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Wolfgang E. Pauli:
“Festk örpernphysik ist eine Schmutzphysik .”

“Condensed matter physics is physics of dirt.”
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Philip W. Anderson:
“More is different !”

Collective phenomena in condensed matter systems.
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Schmutzphysik “theory of everything”

HCM =
N∑

i=1

p2
i

2mi
+

∑
i<j

qiqj
|ri − rj|

Electrons + ions interacting via Coulomb forces.

The problem is with N ≈ 1023 particles in every cm3 of matter.
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Landau’s Fermi liquid paradigm

Lev Davidovich Landau:

“Electron states in solids are adiabatically connectible to the states of
noninteracting electron gas”
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Despite enormous Coulomb forces (UC ∼ e2

a0
∼ 1− 10eV) at low energies most

metals behave like a free electron gas [Landau, 1957]

N electrons in a box Fermi sphere

k

k

k

z

x

y

ε(k) =
h̄2k2

2m∗ , kF = (3π2n)1/3

Ground state (T = 0): all levels below Fermi momentum kF are filled; levels
above kF empty.
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Despite enormous Coulomb forces (UC ∼ e2

a0
∼ 1− 10eV) at low energies most

metals behave like a free electron gas [Landau, 1957]

N electrons in a box Fermi sphere
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y

ε(k) =
h̄2k2

2m∗ , kF = (3π2n)1/3

Ground state (T = 0): all levels below Fermi momentum kF are filled; levels
above kF empty.

Root cause: Pauli exclusion principle

→ phase space for scattering near FS is severely limited.
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Structure of electron propagator in FL

G(k, ω) =
1

ω − εk − Σ(k, ω)
=

zk
ω − Ek + iΓk

+Gincoh(k, ω)

with

z−1
k = [1− ∂ReΣ

∂ω ]ω=Ek, “quasiparticle weight”

τ−1 ≡ Γk ∼ (Ek − EF )2, “quasiparticle lifetime”
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Structure of electron propagator in FL

G(k, ω) =
1

ω − εk − Σ(k, ω)
=

zk
ω − Ek + iΓk

+Gincoh(k, ω)

with

z−1
k = [1− ∂ReΣ

∂ω ]ω=Ek, “quasiparticle weight”

τ−1 ≡ Γk ∼ (Ek − EF )2, “quasiparticle lifetime”

Spectral function:

A(k, ω) = −2ImG(k, ω)

' zkδ(ω − Ek) +Aincoh(k, ω)

Electron remains a sharp excitation at FS.
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Exceptions to FL paradigm

• 1D interacting systems (a.k.a. “Luttinger Liquids”)
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Exceptions to FL paradigm

• 1D interacting systems (a.k.a. “Luttinger Liquids”)

• Quantum Hall Fluids

• Systems near Quantum Criticality

• High-Tc Cuprate Superconductors (?)
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1D interacting systems

- carbon nanotubes, cleaved edge quantum wires
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Description via “Bosonized” Hamiltonian:

H = vF

[
g

2
(∇φ)2 +

1
2g

(∇θ)2
]
, ψL/R ∼ ei(φ±θ).

with g an interaction parameter; g = 1 for free electron gas while g 6= 1 when
interactions present.

ε

kk

ε

ψL ψR
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Description via “Bosonized” Hamiltonian:

H = vF

[
g

2
(∇φ)2 +

1
2g

(∇θ)2
]
, ψL/R ∼ ei(φ±θ).

with g an interaction parameter; g = 1 for free electron gas while g 6= 1 when
interactions present.

ε

kk

ε

ψL ψR

→ Luttinger liquid

Electron correlations algebraic:

G(x, t) ≈ (x− vF t)−(g+g−1)/2.

No sharp quasiparticles; zk = 0.
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2D Quantum Hall Fluids

- 2D electron gas in strong magnetic field B.

2D electron gas
Experimental setup: “Hall effect geometry”
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2D Quantum Hall Fluids

- 2D electron gas in strong magnetic field B.

2D electron gas
Experimental setup: “Hall effect geometry”

Classically, the magnetoresistance ρxx should be field independent while the
Hall resistance ρxy proportional to B.
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“integer” [von Klitzing, 1980] “fractional” [Tsui and Stormer, 1982]

The Hall resistance is quantized,

ρxy =
h̄

ie2
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“integer” [von Klitzing, 1980] “fractional” [Tsui and Stormer, 1982]

The Hall resistance is quantized,

ρxy =
h̄

ie2
.

In fractional QHE experiment indicates that elementary excitations carry
fractional charges.
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Laughlin’s wavefunction (z = x− iy):

ψm({z}) =
N∏

j<k

(zj − zk)m
N∏

j=1

e−|zj|2/4`20

Bob Laughlin

Incompressible quantum fluid with fractionally charged elementary excitations
(q = e/m, m being an inverse “filling fraction”).
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Laughlin’s wavefunction (z = x− iy):

ψm({z}) =
N∏

j<k

(zj − zk)m
N∏

j=1

e−|zj|2/4`20

Bob Laughlin

Incompressible quantum fluid with fractionally charged elementary excitations
(q = e/m, m being an inverse “filling fraction”).

