From "Schmutzphysik" to "More is Different": a perspective on the modern condensed matter physics

M. Franz University of British Columbia franz@physics.ubc.ca

January 10, 2004

Slides created with $\mbox{FoilT}_{E\!X}\mbox{\&}\mbox{PP}^4$

Wolfgang E. Pauli: "Festkörpernphysik ist eine Schmutzphysik."

"Condensed matter physics is physics of dirt."

Slides created with FoilT_EX & PP^4

Philip W. Anderson: "More is different!"

Collective phenomena in condensed matter systems.

Schmutzphysik "theory of everything"

$$H_{CM} = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{2m_i} + \sum_{i < j} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Electrons + ions interacting via Coulomb forces.

The problem is with $N \approx 10^{23}$ particles in every cm³ of matter.

Slides created with FoilT_EX & ${\rm PP}^4$

Landau's Fermi liquid paradigm

Lev Davidovich Landau:

"Electron states in solids are adiabatically connectible to the states of noninteracting electron gas"

Slides created with FoilT_EX & \mbox{PP}^4

Despite enormous Coulomb forces ($U_C \sim \frac{e^2}{a_0} \sim 1 - 10$ eV) at low energies most metals behave like a free electron gas [Landau, 1957]

$$\epsilon(\mathbf{k}) = \frac{\hbar^2 \mathbf{k}^2}{2m^*}, \quad k_F = (3\pi^2 n)^{1/3}$$

Ground state (T = 0): all levels below Fermi momentum k_F are filled; levels above k_F empty.

Despite enormous Coulomb forces ($U_C \sim \frac{e^2}{a_0} \sim 1 - 10$ eV) at low energies most metals behave like a free electron gas [Landau, 1957]

$$\epsilon(\mathbf{k}) = \frac{\hbar^2 \mathbf{k}^2}{2m^*}, \ k_F = (3\pi^2 n)^{1/3}$$

Ground state (T = 0): all levels below Fermi momentum k_F are filled; levels above k_F empty.

Root cause: Pauli exclusion principle

 \rightarrow phase space for scattering near FS is severely limited.

SLIDES CREATED WITH FoilT_X & PP^4

Structure of electron propagator in FL

$$G(\mathbf{k},\omega) = \frac{1}{\omega - \epsilon_{\mathbf{k}} - \Sigma(\mathbf{k},\omega)} = \frac{\mathbf{z}_{\mathbf{k}}}{\omega - E_{\mathbf{k}} + i\Gamma_{\mathbf{k}}} + G_{\mathrm{incoh}}(\mathbf{k},\omega)$$

with

 $z_{\mathbf{k}}^{-1} = [1 - \frac{\partial \operatorname{Re}\Sigma}{\partial \omega}]_{\omega = E_{\mathbf{k}}}$, "quasiparticle weight" $\tau^{-1} \equiv \Gamma_{\mathbf{k}} \sim (E_{\mathbf{k}} - E_F)^2$, "quasiparticle lifetime"

Structure of electron propagator in FL

$$G(\mathbf{k},\omega) = \frac{1}{\omega - \epsilon_{\mathbf{k}} - \Sigma(\mathbf{k},\omega)} = \frac{\mathbf{z}_{\mathbf{k}}}{\omega - E_{\mathbf{k}} + i\Gamma_{\mathbf{k}}} + G_{\mathrm{incoh}}(\mathbf{k},\omega)$$

with

$$z_{\mathbf{k}}^{-1} = [1 - \frac{\partial \operatorname{Re}\Sigma}{\partial \omega}]_{\omega = E_{\mathbf{k}}}$$
, "quasiparticle weight"
 $\tau^{-1} \equiv \Gamma_{\mathbf{k}} \sim (E_{\mathbf{k}} - E_F)^2$, "quasiparticle lifetime"

Spectral function:

$$A(\mathbf{k}, \omega) = -2 \operatorname{Im} G(\mathbf{k}, \omega)$$
$$\simeq z_{\mathbf{k}} \delta(\omega - E_{\mathbf{k}}) + A_{\operatorname{incoh}}(\mathbf{k}, \omega)$$

