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Particle statistics

In 3 space dimensions indistinguishable particles can be bosons or fermions,

Ψ(r1, r2) = ±Ψ(r2, r1).

In 2 space dimensions we can have exotic particles called “anyons”, so that

Ψ(r1, r2) = eiθΨ(r2, r1), θ 6= 0, π.
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Abstract

A two-dimensional quantum system with anyonic excitations can be considered as a quan-
tum computer. Unitary transformations can be performed by moving the excitations around
each other. Measurements can be performed by joining excitations in pairs and observing the
result of fusion. Such computation is fault-tolerant by its physical nature.
! 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A quantum computer can provide fast solution for certain computational prob-
lems (e.g., factoring and discrete logarithm [1]) which require exponential time on
an ordinary computer. Physical realization of a quantum computer is a big challenge
for scientists. One important problem is decoherence and systematic errors in unitary
transformations which occur in real quantum systems. From the purely theoretical
point of view, this problem has been solved due to Shor!s discovery of fault-tolerant
quantum computation [2], with subsequent improvements [3–6]. An arbitrary quan-
tum circuit can be simulated using imperfect gates, provided these gates are close to
the ideal ones up to a constant precision d. Unfortunately, the threshold value of d is
rather small;1 it is very difficult to achieve this precision.

Needless to say, classical computation can be also performed fault-
tolerantly. However, it is rarely done in practice because classical gates are reliable
enough. Why is it possible? Let us try to understand the easiest thing—why classical
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Quantum computation can be
performed in a fault-tolerant way
by braiding non-abelian anyons.
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Quantum computation can be
performed in a fault-tolerant way
by braiding non-abelian anyons.

we mean that the target quasiparticles remain fixed while
the control pair is moved around them as an immutable
group [see, for example, Figs. 3(b) and 4(c)]. If the q-spin
of the control pair is 0, the result of this operation is the
identity. However, if the q-spin of the control pair is 1, a

transition is induced. If we choose the control pair to
consist of the two quasiparticles whose total q-spin de-
termines the state of the control qubit, this construc-
tion automatically yields a controlled (conditional) opera-
tion. Second, we deliberately weave the control pair
through only two target quasiparticles at a time. Since
the only nontrivial case is when the control pair has
q-spin 1, and is thus equivalent to a single quasiparticle,
this reduces the problem of constructing two-qubit gates to
that of finding a finite number of specific three-
quasiparticle braids.

Figure 3(a) shows a three-quasiparticle braid in which
one quasiparticle is woven through the other two and
then returns to its original position. The resulting unitary
operation approximates that of simply braiding the two
static quasiparticles around each other twice to a distance
of ! ’ 2:3! 10"3. Similar weaves can be found which
approximate any even number, 2m, of windings of the
static quasiparticles. Figure 3(b) shows a two-qubit braid
in which the pattern from Fig. 3(a) is used to weave the
control pair through the target qubit. If the control qubit
is in the state j0Li, this weave does nothing, but if it is in the
state j1Li, the effect is equivalent to braiding two quasi-
particles within the target qubit. Thus, in the limit ! ! 0,
this effective braiding is all within a qubit and there are no
leakage errors. The resulting two-qubit gate is a controlled
rotation of the target qubit through an angle of 6m"=5,
which, together with single-qubit rotations, provides a
universal set of gates for quantum computation provided
m is not divisible by 5 [25]. Carrying out one iteration of
the Solovay-Kitaev construction [22,23] on this weave
using the procedure outlined in [26] reduces ! by a factor
of #20 at the expense of a factor of 5 increase in length.
Subsequent iterations can be used to achieve any desired
accuracy.

A similar construction can be used to carry out arbitrary
controlled-rotation gates. Figure 4(a) shows a braid in

FIG. 3 (color online). (a) A three-quasiparticle braid in which
one quasiparticle is woven around two static quasiparticles and
returns to its original position (left), and yields approximately
the same transition matrix as braiding the two stationary quasi-
particles around each other twice (right). The corresponding
matrix equation is also shown. To characterize the accuracy of
this approximation, we define the distance between two matri-
ces, U and V, to be ! $ kU" Vk, where kOk is the operator
norm of O equal to the square-root of the highest eigenvalue of
OyO. The distance between the matrices resulting from the
actual braiding (left) and the desired effective braiding (right)
is ! ’ 2:3! 10"3. (b) A two-qubit braid constructed by weaving
a pair of quasiparticles from the control qubit (top) through the
target qubit (bottom) using the weaving pattern from (a). The
result of this operation is to effectively braid the upper two
quasiparticles of the target qubit around each other twice if the
control qubit is in the state j1Li, and otherwise do nothing. This
is an entangling two-qubit gate which can be used for universal
quantum computation. Since all effective braiding takes place
within the target qubit, any leakage error is due to the approxi-
mate nature of the weave shown in (a). By systematically
improving this weave using the Solovay-Kitaev construction,
leakage error can be reduced to whatever level is required for a
given computation.

