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What is the Nodal Protectorate?

Nodal Protectorate consists of regions in the vicinity of nodes containing
coherent quasiparticle excitations even as the systems teeters on the brink of
becoming a Mott insulator.
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What is the Nodal Protectorate?

Nodal Protectorate consists of regions in the vicinity of nodes containing
coherent quasiparticle excitations even as the systems teeters on the brink of
becoming a Mott insulator.

Evidence for these protected regions comes from a host of experiments, most
notably thermal conductivity, microwave measurements of the penetration
depth, STM, and to lesser extent also ARPES.
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Superfluid density in cuprates, ab-plane

• In the underdoped region experiments show

ρab
s (x, T ) ∼ λ−2

ab (x, T ) ' ax− bkBT ,

with a ' 244meV and b ' 3.0 [Lee and Wen, PRL 78, 4111 (1997)].
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Superfluid density in cuprates, ab-plane

• In the underdoped region experiments show

ρab
s (x, T ) ∼ λ−2

ab (x, T ) ' ax− bkBT ,

with a ' 244meV and b ' 3.0 [Lee and Wen, PRL 78, 4111 (1997)].

• The linear T -dependence is known to arise from thermally excited nodal
quasiparticles.

• The linear x-dependence (cf. Uemura plot) reflects proximity to the
Mott-Hubbard insulator at half filling.

• Problem: models that give correct x-dependence (e.g. RVB-type theories)
generally yield strong (∼ x2) dependence of the coefficient b.

SLIDES CREATED BY FoilTEX & PP4



NODAL PROTECTORATE 3

Superfluid density in cuprates, c-axis

• Recent UBC Group data on ultrapure YBCO single crystals show c-axis
phenomenology that is tantalizingly similar to the ab-plane for doping levels
as low as Tc = 5K

ρc
s(x, T ) ∼ λ−2

c (x, T ) ' Axα −BTα, with α ' 2.4
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Data from UBC group [Hosseini et al. unpublished]
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The model: ab-plane

To preserve the observed linear T -dependence we use BCS d-wave theory
with phenomenological charge renormalization factor [Ioffe & Millis, J. Phys. Chem.
Solids 63, 2259 (2002)] to account for doping dependence:
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with

Zk ≈
{

Z0 for Ek < Ec,
0 for Ek > Ec.

This gives

ρab ∼ Z2
0

vF

v∆
[Ec − (4 ln 2)kBT ]

in agreement with experiment provided
we take Ec ∼ x.
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Temperature dependence: c-axis

Where is the ρc
s(0, T ) ∼ T 2.4 behavior coming from?
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Temperature dependence: c-axis

Where is the ρc
s(0, T ) ∼ T 2.4 behavior coming from?

We employ a model of incoherent tunneling between Cu-O layers

Htunn =
∑
m,σ

∫
d2r(trc

†
r,m+1,σcr,m,σ + h.c.),

where tr describes random interlayer tunneling with

tk = 0, t∗ktk+q = (2π)2δ(q)T 2
k , and T 2

k =
t2⊥

πΛ2
e−k2/Λ2

.

Such “impurity assisted” tunneling is known to lead to weaker-than-linear
T -dependence.
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We obtain
1

λ2
c(x, T )

= 8e2d
∑
k,p

T 2
k−pT
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iω

F (k, ω)F (p, ω).
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In this model the peculiar T 2.4 behavior arises as a crossover between T 2 and
T 3 dependence in the incoherent tunneling model.
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Doping dependence: c-axis

At T = 0, all integrals are cut off by Ec ∼ x and because of the linear Dirac
spectrum one obtains the same crossover behavior in x:

λ−2
c (x, 0) ∼

{
x5 for Ec � v∆Λ � vFΛ;
x2 for v∆Λ � Ec � vFΛ;
x for v∆Λ � vFΛ � Ec.
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Doping dependence: c-axis

At T = 0, all integrals are cut off by Ec ∼ x and because of the linear Dirac
spectrum one obtains the same crossover behavior in x:

λ−2
c (x, 0) ∼

{
x5 for Ec � v∆Λ � vFΛ;
x2 for v∆Λ � Ec � vFΛ;
x for v∆Λ � vFΛ � Ec.

Numerical evaluation of λ−2
c (x, T )

confirms the above scaling and
gives excellent agreement with
experiment.
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Parameters extracted from the fits:

• Disorder corelation length
h̄Λ−1 ' 120Å

• Tunneling matrix element
t⊥ = 26meV � t

• The nodal protectorate cutoff scale
Ec ' 0.49Tc/K + 0.01(meV) in
agreement with Uemura scaling.
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Since ρab
s (x, 0) ∼ Ec our model predicts that Uemura scaling

for the ab-plane superfluid density will continue to hold
down to very low doping.

This is a non-trivial prediction testable in future experiments.
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Conclusions

• Phenomenology of the underdoped cuprates suggests existence of a
“nodal protectorate”, comprised of k-space regions in the vicinity of nodes
containing coherent quasiparticle excitations, correctly described by BCS
mean-field theory.
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Conclusions

• Phenomenology of the underdoped cuprates suggests existence of a
“nodal protectorate”, comprised of k-space regions in the vicinity of nodes
containing coherent quasiparticle excitations, correctly described by BCS
mean-field theory.

• Size of these protected regions shrinks as one approaches the Mott
insulator in proportion with doping x.

• Superfluid density, very small in this region, also appears to come
exclusively from these protected regions.

• Electrons (pairs?) outside the protectorate do not appear to couple to EM
fields, their effective charge Zk vanishes.

• This phenomenology puts severe constraints on microscopic models of
underdoped cuprates.
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