Structure of electron propagator in FL

$$G(\mathbf{k},\omega) = \frac{1}{\omega - \epsilon_{\mathbf{k}} - \Sigma(\mathbf{k},\omega)} = \frac{\mathbf{z}_{\mathbf{k}}}{\omega - E_{\mathbf{k}} + i\Gamma_{\mathbf{k}}} + G_{\mathrm{incoh}}(\mathbf{k},\omega)$$

with

$$z_{\mathbf{k}}^{-1} = [1 - \frac{\partial \operatorname{Re}\Sigma}{\partial \omega}]_{\omega = E_{\mathbf{k}}}$$
, "quasiparticle weight"
 $\tau^{-1} \equiv \Gamma_{\mathbf{k}} \sim (E_{\mathbf{k}} - E_F)^2$, "quasiparticle lifetime"

Spectral function:

$$A(\mathbf{k},\omega) = -2\mathrm{Im}G(\mathbf{k},\omega)$$
$$\simeq z_{\mathbf{k}}\delta(\omega - E_{\mathbf{k}}) + A_{\mathrm{incoh}}(\mathbf{k},\omega)$$

Electron remains a sharp excitation at FS.

Slides created with FoilT_EX & PP^4

• 1D interacting systems (a.k.a. "Luttinger Liquids")

- 1D interacting systems (a.k.a. "Luttinger Liquids")
- Quantum Hall Fluids

- 1D interacting systems (a.k.a. "Luttinger Liquids")
- Quantum Hall Fluids
- Systems near Quantum Criticality

- ID interacting systems (a.k.a. "Luttinger Liquids")
- Quantum Hall Fluids
- Systems near Quantum Criticality
- High-*T_c* Cuprate Superconductors (?)

1D interacting systems

- carbon nanotubes, cleaved edge quantum wires

SLIDES CREATED WITH FoilTEX & PP^4

Description via "Bosonized" Hamiltonian:

$$H = v_F \left[\frac{g}{2} (\nabla \phi)^2 + \frac{1}{2g} (\nabla \theta)^2 \right], \quad \psi_{\mathrm{L/R}} \sim e^{i(\phi \pm \theta)}.$$

with g an interaction parameter; g = 1 for free electron gas while $g \neq 1$ when interactions present.

Description via "Bosonized" Hamiltonian:

$$H = v_F \left[\frac{g}{2} (\nabla \phi)^2 + \frac{1}{2g} (\nabla \theta)^2 \right], \quad \psi_{\mathrm{L/R}} \sim e^{i(\phi \pm \theta)}.$$

with g an interaction parameter; g = 1 for free electron gas while $g \neq 1$ when interactions present.

 \rightarrow Luttinger liquid

Electron correlations algebraic:

$$G(x,t) \approx (x - v_F t)^{-(g+g^{-1})/2}.$$

No sharp quasiparticles; $z_{\mathbf{k}} = 0$.

Slides created with FoilT_EX & ${\rm PP}^4$

2D Quantum Hall Fluids

- 2D electron gas in strong magnetic field *B*.

2D electron gas

Experimental setup: "Hall effect geometry"

2D Quantum Hall Fluids

- 2D electron gas in strong magnetic field B.

2D electron gas

Experimental setup: "Hall effect geometry"

Classically, the magnetoresistance ρ_{xx} should be field independent while the Hall resistance ρ_{xy} proportional to *B*.

Slides created with FoilT_EX & PP^4

"fractional" [Tsui and Stormer, 1982]

The Hall resistance is quantized,

$$\rho_{xy} = \frac{\hbar}{ie^2}.$$

"fractional" [Tsui and Stormer, 1982]

The Hall resistance is quantized,

$$p_{xy} = \frac{\hbar}{ie^2}$$

In fractional QHE experiment indicates that elementary excitations carry *fractional charges*.

Slides created with FoilTeX & ${\rm PP}^4$

Laughlin's wavefunction (z = x - iy):

$$\psi_m(\{z\}) = \prod_{j < k}^N (z_j - z_k)^m \prod_{j=1}^N e^{-|z_j|^2/4\ell_0^2}$$

Bob Laughlin

Incompressible quantum fluid with fractionally charged elementary excitations (q = e/m, m being an inverse "filling fraction").

Laughlin's wavefunction (z = x - iy):

$$\psi_m(\{z\}) = \prod_{j < k}^N (z_j - z_k)^m \prod_{j=1}^N e^{-|z_j|^2/4\ell_0^2}$$

Bob Laughlin

Incompressible quantum fluid with fractionally charged elementary excitations (q = e/m, m being an inverse "filling fraction").

This state of matter in not adiabatically deformable into a Fermi liquid.