FIG. 4 (color online). (a) An injection weave for which the product of elementary braiding matrices, also shown, approximates the
identity to a distance of ! ’ 1:5! 10"3. This weave injects a quasiparticle (or any q-spin 1 object) into the target qubit without
changing any of the underlying q-spin quantum numbers. (b) A weaving pattern which approximates a NOT gate to a distance of
! ’ 8:5! 10"4. (c) A controlled-NOT gate constructed using the weaves shown in (a) and (b) to inject the control pair into the target
qubit, perform a NOT operation on the injected target qubit, and then eject the control pair from the target qubit back into the control
qubit. The distance between the gate produced by this braid acting on the computational two-qubit space and an exact controlled-NOT
gate is ! ’ 1:8! 10"3 and ! ’ 1:2! 10"3 when the total q-spin of the six quasiparticles is 0 and 1, respectively. Again, the weaves
shown in (a) and (b) can be made as accurate as necessary using the Solovay-Kitaev theorem, thereby improving the controlled-NOT
gate to any desired accuracy. By replacing the central NOT weave, arbitrary controlled-rotation gates can be constructed using this
procedure.

PRL 95, 140503 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
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Anyons in FQH fluids

Abelian anyons are known to occur as
excitations of the fractional quantum
Hall fluids described by Laughlin
wavefunctions

Ψ({zi}) =
∏
i<j

(zi − zj)me−
P

i |zi|2/4,

with m odd integer. These have
exchange phase

θ =
π

m

and charge

q = ± e

m
.
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3 have been observed by resonant tunneling

experiments in the ν = 1
3 FQH state [Goldman and Su, 1995] .

• Fractional statistics have been observed only recently in an
Aharonov-Bohm type quasiparticle interferometer [Camino, Zhou and Goldman,
2005].

siparticle states, the change in the phase of the wave function
is 2!,

"# ! #m+1 − #m =
q

$
"% + 2!&"N = ± 2! . "5#

When occupation of the antidot changes by one e /3 quasi-
particle, "N=1, the experiments6,14 give "%=h /e, so that
"#=2!"q /e+&1/3#=2! only if quasiparticles have a frac-
tional &1/3=2/3.

This experiment, however, is not entirely satisfactory as a
direct demonstration of the fractional statistics of Laughlin
quasiparticles because in a quantum antidot the tunneling
quasiparticle encircles the electron vacuum. Thus, the most
important ingredient, the experimental fact that in quantum
antidots the period "%=h /e, and not "%=h /q, even for
fractionally charged particles, is ensured by the gauge invari-
ance argument of the Byers-Yang theorem.18 Several theoret-
ical studies pointed out that fractional statistics of Laughlin
quasiparticles can be observed experimentally in variations
of the Aharonov-Bohm effect,19–21 but the experimental evi-
dence has been lacking.

Our present experiment utilizes a Laughlin quasiparticle
interferometer, where a quasiparticle with a charge e /3 of the
f =1/3 FQH fluid executes a closed path around an island of
the f =2/5 fluid "see Fig. 1#. The interference fringes are
observed as peaks in conductance as a function of the mag-
netic flux through the f =2/5 island, in a kind of Aharonov-
Bohm effect. We observe the Aharonov-Bohm period of five
magnetic flux quanta through the f =2/5 island, i.e., "%
=5h /e, corresponding to excitation of ten q=e /5 quasiparti-
cles of the f =2/5 fluid. Such “superperiod” of "%'h /e has
not been reported in the literature. The corresponding "Q
=10"e /5#=2e charge period is directly confirmed in cali-
brated back gate experiments. These observations imply
relative statistics of &2/5

1/3=−1/15, when a charge e /3 Laugh-
lin quasiparticle encircles one e /5 quasiparticle of the f
=2/5 fluid.

