next up previous
Next: About this document ...

Physics 315
Physics of Materials
Solution to midterm exam February 2004
1: (a) If the two types of ions in the structure were of the same size, the packing fraction would be the same as for a simple cubic structure with the side of the unit cube equal to a/2. Hence,

\begin{displaymath}f=\frac{4\pi}{3}(\frac{a}{4})^3(\frac{2}{a})^3=0.524\end{displaymath}

(b) If the largest ions touch their radii would be

\begin{displaymath}r_1=\frac{a}{2\sqrt{2}}=.3536\end{displaymath}

If the largest ions touch the smaller ones the radius of the largest ion would be

\begin{displaymath}r_2=\frac{a}{3}=0.3333\end{displaymath}

The last result is the smallest and thus the correct answer. We have with 4 ions of each kind per unit cube

\begin{displaymath}f=\frac{4\pi}{3}\frac{1}{3^3}4(1+\frac{1}{2^3})=0.698\end{displaymath}

2:
(a) A possible choice of direct lattice vectors is

\begin{displaymath}\vec{a}=\frac{a}{2}(\hat{y}+\hat{z});\;\;\vec{b}=\frac{a}{2}(\hat{z}+\hat{x});\;\;
\vec{c}=\frac{a}{2}(\hat{x}+\hat{y})\end{displaymath}

A set of primitive reciprocal lattice vectors would then be

\begin{displaymath}\vec{A}=\frac{2\pi \vec{b}\times\vec{c}}{a\cdot(\vec{b}\times\vec{c})}=\frac{2\pi}{a}(-\hat{x}+\hat{y}+\hat{z})\end{displaymath}

Similarly

\begin{displaymath}\vec{B}=\frac{2\pi}{a}(\hat{x}-\hat{y}+\hat{z})\end{displaymath}


\begin{displaymath}\vec{C}=\frac{2\pi}{a}(\hat{x}+\hat{y}-\hat{z})\end{displaymath}

b: The $(\bar{1}11)$ and $(111)$ planes are equivalent so the distance between the $(111)$ planes is

\begin{displaymath}d=\frac{2\pi}{\vert A\vert}=\frac{a}{\sqrt{3}}=2.08\;{\rm\AA}\end{displaymath}

c: The bulk density is

\begin{displaymath}\rho=\frac{4}{a^3}\end{displaymath}

The number of atoms/unit area in the (111) planes of copper is thus

\begin{displaymath}\rho d=\frac{4}{\sqrt{3}a^2}=0.177\;{\rm\AA^{-2}}\end{displaymath}

3: a: Since the pressure is uniform and the material isotropic we must have for the strains

\begin{displaymath}e_1=e_2=e_3\equiv e;\;\;e_4=e_5=e_6=0\end{displaymath}

Hooke's law then becomes

\begin{displaymath}\sigma_1=P=C_{11}e_1+C_{12}((e_2+e_3)=(3\lambda+2\mu)e\end{displaymath}

The fractional volume change is then

\begin{displaymath}\delta=3e=\frac{3P}{3\lambda+2\mu}\end{displaymath}

Substituting numerical values for $P,\;\lambda,\;\mu$ gives

\begin{displaymath}\delta=7.9\times 10^{-3}\end{displaymath}

(b) We have with $T$ the tension, $f$ the force and $A$ the cross-sectional area

\begin{displaymath}\sigma_1=T=\frac{f}{A}=(\lambda+2\mu)e_1+2\lambda e_2\end{displaymath}

There is no stress in the perpendicular directions

\begin{displaymath}\sigma_2=0=\lambda e_1+(2\lambda+2\mu)e_2\end{displaymath}

The solutions to the two equations are

\begin{displaymath}e_1=\frac{(\lambda+\mu)T}{\mu(3\lambda+2\mu)};\;\;e_2=\frac{-\lambda T}
{2\mu(\lambda+2\mu)}\end{displaymath}

Substituting $f=100 N$, $A=10^{-6}$ m$^2$ and the provided values for $\lambda$ and $\mu$

\begin{displaymath}e_1=0.0092,\;\;e_2=-0.0033\end{displaymath}

The fractional change in length is thus 0.0268 while the fractional change in volume is $e_1+2e_2=0.002.$


next up previous
Next: About this document ...
Birger Bergersen 2004-02-23