Quantum criticality

In the "quantum critical" region near a quantum phase transition electrons coupled to critical collective modes may exhibit non-FL behavior with algebraic long-distance correlations.

Quest for non-FL behavior in high- T_c cuprates

Experimental hints:

- DC resistivity in *ab*-plane: $\rho_{ab} \sim T$
- DC resistivity along *c*-axis: $\rho_c \sim 1/T$
- absence of sharp quasiparticles peaks seen by ARPES as STS
- and many other apparent deviations from FL orthodoxy

 $La_{2-x}Sr_xCuO_4$

- Candidate theoretical scenarios:
- Anderson's RVB theory
- various gauge field theories with spin-charge separation
- 1D stripe phases with Luttinger liquid physics
- anyon superconductivity
- competing orders
- order parameter phase fluctuations

 $YBa_2Cu_3O_{7-x}$

Slides created with FoilT_EX & ${\rm PP}^4$

Phase fluctuations in cuprates: QED₃ theory of the pseudogap state

Phase fluctuations in cuprates: QED₃ theory of the pseudogap state

M. Franz, Z. Tesanovic, and O. Vafek Phys. Rev. Lett. 87, 257003 (2001), Phys. Rev. B 66, 054535 (2002)

Slides created with FoilT_EX & PP^4

SC order parameter is a complex scalar field: $\Delta(\mathbf{r}) = |\Delta(\mathbf{r})|e^{i\theta(\mathbf{r})}$.

SC order parameter is a complex scalar field: $\Delta(\mathbf{r}) = |\Delta(\mathbf{r})|e^{i\theta(\mathbf{r})}$.

• 1) AMPLITUDE: $\langle |\Delta| \rangle \rightarrow 0$

- this takes place in conventional superconductors as $T \to T_c^-$

SC order parameter is a complex scalar field: $\Delta(\mathbf{r}) = |\Delta(\mathbf{r})|e^{i\theta(\mathbf{r})}$.

• 1) AMPLITUDE: $\langle |\Delta| \rangle \rightarrow 0$

- this takes place in conventional superconductors as $T \to T_c^-$

• 2) PHASE: $\langle e^{i\theta} \rangle \rightarrow 0$

- SC order persists locally, $\langle |\Delta| \rangle = \Delta_0 > 0$, but the long range phase coherence is destroyed by phase fluctuations

SC order parameter is a complex scalar field: $\Delta(\mathbf{r}) = |\Delta(\mathbf{r})|e^{i\theta(\mathbf{r})}$.

• 1) AMPLITUDE: $\langle |\Delta| \rangle \rightarrow 0$

- this takes place in conventional superconductors as $T \to T_c^-$
- 2) PHASE: $\langle e^{i\theta} \rangle \rightarrow 0$

- SC order persists locally, $\langle |\Delta| \rangle = \Delta_0 > 0$, but the long range phase coherence is destroyed by phase fluctuations

Kosterlitz-Thouless "vortex-antivortex" unbinding transition with $T_c \sim \rho_s$, the superfluid density.

What is Vortex?

Vortices: from mundane to profound...

What is Vortex?

Vortices: from mundane to profound...

What is Vortex?

Vortices: from mundane to profound...

What is Vortex?

Vortices: from mundane to profound...

What is Vortex?

Vortices: from mundane to profound...

5/4/1990 Image # EL-1996-00130

SLIDES CREATED WITH FoilTEX & PP^4

Vortices in superconductors

Vortex is a *topological defect* in the SC order parameter, $\Delta(\mathbf{r}) = |\Delta(\mathbf{r})|e^{i\theta(\mathbf{r})}$.

The phase θ winds by 2π on encircling a vortex while the amplitude goes to zero at the vortex center, $|\Delta(r)| \rightarrow 0$.

Vortices in superconductors

Vortex is a *topological defect* in the SC order parameter, $\Delta(\mathbf{r}) = |\Delta(\mathbf{r})|e^{i\theta(\mathbf{r})}$.

The phase θ winds by 2π on encircling a vortex while the amplitude goes to zero at the vortex center, $|\Delta(r)| \rightarrow 0$.

