  )
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Exceptions to FL paradigm

• 1D interacting systems (a.k.a. “Luttinger Liquids”)
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Exceptions to FL paradigm

• 1D interacting systems (a.k.a. “Luttinger Liquids”)

• Quantum Hall Fluids

• Systems near Quantum Criticality

• High-Tc Cuprate Superconductors (?)
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Cuprate superconductors

Cuprates are layered quasi-2D materials with electronic properties dominated
by the CuO2 layers.

Crystal structure of La2−xSrxCuO4

T*

‘Pseudogap’

x

T

AF
dSC

Phase diagram of cuprates.
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d-wave superconductivity in cuprates

Superconducting order parameter in cuprates exhibits d-wave symmetry

∆k =
1
2
∆0(cos kx − cos ky),

i.e. changes sign upon 90o rotation.
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k, occur near 4 nodal points:

d-wave order parameter Dirac cone

“Dirac Fermions”
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Superfluid density

Superfluid density ρs is a fundamental characteristic of a superconductor
reflecting its ability to carry supercurrent in response to applied magnetic field
H = ∇×A:

js = ρs
4e2

h̄2c
A.
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Superfluid density

Superfluid density ρs is a fundamental characteristic of a superconductor
reflecting its ability to carry supercurrent in response to applied magnetic field
H = ∇×A:

js = ρs
4e2

h̄2c
A.

ρs is related to London penetration
depth λ, a fundamental lengthscale in
a superconductor describing penetration
of magnetic field H into the bulk via

ρs =
h̄2c2

16πe2λ2
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Superfluid density in cuprates, ab-plane: the old story

In the optimally doped and
moderately underdoped region
experiments show

ρab
s (x, T ) ∼ λ−2

ab (x, T ) ' ax− bkBT ,

with a ' 244meV and b ' 3.0 [Lee and
Wen, PRL 78, 4111 (1997)].
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Superfluid density in cuprates, ab-plane: the old story

In the optimally doped and
moderately underdoped region
experiments show

ρab
s (x, T ) ∼ λ−2

ab (x, T ) ' ax− bkBT ,

with a ' 244meV and b ' 3.0 [Lee and
Wen, PRL 78, 4111 (1997)].

In a BCS d-wave superconductor one would have

ρab
s (x, T ) ' a(1− x)− 2 ln 2

vF

v∆
kBT .
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• The linear T -dependence is known to arise from thermally excited nodal
quasiparticles which exhibit linear density of states at low energies.
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• The linear x-dependence (cf. Uemura plot) reflects proximity to the
Mott-Hubbard insulator at half filling.
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• The linear T -dependence is known to arise from thermally excited nodal
quasiparticles which exhibit linear density of states at low energies.
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• The linear x-dependence (cf. Uemura plot) reflects proximity to the
Mott-Hubbard insulator at half filling.

• Problem: models that give correct x-dependence (e.g. RVB-type theories)
generally yield strong (∼ x2) dependence of the coefficient b.
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3D-XY critical scaling

Optimally doped YBCO shows 3D-XY

critical behavior near Tc: ρs(T ) ∼
(Tc−T )2/3 with relatively wide critical
region ∆T ' 10K.

Such critical behavior is characteristic
of phase disordering transition to the
normal state. In 3d this is known to
be caused by vortex loop unbinding. Kamal et al., PRL 73 1845 (1994)
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3D-XY critical scaling

Optimally doped YBCO shows 3D-XY

critical behavior near Tc: ρs(T ) ∼
(Tc−T )2/3 with relatively wide critical
region ∆T ' 10K.

Such critical behavior is characteristic
of phase disordering transition to the
normal state. In 3d this is known to
be caused by vortex loop unbinding. Kamal et al., PRL 73 1845 (1994)

3D-XY critical behavior has also been observed in other high-Tc compounds
using transport and thermodynamic probes. It thus appears to be a
fundamental universal feature of cuprates.
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Superfluid density in cuprates: the new story

Recent UBC Group data on ultra-pure YBCO single crystals for doping levels
as low as Tc = 5K show ab-plane show tantalizing qualitative deviations from
the “old” phenomenology.
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Superfluid density in cuprates: the new story

Recent UBC Group data on ultra-pure YBCO single crystals for doping levels
as low as Tc = 5K show ab-plane show tantalizing qualitative deviations from
the “old” phenomenology.

Data from UBC/SFU group [Broun et al. unpublished]
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New ab-plane phenomenology

New features:

• No visible 3D-XY critical regime.

• ρab
s (x, T ) ' Ax2 −BxT

with x ∼ Tc, a parameter roughly
proportional to doping

amplitude: ρab
s (x, 0) ∼ T 2

c

slope
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Understanding the puzzle . . .

• With underdoping Tc falls and the 3D-XY classical critical region shrinks to
zero as the system approaches a quantum critical point at x = xc.