II. EXPERIMENTAL TECHNIQUE

The quantum electron interferometer samples were fabri-
cated from a low disorder GaAs/AlGaAs heterojunction ma-
terial where 2D electrons "285 nm below the surface# are
prepared by exposure to red light at 4.2 K. The four indepen-
dently contacted front gates were defined by electron beam
lithography on a pre-etched mesa with Ohmic contacts. After
a shallow 140-nm wet chemical etching, Au/Ti gate metal
was deposited in etch trenches, followed by lift-off $see Figs.
2"a# and 2"b#%. Samples were mounted on sapphire substrates
with In metal, which serves as a global back gate. Samples
were cooled to 10.2 mK in the mixing chamber tail of a
top-loading into mixture 3Heu 4He dilution refrigerator.
Four-terminal resistance RXX!VX / IX was measured by pass-
ing a 100 pA, 5.4 Hz ac current through contacts 1 and 4,
and detecting the voltage between contacts 2 and 3 by a
lock-in-phase technique. An extensive cold filtering cuts the
integrated electromagnetic “noise” environment incident on
the sample to &5(10−17 W, which allows us to achieve a

low electron temperature of 18 mK in a mesoscopic
sample.22

The four front gates are deposited into etch trenches. In
this work, the voltages applied to the four front gates VFG
"with respect to the 2D electron layer# are small, and are used
to fine tune for symmetry of the two constrictions. Even
when front gate voltages VFG=0, the GaAs surface depletion
potential of the etch trenches defines two wide constrictions,
which separate an approximately circular 2D electron island
with lithographic radius R'1050 nm from the 2D “bulk.”
The electron density profile n"r# in a circular island resulting
from the etch trench depletion can be evaluated following the
model of Gelfand and Halperin23 "see Fig. 3#. For the 2D
bulk electron density nB=1.2(1011 cm−2, there are &2000
electrons in the island. Under such conditions "VFG'0#, the
depletion potential has a saddle point in the constriction re-
gion, and so has the resulting electron density profile. From
the magnetotransport measurements "see Fig. 4 and the text#
we estimate the saddle point density value nC'0.75nB,
which varies somewhat due to the self-consistent electrostat-

FIG. 1. "Color online# Conceptual schematic of the Laughlin
quasiparticle interferometer. "a# A quantum Hall sample with two
fillings: an island of 2/5 FQH fluid is surrounded by the 1/3 fluid.
The current-carrying chiral edge channels "shown by arrowed lines#
follow equipotentials at the periphery of the confined 2D electrons;
tunneling paths are shown by dots. The circles are the Ohmic con-
tacts used to inject current I and to measure the resulting voltage V.
The central island is encircled by two counterpropagating edge
channels. The current-carrying e /3 quasiparticles can tunnel be-
tween the outer and the inner 1 /3 edges, dotted lines. When there is
no tunneling, V=0; tunneling produces V'0. The closed path of
the inner 1/3 edge channel gives rise to Aharonov-Bohm-like os-
cillations in conductance as a function of the enclosed flux %. No
current flows through the 2/5 island, but any e /5 quasiparticles
affect the Berry phase of the encircling e /3 quasiparticles through a
statistical interaction, thus changing the interference pattern. "b#
FQH liquids can be understood via composite fermion representa-
tion. A composite fermion energy profile of the interferometer
shows the three lowest “Landau levels” separated by FQH energy
gaps. Several e /3 and e /5 quasiparticles are shown as composite
fermions in otherwise empty “Landau levels.”

CAMINO, ZHOU, AND GOLDMAN PHYSICAL REVIEW B 72, 075342 "2005#

075342-2
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CAMINO, ZHOU, AND GOLDMAN PHYSICAL REVIEW B 72, 075342 "2005#
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• Non-abelian anyons occur in the so called Moore-Read “Pfaffian” state
which may be realized in the ν = 5

2 FQH state. Experimentally as yet
unconfirmed.
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Anyons, fractionalization and strong correlations

Anyons and charge fractionalization typically occur in strongly correlated
electron systems.

Strongly correlated =

{ many-body wavefunction Ψ cannot be
written as a single Slater determinant of
the constituent electron single-particle states.

Question:
Are fractional statistics and fractional charges inextricably linked to strong

correlations?

Answer:
Not necessarily.
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Fractional charges in polyacetylene
[Su, Schrieffer and Heeger, 1979]

band structure

bound state at domain wall
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In 3 space dimensions Jackiw and Rebbi argued that 1
2 of a fermion can be

bound to the monopole in the Yang-Mills gauge field:

In the above cases charge fractionalization occurs as a result of fermions
coupling to a soliton configuration of a background (scalar or gauge) field.

Interactions play no significant role, systems can be regarded as weakly
correlated .

In d = 1, 3 particle statistics is trivial (fermions or bosons):

Need a two-dimensional example!
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Anyon as a charge-flux composite
A simple toy model based on the Aharonov-Bohm effect.