Slides created with FoilT_EX & ${\sf PP}^4$

Vortex Pairs and Kosterlitz-Thouless transition

. 4 1 4 1 1 4 1 1 . 4 4 4 . 4 . 4 4 . 4 . 1 . 4 1 . ▲ **A** 4 4 4 ≱ 4 4 4 4 4 4 4 4 4 4 4 4 4 1 . 4 **k** 1 1 À À Å À À À **Å** À Å

superconductor (vortex-free)

Vortex Pairs and Kosterlitz-Thouless transition

superconductor (vortex-free)

vortex-antivortex pair

Vortex Pairs and Kosterlitz-Thouless transition

superconductor (vortex-free)

When vortex-antivortex pairs unbind the phase coherence is lost and superconductor goes normal.

Slides created with FoilT_EX & PP^4

The KT transition can occur as a result of thermal or quantum fluctuations. In the latter case we have quantum phase transition effected by unbinding of *vortex loops* in 2+1D space-time.

The KT transition can occur as a result of thermal or quantum fluctuations. In the latter case we have quantum phase transition effected by unbinding of *vortex loops* in 2+1D space-time.

This transition is in the "3D XY" universality class.

SLIDES CREATED WITH FoilTEX & PP^4

d-wave superconductivity in cuprates

Superconducting order parameter is an anomalous average

 $\Delta(\mathbf{r}_1, \mathbf{r}_2) = \langle c_{\uparrow}(\mathbf{r}_1) c_{\downarrow}(\mathbf{r}_2) \rangle,$

where $c^{\dagger}_{\sigma}(\mathbf{r})$ creates electron with spin σ at point \mathbf{r} .

d-wave superconductivity in cuprates

Superconducting order parameter is an anomalous average

 $\Delta(\mathbf{r}_1, \mathbf{r}_2) = \langle c_{\uparrow}(\mathbf{r}_1) c_{\downarrow}(\mathbf{r}_2) \rangle,$

where $c^{\dagger}_{\sigma}(\mathbf{r})$ creates electron with spin σ at point \mathbf{r} .

One may classify various order parameters according to the spin and the internal angular momentum of the pair. For spin singlet state the spatial part of the wavefunction has to be symmetric, implying (for 2D system)

 $l_z = 0, \pm 2, \pm 4, \dots$

d-wave superconductivity in cuprates

Superconducting order parameter is an anomalous average

 $\overline{\Delta(\mathbf{r}_1,\mathbf{r}_2)} = \langle c_{\uparrow}(\mathbf{r}_1)c_{\downarrow}(\mathbf{r}_2)\rangle,$

where $c_{\sigma}^{\dagger}(\mathbf{r})$ creates electron with spin σ at point \mathbf{r} .

One may classify various order parameters according to the spin and the internal angular momentum of the pair. For spin singlet state the spatial part of the wavefunction has to be symmetric, implying (for 2D system)

 $l_z = 0, \pm 2, \pm 4, \dots$

Most conventional superconductors have $l_z = 0$ (*s*-wave). There exist "unconventional" superconductors which exhibit *spin triplet* pairing or spin singlet with higher angular momentum.

Superconducting order parameter in cuprates exhibits *d*-wave symmetry

$$\Delta_{\mathbf{k}} = \Delta_0(\cos k_x - \cos k_y),$$

i.e. changes sign upon 90° rotation.

Superconducting order parameter in cuprates exhibits *d*-wave symmetry

$$\Delta_{\mathbf{k}} = \Delta_0(\cos k_x - \cos k_y),$$

i.e. changes sign upon 90° rotation.

Low-energy excitations, $E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}$, occur near 4 nodal points:

"Dirac Fermions"

Superconducting order parameter in cuprates exhibits *d*-wave symmetry

$$\Delta_{\mathbf{k}} = \Delta_0(\cos k_x - \cos k_y),$$

i.e. changes sign upon 90° rotation.

Low-energy excitations, $E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}$, occur near 4 nodal points:

"Dirac Fermions"

Slides created with FoilT_EX & PP 4

SCHMUTZPHYSIK

d-wave superconductivity + (quantum) unbound vortices

- Interesting fundamental theoretical problem.
- Possibly relevant to the pseudogap phase of cuprates.

SCHMUTZPHYSIK

d-wave superconductivity + (quantum) unbound vortices

- Interesting fundamental theoretical problem.
- Possibly relevant to the pseudogap phase of cuprates.

Slides created with FoilT_EX & PP^4

Electron-vortex interaction: tricky business

On encircling a vortex, a Cooper pair acquires phase 2π .