• This QCP lives in (3+1) dimensions, “1” standing for the imaginary time τ .

• For xy-type models 4 is the upper critical dimension; one thus expects
mean field critical behavior.
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Consistency check

If the underdoped region is controlled by (3+1)D-XY quantum critical point then
we should be able to understand the behavior of ρab
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general scaling arguments.
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Consistency check

If the underdoped region is controlled by (3+1)D-XY quantum critical point then
we should be able to understand the behavior of ρab

s (x, T ) based on very
general scaling arguments.

Indeed, elementary scaling analysis gives

ρab
s (x, 0) ∼ T

(d−2+z)/z
c

with z the dynamical critical exponent (z ≥ 1).

• In d = 2 we have ρab
s (x, 0) ∼ Tc independent of z (the “Uemura scaling”).

• In d = 3 we have ρab
s (x, 0) ∼ T

(1+z)/z
c .

For 1 ≤ z ≤ 2 this is consistent with experiment!
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Problems

The 4D-XY QCP idea seems to naturally explain:

• Lack of visible classical critical region in very underdoped YBCO.

• Violations of the Uemura scaling ρs ∼ Tc.

There are, however, two serious issues:

• Cuprates are strongly anisotropic; it is unclear how broad the (3+1)D critical
region is.

• There is strong (linear) T -dependence of the “bare” superfluid density
coming from quasiparticles which may invalidate the scaling laws.
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At T = 0, away from QCP, fluctuations in
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2D - 3D crossover

At T = 0, away from QCP, fluctuations in
CuO2 layers are decoupled and system
behaves 2 dimensionally.

Close to QCP the c-axis coherence
length grows, ξc ∼ (x − xc)−ν, and
ultimately exceeds the interlayer spacing
d0. At that point system starts behaving
3 dimensionally.

For YBCO we estimate, using ξc ≈ λ2
ab/λcκ,

T3D ≈ 5− 10K.
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Quantum XY model

To address the details of ρs temperature and doping dependence in a
fluctuating d-wave superconductor we need a model.

The simplest model showing XY-type critical behavior is given by the
Hamiltonian

HXY =
1
2

∑
ij

n̂iVijn̂j −
1
2

∑
ij

Jij cos(ϕ̂i − ϕ̂j).

Here n̂i and ϕ̂i are the number and phase operators representing Cooper
pairs on site ri of a cubic lattice and are quantum mechanically conjugate
variables:

[n̂i, ϕ̂j] = iδij.

The sites ri do not necessarily represent individual Cu atoms; rather one
should think in terms of “coarse grained” lattice model valid at long
lengthscales where microscopic details no longer matter.
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• The first term in HXY describes interactions between Cooper pairs; we take

Vij = Uδij + (1− δij)
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|ri − rj|
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• The first term in HXY describes interactions between Cooper pairs; we take

Vij = Uδij + (1− δij)
e2

|ri − rj|
.

• The second term represents Josephson tunneling of pairs between the
sites:

Jij =

{
J, for n.n. along a, b
J ′, for n.n. along c
0, otherwise

• In the absence of interactions J clearly must be identified as the superfluid
density. We thus take

J = J0 − αT

with α = (2 ln 2)vF/v∆, as in the BCS d-wave superconductor.
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The claim:

As formulated above the quantum XY model captures the experimentally
observed phenomenology of underdoped YBCO.

Namely, it predicts ab-plane superfluid density of the form

ρab
s (x, T ) ' Ax2 −BxT .

It also naturally yields the shrinking classical fluctuation region with
decreasing Tc.
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Self-consistent harmonic approximation

The idea is to replace the XY Hamiltonian

HXY =
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Self-consistent harmonic approximation

The idea is to replace the XY Hamiltonian

HXY =
1
2

∑
ij

n̂iVijn̂j − J
∑
〈ij〉

cos(ϕ̂i − ϕ̂j).

by the “trial” harmonic Hamiltonian

Hhar =
1
2

∑
ij

n̂iVijn̂j +
1
2
K

∑
〈ij〉

(ϕ̂i − ϕ̂j)2.

Constant K, which is identified as the renormalized superfluid density, is
determined from the requirement that

Ehar ≡ 〈HXY〉har is minimal.

This is just a variational principle which can be extended to T > 0 case using
the Gibbs-Bogolyubov inequality F ≤ Fhar + 〈H −Hhar〉har.
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Hhar is quadratic in n̂i and ϕ̂j and can thus be easily diagonalized:
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q

h̄ωq(a†qaq +
1
2
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with the frequencies

h̄ωq = 2
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Hhar is quadratic in n̂i and ϕ̂j and can thus be easily diagonalized:

Hhar =
∑
q

h̄ωq(a†qaq +
1
2
)

with the frequencies

h̄ωq = 2
√
KZqVq, Zq = sin2(qx/2) + sin2(qy/2) + sin2(qz/2).