This state of matter in not adiabatically deformable into a Fermi liquid.

SLIDES CREATED WITH FoilTEX & PP4



SCHMUTZPHYSIK 14

Quantum criticality

In the “quantum critical”
region near a quantum phase
transition electrons coupled
to critical collective modes
may exhibit non-FL behavior
with algebraic long-distance
correlations.
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Quest for non-FL behavior in high- Tc cuprates

Experimental hints:

• DC resistivity in ab-plane: ρab ∼ T

• DC resistivity along c-axis: ρc ∼ 1/T

• absence of sharp quasiparticles peaks seen by
ARPES as STS

• and many other apparent deviations from FL
orthodoxy

La2−xSrxCuO4
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Candidate theoretical scenarios:

• Anderson’s RVB theory

• various gauge field theories with spin-charge
separation

• 1D stripe phases with Luttinger liquid physics

• anyon superconductivity

• competing orders

• order parameter phase fluctuations
YBa2Cu3O7−x
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Phase fluctuations in cuprates: QED3 theory
of the pseudogap state
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Phase fluctuations in cuprates: QED3 theory
of the pseudogap state

M. Franz, Z. Tesanovic, and O. Vafek
Phys. Rev. Lett. 87, 257003 (2001),

Phys. Rev. B 66, 054535 (2002)
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Two ways of destroying the SC order
SC order parameter is a complex scalar field: ∆(r) = |∆(r)|eiθ(r).

dSC
AF

T

x

T*

QED3
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∆0 > 0, but the long range phase
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Two ways of destroying the SC order
SC order parameter is a complex scalar field: ∆(r) = |∆(r)|eiθ(r).

dSC
AF

T

x

T*

QED3

• 1) AMPLITUDE: 〈|∆|〉 → 0

- this takes place in conventional
superconductors as T → T−

c

• 2) PHASE: 〈eiθ〉 → 0

- SC order persists locally, 〈|∆|〉 =
∆0 > 0, but the long range phase
coherence is destroyed by phase
fluctuations

Kosterlitz-Thouless “vortex-antivortex” unbinding transition with Tc ∼ ρs, the
superfluid density.
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What is Vortex?
Vortices: from mundane to profound...
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Vortices in superconductors

Vortex is a topological defect in the SC order
parameter, ∆(r) = |∆(r)|eiθ(r).

The phase θ winds by 2π on encircling a vortex
while the amplitude goes to zero at the vortex
center, |∆(r)| → 0.

A.A. Abrikosov
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Vortices in superconductors

Vortex is a topological defect in the SC order
parameter, ∆(r) = |∆(r)|eiθ(r).

The phase θ winds by 2π on encircling a vortex
while the amplitude goes to zero at the vortex
center, |∆(r)| → 0.

A.A. Abrikosov
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Vortex Pairs and Kosterlitz-Thouless transition

superconductor (vortex-free)
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Vortex Pairs and Kosterlitz-Thouless transition

superconductor (vortex-free) vortex-antivortex pair

When vortex-antivortex pairs unbind the phase coherence
is lost and superconductor goes normal.
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The KT transition can occur as a result of thermal or quantum fluctuations. In
the latter case we have quantum phase transition effected by unbinding of

vortex loops in 2+1D space-time.
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The KT transition can occur as a result of thermal or quantum fluctuations. In
the latter case we have quantum phase transition effected by unbinding of

vortex loops in 2+1D space-time.

This transition is in the “3D XY” universality class.
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d-wave superconductivity in cuprates

Superconducting order parameter is an anomalous
average

∆(r1, r2) = 〈c↑(r1)c↓(r2)〉,
where c†σ(r) creates electron with spin σ at point r.

r 2

r1

Cooper pair
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d-wave superconductivity in cuprates

Superconducting order parameter is an anomalous
average

∆(r1, r2) = 〈c↑(r1)c↓(r2)〉,
where c†σ(r) creates electron with spin σ at point r.

r 2

r1

Cooper pair

One may classify various order parameters according to the spin and the
internal angular momentum of the pair. For spin singlet state the spatial part
of the wavefunction has to be symmetric, implying (for 2D system)

lz = 0,±2,±4, . . .

Most conventional superconductors have lz = 0 (s-wave). There exist
“unconventional” superconductors which exhibit spin triplet pairing or spin
singlet with higher angular momentum.
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Superconducting order parameter in cuprates exhibits d-wave symmetry

∆k = ∆0(cos kx − cos ky),

i.e. changes sign upon 90o rotation.
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d-wave superconductivity + (quantum) unbound vortices

• Interesting fundamental theoretical problem.

• Possibly relevant to the pseudogap phase of cuprates.
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d-wave superconductivity + (quantum) unbound vortices

• Interesting fundamental theoretical problem.

• Possibly relevant to the pseudogap phase of cuprates.

dSC
AF

T

x

T*

QED3
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Electron-vortex interaction: tricky business
On encircling a vortex, a Cooper pair
acquires phase 2π.
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Electron-vortex interaction: tricky business
On encircling a vortex, a Cooper pair
acquires phase 2π.