A charge q encircling flux Φ
acquires Aharonov-Bohm phase

2π
(q
e

) (
Φ
Φ0

)
A charge-flux composite (q,Φ)

encircling another (q,Φ) acquires

4π
(q
e

) (
Φ
Φ0

)
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Since the encircling operation can be thought of as two exchanges, the (q,Φ)
composite particles have exchange phase

θ = 2π
(q
e

) (
Φ
Φ0

)
.

For fractional charge q and flux Φ these composite particles could be anyons .

Anyon fusion:

n*( , )q

(  ,  )nq n!

!

Fusing together n identical particles with
statistical phase θ0 results in a particle with
statistical phase

θ = n2θ0.
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A new device:
Superconductor-semiconductor heterostructure.

2DEG

type!II SC

!"#$

%&'(!))*+,

B

Periodic array of pinning sites for vortices

vacancy

interstitial

[top view]

• Superconductor quantizes magnetic flux in the units of Φ0/2 = hc/2e.

• Vortices preferentially occupy the pinning sites.

• Vacancies and interstitials in the vortex lattice produce localized flux
surplus or deficit ±Φ0/2.
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Magnetic field profile with
one vacancy and one
interstitial, based on a
simple London model with
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Three principal claims

At 2DEG filling fraction ν = 1 bound to each defect there is
charge +e/2 for interstitial and −e/2 for vacancy.

These (±e/2,±Φ0/2) charge-flux composites behave as
anyons with exchange phase θ = π/4.

At 2DEG filling fraction ν = 5
2 bound to each defect should

be a quasiparticle of the Moore-Read pfaffian state with non-
Abelian statistics.
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Consider the effect on 2DEG of adiabatically adding or removing vortex in a
perfect flux lattice.

j

E

2DEG
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������

Φ

According to the Faraday’s law

∇×E = −1
c

∂H
∂t
,

time-dependent flux produces electric field.
The field, in turn, gives rise to Hall current

j = σxy(ẑ ×E),

with σxy = e2/h at ν = 1. Integrate:

δQ =
e2

hc

∫ t2

t1

dt

(
dΦ
dt

)
= e

(
δΦ
Φ0

)
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Statistical angle

Naive counting would assign the (e/2,Φ0/2) object statistical phase
θ0 = 2π(1

2 ×
1
2) = π/2.

This is, however, incorrect because it ignores the intrinsic statistical phase of
the electron.

Consider fusing two interstitials,

(e/2,Φ0/2)︸ ︷︷ ︸
θ0

+(e/2,Φ0/2)︸ ︷︷ ︸
θ0

−→ (e,Φ0)︸ ︷︷ ︸
π

.

According to the fusion rule θ = n2θ0 with n = 2 and θ = π we have

θ0 =
π

4
.
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Non-Abelian physics at ν = 5
2

The Moore-Read “pfaffian” state can be thought of as superconducting
condensate of composite fermion pairs with charge 2e.

Thus, the natural size of flux quantum is hc/2e, just like in a superconductor.

Vacancy or interstitial then should bind a quasiparticle of the pfaffian state.
These are known to exhibit non-Abelian exchange statistics.
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Practical issues

Vortices in superconductors can be created, imaged, and manipulated by a
suite of techniques developed to study cuprates and other complex oxides.

Moler Lab, Stanford
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with me the electron mass, p the momentum operator in the x-y plane.
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Consider 2-dimensional electron Hamiltonian,

H =
1

2me

(
p− e

c
A

)2

, A =
(

1
2
B0 +

ηΦ0

2πr2

)
(r× ẑ),

with me the electron mass, p the momentum operator in the x-y plane. The
total field seen by an electron is

B(r) = ∇×A = ẑB0 + ẑηΦ0δ(r).

The δ-function serves as a crude representation of the half-flux removed by
the vacancy.

This simple model contains the essence of the physics and is exactly soluble.
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The single particle eigenstates ψkm(r) are labeled
by the principal quantum number k = 0, 1, 2, . . .
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The eigenstates ψ0m in the lowest Landau level are

ψ0m(z) = Am|z|−ηzme−|z|2/4,

where z = (x+ iy)/`B, and `B =
√
h̄c/eB is the magnetic length.
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If we fill the lowest Landau level by spin-polarized electrons then the
many-body wavefunction can be constructed as a Slater determinant of
ψ0m(zi), where zi is a complex coordinate of the i-th electron,

Ψ({zi}) = Nη

∏
i

|zi|−η
∏
i<j

(zi − zj)e−
P

i |zi|2/4.
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If we fill the lowest Landau level by spin-polarized electrons then the
many-body wavefunction can be constructed as a Slater determinant of
ψ0m(zi), where zi is a complex coordinate of the i-th electron,

Ψ({zi}) = Nη

∏
i

|zi|−η
∏
i<j

(zi − zj)e−
P

i |zi|2/4.

