next up previous
Next: About this document ...

PHYSICS 312, Solution to Midterm Examination, February 26 1999
Problem 1:
The steady state temperature TS satisfies the differential equation

\begin{displaymath}\frac{d^2T_S}{dx^2}=h^2(T_S-T_0-bx)\end{displaymath}

With the boundary conditions

TS(0)=TS(a)=0

We introduce the new variable

u=TS-T0-bx

and substitute into the differential eqation to find

\begin{displaymath}\frac{d^2u}{dx^2}=h^2u\end{displaymath}

The general solution for u is

\begin{displaymath}u=A\sinh(hx)+B\cosh(hx)\end{displaymath}

where A and B are constants to be determined. We find

\begin{displaymath}T_S=A\sinh(hx)+B\cosh(hx)+T_0+bx\end{displaymath}

The boundary condition at x=0 gives

B=-T0

The boundary condition at x=a gives

\begin{displaymath}0=A\sinh(ha)-T_0\cosh(ha)+T_0+ba\end{displaymath}


\begin{displaymath}A=\frac{T_0(\cosh(ha)-1)-ba}{\sinh(ha)}\end{displaymath}

Giving

\fbox{\parbox{12cm}{
\begin{displaymath}T_S=\frac{T_0(\cosh(ha)-1)-ba}{\sinh(ha)}\sinh(hx)-T_0\cosh(hx)+T_0+bx
\end{displaymath}}}

Problem 2:
In order to solve

\begin{displaymath}\frac{d^2\phi}{dx^2}+2\frac{d\phi}{dt}+\lambda^2\phi=0\end{displaymath}

we first solve the characteristic equation

\begin{displaymath}\gamma^2+2\gamma+\lambda^2=0\end{displaymath}


\begin{displaymath}\gamma=-1\pm i\sqrt{\lambda^2-1}\end{displaymath}

giving the general solution to the differential equation

\begin{displaymath}\phi=e^{-x}(A\sin(x\sqrt{\lambda^2-1})+B\cos(x\sqrt{\lambda^2-1})\end{displaymath}

The boundary condition at x=0 gives B=0. The boundary condition at $x=\pi$ gives

\begin{displaymath}\sqrt{\lambda^2-1}=n;\;\;n=1,2,3\cdots\end{displaymath}

or

\begin{displaymath}\lambda^2=1+n^2\end{displaymath}

The three lowest eigenvalues and eigenfunctions are

\begin{displaymath}\lambda_1^2=2;\;\phi_1=e^{-x}\sin x\end{displaymath}


\begin{displaymath}\lambda_2^2=5;\;\phi_2=e^{-x}\sin(2x)\end{displaymath}


\begin{displaymath}\lambda_2^3=10;\;\phi_3=e^{-x}\sin(3x)\end{displaymath}

You were only asked to give a sketch of the eigenfunctions. A more accurate plot is given on the attached worksheet.

Problem 3:
a:
We attempt a separation of variables solution to

\begin{displaymath}\frac{\partial^2u}{\partial x^2}=\frac{1}{k}\frac{\partial u}{\partial t},\; 0<x<\infty,\;0<t\end{displaymath}


\begin{displaymath}u(x,t)=\rho(x)\tau(t)\end{displaymath}


\begin{displaymath}\frac{\rho^{\prime\prime}}{\rho}=\frac{\tau^\prime}{k\tau}=-\lambda^2
=const\end{displaymath}


\begin{displaymath}\tau(t)=c\;e^{-k\lambda t}\end{displaymath}

where without loss of genrality we can put c=1

\begin{displaymath}\rho(x)=F\sin(\lambda x)+G\cos(\lambda x)\end{displaymath}

The boundary condition at x=0 gives G=0. The eigenvalue $\lambda$ is now a continuous variable and the eigenfunctions are on the form

\begin{displaymath}\rho(x)=\sin(\lambda x)\end{displaymath}

The coefficients $F(\lambda)$ can be obtained from the Fourier sine transform. We can thus write for the complete solution

\begin{displaymath}u(x,t)=\int_0^\infty dx F(\lambda)\sin(\lambda x)e^{-k\lambda^2t}\end{displaymath}

where

\begin{displaymath}F(\lambda)=\frac{2}{\pi}\int_0^\infty dx\sin(\lambda x)f(x)\end{displaymath}



b:
In the special case

\begin{displaymath}f(x)=T_0\sin(x)\end{displaymath}

where T0 is a constant, the initial condition is already in the form of an eigenfunction with $\lambda=1$ and we have the solution

\begin{displaymath}u(x,t)=T_0\sin(x)e^{-kt}\end{displaymath}



return to title page.

 
next up previous
Next: About this document ...
Birger Bergersen
2000-02-03