• For short range interactions
Vq →const as q → 0; we have
ωq ∼ q, i.e. acoustic phase mode.

• For Coulomb interactions Vq ∼
1/q2 as q → 0; we have ωq → ωpl,
i.e. gapped plasma mode.
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Simple power counting shows that at low T the contribution from the phase
mode to the superfluid density is

δρph
s ∼

{
T 3, short range interaction
e−ωpl/T , Coulomb interaction

In either case the low-T behavior of ρs will be dominated by the quasiparticle
contribution included via J = J0 − αT .

However, as we shall see, quantum fluctuations will strongly
renormalize both the amplitude J0 and the slope α.
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SCHA: the results

Using the identity 〈cos(ϕ̂i − ϕ̂j)〉har = exp [−1
2〈(ϕ̂i − ϕ̂j)2〉har], valid for

harmonic Hamiltonians, we obtain

Ehar = 〈HXY〉har =
√
KS − Je−

√
S/K,

with
√
S = (4N)−1

∑
q

√
VqZq.
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2〈(ϕ̂i − ϕ̂j)2〉har], valid for

harmonic Hamiltonians, we obtain

Ehar = 〈HXY〉har =
√
KS − Je−

√
S/K,

with
√
S = (4N)−1

∑
q

√
VqZq.

Parameter S describes the aggregate “strength” of interactions that are
responsible for quantum fluctuations and reduction of ρs.

Minimizing Ehar with respect to K
we obtain

K = Je−
√

S/K ' J(1−
√
S/J).
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To obtain the leading temperature dependence substitute J = J0 − αT and
expand to leading order in T :

ρs(x, T ) = K ' J0

(
1−

√
S
J0

)
− αT

(
1− 1

2

√
S
J0

)
.
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To obtain the leading temperature dependence substitute J = J0 − αT and
expand to leading order in T :

ρs(x, T ) = K ' J0

(
1−

√
S
J0

)
− αT

(
1− 1

2

√
S
J0

)
.

As expected, both the amplitude and the slope are reduced by quantum
fluctuations.

Crucially, observe that the T = 0 amplitude decays faster than the slope.

In particular, for small
√
S/J0 the above expression is consistent with

experimentally observed behavior

ρab
s (x, T ) ' J0x

2 − αxT ,

if we identify x ' (1− 1
2

√
S
J0

).
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How about the region S ≈ J0?

In this regime one can construct a “critical” theory of strong phase fluctuations
[Doniach, PRB 24, 5063 (1981)] as an expansion in small order parameter ψ(x, τ).
This leads to a quantum Ginzburg-Landau action

S =
∫ β

0

dτ

∫
d3x

{
r|ψ|2 +

1
2
u|ψ|4 +

1
2
|∇ψ|2 +

1
2c2

|∂τψ|2
}
,

with parameters r, u and c
given as functions of J and S.
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In this regime one can construct a “critical” theory of strong phase fluctuations
[Doniach, PRB 24, 5063 (1981)] as an expansion in small order parameter ψ(x, τ).
This leads to a quantum Ginzburg-Landau action

S =
∫ β

0

dτ

∫
d3x

{
r|ψ|2 +

1
2
u|ψ|4 +

1
2
|∇ψ|2 +

1
2c2

|∂τψ|2
}
,

with parameters r, u and c
given as functions of J and S.

Combining SCHA with this
critical theory provides a
consistent picture for the
suppression of ρs by quantum
fluctuations.
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Summary

The combined SCHA+critical
analysis of the Quantum XY

model predicts doping and
temperature dependence of
ρab

s (x, T ) that is consistent with
recent experiments on strongly
underdoped YBCO.
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Summary

The combined SCHA+critical
analysis of the Quantum XY

model predicts doping and
temperature dependence of
ρab

s (x, T ) that is consistent with
recent experiments on strongly
underdoped YBCO.

We are currently investigating implications of this model for other physical
observables, namely specific heat, c-axis superfluid density, fluctuation
diamagnetism, thermal and electrical conductivity.
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Conclusions

• Phenomenology of the underdoped cuprates suggests that phase
fluctuations play important role as the doping is reduced.
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Conclusions

• Phenomenology of the underdoped cuprates suggests that phase
fluctuations play important role as the doping is reduced.

• In this region single particle gap grows but superfluid density becomes
vanishingly small, approximately as ρab

s (x, T ) ' J0x
2 − αxT , reflecting the

approach to Mott insulating phase.

• We have shown that quantum XY model in 3 spatial dimensions captures
the observed behavior, including the unusual T dependence, deviations
from the Uemura scaling, and the apparent lack of classical critical
fluctuations.

• This phenomenology puts severe constraints on microscopic models of
underdoped cuprates.
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