On encircling a vortex, a single
electron only acquires phase π.

This results in branch cuts in electron wavefunction emanating from each
vortex:
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Solution: FT transformation

This problem has been tackled (ultimately without success) by a number of
notable theorists:

• L. P. Gor’kov and J. R. Schrieffer, Phys. Rev. Lett. 80, 3360 (1998).
• P. W. Anderson, cond-mat/9812063
• L. Balents, M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654 (1999).

Solved by a singular gauge transformation,

• M. Franz and Z. Tešanović, Phys. Rev. Lett. 84, 554 (2000).

Sometimes referred to as “FT transformation”. Introduces a gauge field that
describes the physics of the vortex branch cuts.
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Physical essence of the FT transformation

A Cooper is a spin singlet. An
alternative to assigning one half of the
2π phase to each electron is to divide
vortices into two groups (say red and
green) and let spin up electrons see
only one while spin down electrons only
the other kind.
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On encircling a green vortex spin up
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down electron phase 2π.
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The price one pays is two types of vortices, but we can deal with this
complication.
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This effectively eliminates any branch cuts from the theory.

The price one pays is two types of vortices, but we can deal with this
complication.

• M. Franz and Z. Tešanović, Phys. Rev. Lett. 84, 554 (2000).
• L. Marinelli, B. I. Halperin and S. H. Simon, Phys. Rev. B 62, 3488 (2000).
• O. Vafek, A. Melikyan, M.Franz and Z. Tešanović Phys. Rev. B 63, 134509 (2001).
• D. Knapp, C. Kallin and A.J. Berlinsky, Phys. Rev. B 64, 014502 (2001).
• M. Franz, Z. Tesanovic and O. Vafek, Phys. Rev. Lett. 87, 257003 (2001).
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QED3: Quantum Electrodynamics in 2+1 Dimensions

At low energies and long lengthscales the d-wave quasiparticles coupled to
fluctuating vortices are described by the effective Lagrangian

L =
N∑

n=1

Ψ̄nγµ(∂µ − iaµ)Ψn + Lv[aµ]

where Ψn(x) is a 4-component spinor describing the n-th pair of nodes, aµ is
an emergent U(1) gauge field that encodes the physics of the branch cuts
residing on the fluctuating vortices.
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QED3: Quantum Electrodynamics in 2+1 Dimensions

At low energies and long lengthscales the d-wave quasiparticles coupled to
fluctuating vortices are described by the effective Lagrangian

L =
N∑

n=1

Ψ̄nγµ(∂µ − iaµ)Ψn + Lv[aµ]

where Ψn(x) is a 4-component spinor describing the n-th pair of nodes, aµ is
an emergent U(1) gauge field that encodes the physics of the branch cuts
residing on the fluctuating vortices.

Lv[aµ] =
{

1
2maa

2, T < Tc
1
2κµ(∂ × a)2µ, T > Tc

Pseudogap phase is described by QED3 theory of N = 2 flavors of massless
Dirac fermions minimally coupled to non-compact U(1) massless gauge field.
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Properties of QED 3

• Non-Fermi liquid “symmetric phase”

Electron propagator exhibits anomalous dimension ν = 8/3π2N ,

G(ω,k) =
ω + τ3εk

[ε2k + ∆2
k − ω2]1−ν/2

.
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Properties of QED 3

• Non-Fermi liquid “symmetric phase”

Electron propagator exhibits anomalous dimension ν = 8/3π2N ,

G(ω,k) =
ω + τ3εk

[ε2k + ∆2
k − ω2]1−ν/2

.

−→ non-FL spectral function A(ω,k) with no poles:
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• Phase in which chiral symmetry of QED3 is spontaneously broken, giving
rise to dynamical mass generation:

CSB
2mD

It turns out that, surprisingly,
the fermion mass gap
corresponds to formation
of antiferromagnetic order
(AF-SDW) in the original
superconductor.

dSC

AF

AF/dSC x

T

T*

AFL

Q

(a) (b)
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Conclusions on the cuprates

Whether right or wrong - and only time will tell - the QED3 theory of cuprates
offers exciting possibilities for

• Non-Fermi liquid state of electronic
matter in 2D (the “QED3 symmetric
phase”)

• A controlled way to reach AF
insulator by phase-disordering a d-
wave superconductor.

3QED

x

T

Tc
dSC

T*

(CSB)

dSCCSB

dSCCSB

SDW
AF/

(a)

(b)
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Conclusions on Schmutzphysik

“Festkörpernphysik ist keine Schmutzphysik.”

“More is different” rules!
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Advertisement

Come study to the

University of British Columbia.

• UBC is Canada’s largest and best
funded research university.

• Strongest Physics & Astronomy
Department in Canada. Number of
research groups belong to the world’s
best.

• Spectacular location near mountains
and ocean.

• Visit www.physics.ubc.ca .
• Write: franz@physics.ubc.ca
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