The charge density is given as ρ(r) =
〈Ψ0|ρ̂|Ψ0〉. For a droplet composed of
N electrons occupying N lowest angular
momentum states we obtain

ρ(r) = e
N−1∑
m=0

|ψ0m(r)|2.

N = 100, η = 0

N = 100, η = −1/2
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Inset shows the accumulated charge deficit δQ(r) = 2π
∫ r

0
r′dr′δρ(r′) in units

of e.

This confirms our first claim that vacancy binds fractional charge −e/2.
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Particle statistics

The statistical angle θ can be computed
from the present model by evaluating
the Berry phase when we adiabatically
carry one vacancy around another [Arovas,
Schrieffer and Wilczek, 1984]:

γ(C) = i
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Particle statistics

The statistical angle θ can be computed
from the present model by evaluating
the Berry phase when we adiabatically
carry one vacancy around another [Arovas,
Schrieffer and Wilczek, 1984]:

γ(C) = i

∮
C
dw〈Ψw|

∂

∂w
Ψw〉.

The first vacancy is at w while the second remains at the origin.

For two vacancies, located at wa and wb the many-body wavefunction reads

Ψwawb
= Nwawb

∏
i

(zi − wa)1/2(zi − wb)1/2
∏
i<j

(zi − zj)e−
P

i |zi|2/4. (1)

In the above we have performed a gauge trasformation into the “string gauge” in which all the
phase information is explicit in the wavefunction.
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We now take wa = w and wb = 0 and compute the above Berry phase along a
closed contour C that encloses the origin.
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We now take wa = w and wb = 0 and compute the above Berry phase along a
closed contour C that encloses the origin.

This gives

γ(C) = −π
(

Φ
Φ0

− 1
2

)
.

• The first term reflects the Aharonov-Bohm phase that a charge −e/2
particle acquires on encircling flux Φ due to background magnetic field B0.

• The second represents twice the statistical phase of the vacancy, θ = π/4,
confirming our earlier heuristic result.
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Lattice model

When the effective Zeeman coupling in 2DEG is sufficiently strong, then, in
addition to the periodic vector potential, the electrons also feel periodic scalar
potential. This effect becomes important in diluted magnetic semiconductors,
such as Ga1−xMnxAs, where the effective gyro-magnetic ration can be of
order ∼100.
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Lattice model

When the effective Zeeman coupling in 2DEG is sufficiently strong, then, in
addition to the periodic vector potential, the electrons also feel periodic scalar
potential. This effect becomes important in diluted magnetic semiconductors,
such as Ga1−xMnxAs, where the effective gyro-magnetic ration can be of
order ∼100. As argued by Berciu et al. [Nature, 2005] this situation is described
by an effective tight-binding model

H =
∑
ij

(tijeiθijc†jci + h.c.) +
∑

i

µic
†
ici,

with Peierls phase factors

θij =
2π
Φ0

∫ j

i

A · dl

corresponding to magnetic field of 1
2Φ0 per plaquette.
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In uniform field and µi = µ = const H is easily
diagonalized with the energy spectrum

Ek = µ±2t
√
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In uniform field and µi = µ = const H is easily
diagonalized with the energy spectrum

Ek = µ±2t
√

cos2 kx + cos2 ky + 4γ2 sin2 kx sin2 ky,

and γ = t′/t.

Filling the lower band with spin polarized electrons corresponds to the
previous case of the filled lowest Landau level.

We model vacancy/interstitial by removing/adding 1
2Φ0 to a selected plaquette.

We have diagonalized the above Hamiltonian numericaly for system sizes up
to 50× 50 and various configurations of fluxes and µi’s.

In all cases we find that vacancy/interstitial binds charge ±e/2.
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Sample result for a single interstitial and random µi with ∆µi = 0.05t′.

ρ(r) with interstitial

ρ(r) without interstitial

induced charge δρ(r)

The induced charge integrates to e/2 to within machine accuracy.
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Conclusions

• Unusual phenomena, such as charge and statistics fractionalization, can
occur when two weakly interacting (and well understood) systems are
brought to close proximity.

• We showed, by general argument and detailed computation, that vacancy
in a vortex lattice binds −e/2 charge in the adjacent 2DEG at unit filling.

• Such a composite object behaves as abelian anyon with θ = π/4 and can
be manipulated by existing experimental techniques.

• These superconductor-semiconductor heterostructures can be (and have
been) built in a lab and could allow for controlled creation and manipulation
of the fractional particles.

• At ν = 5
2 vacancy should bind a Moore-Read “non-Abelion” which may be

used to implement topologically protected fault tolerant quantum gates.
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