Electron-vortex interaction: tricky business

On encircling a vortex, a Cooper pair acquires phase 2π .

cooper pair Vortex 2π On encircling a vortex, a single electron only acquires phase π .

Electron-vortex interaction: tricky business

On encircling a vortex, a Cooper pair acquires phase 2π .

On encircling a vortex, a single electron only acquires phase π .

This results in branch cuts in electron wavefunction emanating from each vortex:

Slides created with FoilTeX & PP 4

Solution: FT transformation

This problem has been tackled (ultimately without success) by a number of notable theorists:

Solution: FT transformation

This problem has been tackled (ultimately without success) by a number of notable theorists:

- L. P. Gor'kov and J. R. Schrieffer, Phys. Rev. Lett. 80, 3360 (1998).
- P. W. Anderson, cond-mat/9812063
- L. Balents, M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654 (1999).

Solution: FT transformation

This problem has been tackled (ultimately without success) by a number of notable theorists:

- L. P. Gor'kov and J. R. Schrieffer, Phys. Rev. Lett. 80, 3360 (1998).
- P. W. Anderson, cond-mat/9812063
- L. Balents, M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654 (1999).

Solved by a singular gauge transformation,

• M. Franz and Z. Tešanović, Phys. Rev. Lett. 84, 554 (2000).

Sometimes referred to as "FT transformation". Introduces a gauge field that describes the physics of the vortex branch cuts.

SCHMUTZPHYSIK

Physical essence of the FT transformation

A Cooper is a spin singlet. An alternative to assigning one half of the 2π phase to each electron is to divide vortices into two groups (say red and green) and let spin up electrons see only one while spin down electrons only the other kind.

Physical essence of the FT transformation

A Cooper is a spin singlet. An alternative to assigning one half of the 2π phase to each electron is to divide vortices into two groups (say red and green) and let spin up electrons see only one while spin down electrons only the other kind.

Thus, on encircling a red vortex spin up electron acquires phase 2π while spin down electron phase 0.

On encircling a green vortex spin up electron acquires phase 0 while spin down electron phase 2π .

Physical essence of the FT transformation

A Cooper is a spin singlet. An alternative to assigning one half of the 2π phase to each electron is to divide vortices into two groups (say red and green) and let spin up electrons see only one while spin down electrons only the other kind.

Thus, on encircling a red vortex spin up electron acquires phase 2π while spin down electron phase 0.

On encircling a green vortex spin up electron acquires phase 0 while spin down electron phase 2π .

Slides created with FoilT_EX & PP^4

This effectively eliminates any branch cuts from the theory.

The price one pays is two types of vortices, but we can deal with this complication.

This effectively eliminates any branch cuts from the theory.

The price one pays is two types of vortices, but we can deal with this complication.

- M. Franz and Z. Tešanović, Phys. Rev. Lett. 84, 554 (2000).
- L. Marinelli, B. I. Halperin and S. H. Simon, Phys. Rev. B 62, 3488 (2000).
- O. Vafek, A. Melikyan, M.Franz and Z. Tešanović Phys. Rev. B 63, 134509 (2001).
- D. Knapp, C. Kallin and A.J. Berlinsky, Phys. Rev. B 64, 014502 (2001).
- M. Franz, Z. Tesanovic and O. Vafek, Phys. Rev. Lett. 87, 257003 (2001).

QED₃: Quantum Electrodynamics in 2+1 Dimensions

At low energies and long lengthscales the *d*-wave quasiparticles coupled to fluctuating vortices are described by the effective Lagrangian

$$\mathcal{L} = \sum_{n=1}^{N} \bar{\Psi}_n \gamma_\mu (\partial_\mu - ia_\mu) \Psi_n + \mathcal{L}_v[a_\mu]$$

where $\Psi_n(x)$ is a 4-component spinor describing the *n*-th pair of nodes, a_{μ} is an emergent U(1) gauge field that encodes the physics of the branch cuts residing on the fluctuating vortices.

QED₃: Quantum Electrodynamics in 2+1 Dimensions

At low energies and long lengthscales the *d*-wave quasiparticles coupled to fluctuating vortices are described by the effective Lagrangian

$$\mathcal{L} = \sum_{n=1}^{N} \bar{\Psi}_n \gamma_\mu (\partial_\mu - ia_\mu) \Psi_n + \mathcal{L}_v[a_\mu]$$

where $\Psi_n(x)$ is a 4-component spinor describing the *n*-th pair of nodes, a_{μ} is an emergent U(1) gauge field that encodes the physics of the branch cuts residing on the fluctuating vortices.

$$\mathcal{L}_{v}[a_{\mu}] = \begin{cases} \frac{1}{2}m_{a}a^{2}, & T < T_{c}\\ \frac{1}{2}\kappa_{\mu}(\partial \times a)^{2}_{\mu}, & T > T_{c} \end{cases}$$

QED₃: Quantum Electrodynamics in 2+1 Dimensions

At low energies and long lengthscales the *d*-wave quasiparticles coupled to fluctuating vortices are described by the effective Lagrangian

$$\mathcal{L} = \sum_{n=1}^{N} \bar{\Psi}_n \gamma_\mu (\partial_\mu - ia_\mu) \Psi_n + \mathcal{L}_v[a_\mu]$$

where $\Psi_n(x)$ is a 4-component spinor describing the *n*-th pair of nodes, a_{μ} is an emergent U(1) gauge field that encodes the physics of the branch cuts residing on the fluctuating vortices.

$$\mathcal{L}_{v}[a_{\mu}] = \begin{cases} \frac{1}{2}m_{a}a^{2}, & T < T_{c}\\ \frac{1}{2}\kappa_{\mu}(\partial \times a)^{2}_{\mu}, & T > T_{c} \end{cases}$$

Pseudogap phase is described by QED_3 theory of N = 2 flavors of massless Dirac fermions minimally coupled to non-compact U(1) massless gauge field.

Slides created with FoilT_EX & \mbox{PP}^4

Properties of QED₃

Non-Fermi liquid "symmetric phase"

Electron propagator exhibits anomalous dimension $\nu = 8/3\pi^2 N$,

$$G(\omega, \mathbf{k}) = \frac{\omega + \tau_3 \epsilon_{\mathbf{k}}}{[\epsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2 - \omega^2]^{1 - \nu/2}}$$

Properties of QED₃

Non-Fermi liquid "symmetric phase"

Electron propagator exhibits anomalous dimension $\nu = 8/3\pi^2 N$,

$$G(\omega, \mathbf{k}) = \frac{\omega + \tau_3 \epsilon_{\mathbf{k}}}{[\epsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2 - \omega^2]^{1 - \nu/2}}.$$

 \longrightarrow non-FL spectral function $A(\omega, \mathbf{k})$ with no poles:

Slides created with FoilT_EX & PP^4

 Phase in which chiral symmetry of QED₃ is spontaneously broken, giving rise to dynamical mass generation:

 Phase in which chiral symmetry of QED₃ is spontaneously broken, giving rise to dynamical mass generation:

It turns out that, surprisingly, the fermion mass gap corresponds to formation of antiferromagnetic order (AF-SDW) in the original superconductor.
Phase in which chiral symmetry of QED₃ is spontaneously broken, giving rise to dynamical mass generation:

It turns out that, surprisingly, the fermion mass gap corresponds to formation of antiferromagnetic order (AF-SDW) in the original superconductor.

Slides created with FoilT_EX & PP^4

Conclusions on the cuprates

Whether right or wrong - and only time will tell - the QED₃ theory of cuprates offers exciting possibilities for

Conclusions on the cuprates

Whether right or wrong - and only time will tell - the QED₃ theory of cuprates offers exciting possibilities for

 Non-Fermi liquid state of electronic matter in 2D (the "QED₃ symmetric phase")

Conclusions on the cuprates

Whether right or wrong - and only time will tell - the QED₃ theory of cuprates offers exciting possibilities for

- Non-Fermi liquid state of electronic matter in 2D (the "QED₃ symmetric phase")
- A controlled way to reach AF insulator by phase-disordering a *d*wave superconductor.

"Festkörpernphysik ist keine Schmutzphysik."

"Festkörpernphysik ist keine Schmutzphysik."

"Festkörpernphysik ist keine Schmutzphysik."

"More is different" rules!

Slides created with FoilTeX & PP^4

Advertisement

Come study to the University of British Columbia.

Advertisement

Come study to the University of British Columbia.

- UBC is Canada's largest and best funded research university.
- Strongest Physics & Astronomy Department in Canada. Number of research groups belong to the world's best.
- Spectacular location near mountains and ocean.
- Visit www.physics.ubc.ca.
- Write: franz@physics.ubc.ca

Slides created with FoilT_EX & ${\sf PP}^4$