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Chapter 1
Course organization

The preparation and use of materials play important roles in all civilizations. In recognition of
this fact we label early cultures by the material which dominated technology at the time (stone,
bronze and iron age). Today thousands of new materials continue to revolutionize our everyday
existence. In the early part of this century the availability of inexpensive steel made it possible to
mass produce automobiles. During the last 50 years improvements in semiconductor technology
led to the computer revolution. More recently, improved understanding of ”soft matter”, liquid
crystals, polymers and biological materials is likely to bring profound changes in medicine and other

aspects of our lives.

In this course we study the physical properties of materials that have more structure than
simple liquids and gases. We start by considering crystalline solids, first from the point of view
of structure and then from the point of view of the cohesive energy. Next, we study the elastic
properties and move on to defects and their effect on the strength of materials. This is followed by
a discussion of thermal and transport properties due to electrons and phonons. Next there is some
discussion on dielectric response and screening. After a short discussion of the Hall effect I use the
positve sign of the Hall coefficient in metals such as Aluminum to motive the need for a discussion
of electronic band structure. Finally, since it often is said that we now live in the ”silicon age” I
conclude with a section on intrinsic and doped semiconductors.

I will assume that the students in this course will have taken the usual complement of second
year mathematics courses (MATH 200, 215 and 221). A first course in thermodynamics such as
PHYS 213, or the corresponding courses in chemistry or earth sciences will be assumed. Some
knowledge of modern physics (e.g. PHYS 200), and mechanics (e.g. PHYS 216) will be helpful,

but is not required.

There is no assigned text, but these notes will cover most of the course. In previous years the



4 Course organization

course included a section on ”soft matter”. This material is not included in these notes. References
to appropriate sources are given as we move along.

I have “borrowed” freely from old exams prepared by my colleagues David Balzarini , Meyer
Bloom , Roland Cobb , Dan Murray and Murray Neuman when selecting problems and examples.

The course description in the UBC Calendar is

315 (3) Physics of Materials-Crystal structure, elasticity and phonons, elementary electronic
transport, defects, alloys, liquid crystals and polymers. Prerequisite: PHYS 203 or 213 or
CHEM 201 or 205. Corequisite MATH 215.[3-0-0].



Chapter 2

Solid structure

The materials with the highest degree of order are the crystalline solids. Most solids exhibit such
order at least to some degree. This chapter is concerned with the geometrical arrangement of
atoms in a crystal. In particular we will discuss classification of crystals and how their crystalline
properties are measured. We will also briefly mention amorphous or glassy materials towards the
end of the chapter. For further reading on the material in this chapter I recommend the books by

Ashcroft and Mermin [2], Christman [5], Kittel [6] and Omar [8].

2.1 Bravais lattices and lattices with a basis

The most characteristic feature of a crystalline solid is its periodic structure. A crystal can be
thought to be made up of a space filling arrangement of basic building blocks called unit cells such
that the local arrangement of the atoms in any cell is reproduced exactly in all the other cells. We
define a lattice vector R as a vector which extends from a position in one cell to an equivalent
position in another cell. A translation by a lattice vector leaves the local environment unchanged,
and we say that a crystal exhibits translational symmetry, when the reference is shifted by a lattice
vector.

The concept of a perfect crystal is an idealization which cannot be completely realized for several

reasons
e The periodicity of a crystal will always be interrupted by its surface.
e In practice it is not possible to grow crystals without imperfections.

e At any non-zero temperature the atoms will vibrate about their equilibrium positions and

this will destroy the translational symmetry.

5



6 2.1 Bravais lattices and lattices with a basis

As we shall see later, lattice imperfections are responsible for many of the physical properties of

a solid, such as its strength, toughness, electronic properties and some of its optical properties.

However, before we can talk about the defects we must define the ideal which they disturb.
Crystallography is concerned with the geometrical properties of a crystal. A fundamental con-

cept is that of a Bravais lattice. Such a lattice is a set of points
R = n1a+n2b+ngc (21)

where nq,n9,n3 are integers (negative, positive or zero). All the sites of a Bravais lattice are
equivalent and the local environment is identical at each lattice point. The three vectors a, b, ¢ are
called primztive lattice vectors. The primitive lattice vectors must be non co-planar, but they need
not be orthogonal to each other. We define « to be the angle between b and ¢, 3 the angle between
c and a, v the angle between a and b (see figure 2.1.a ). The three primitive lattice vectors span

a volume (figure 2.1.b) whose magnitude is
ve =|a- (b X c)] (2.2)

We refer to this volume as a primitive unit cell. If a crystal structure is a Bravais lattice with one
atom at each lattice point, each primitive unit cell will have a volume v, = V/N where V is the
volume and N is the number of atoms of the crystal. Sometimes it convenient to work with a unit
cell which is larger than the primitive unit cell. To qualify as a unit cell it must still be possible
to use it as building block in a repeated pattern that fills the lattice. There are generally many
possible ways of choosing the primitive unit cell for a given crystal structure, but the volume of the
primitive unit cell will always be the same, and the volume of a non-primitive unit cell is always

an integer multiple of the volume of the primitive unit cell

2.1.1 Common crystal structures

We now apply the definitions which we have just made to the most common crystal structures.

Simple cubic lattice

The primitive unit cell is (as the name indicates) a cube. We take the side of the unit cube to be
a and choose the edges to be parallel to the three axes of a Cartesian coordinate system as shown
in figure (2.2-a)

a=ax, b=ay, c=az

The volume of the primitive unit cell is a®.
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(a) (b)

Figure 2.1: (a) Primitive lattice vectors. (b) Primitive unit cell

«—>v—>
«——>ov—>

(b)

Figure 2.2: (a) Simple cubic lattice. (b) Body centered cubic lattice
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Body centered cubic lattice (bcc)

In the bcce structure identical atoms are located at the corners and at the center of a cube. The
unit cube is not a primitive unit cell - it is, however, a unit cell. We can construct the primitive
cell from the three lattice vectors a, b and c of figure 2.2-b.
a, . .. a,. .. a,. ..

325(—X+Y+Z); bZE(X—BH‘Z); C:§(X+y—z) (2.3)
The volume of the primitive cell is from (2.2) 2a3. This result could be expected from the following
argument: assume that there are atoms at all the points of the bcc lattice. Each atom in the center
of a unit cube belongs to that unit exclusively, while each of the eight corner atoms are shared by
seven other cubes. The number of atoms per unit cube is thus 8/8 + 1 = 2. Since the volume of

the unit cube is a®, the volume of the primitive unit cell must be v, = a®/2.

Face centered cubic lattice (fcc)

The fcc lattice is another common Bravais lattice see figure (2.3). A possible choice of primitive
lattice vectors is

a., . . - . - A

a=S(F+2) b=g(k+2) c=5(%+9) (24)

The volume of the primitive unit cell is

a-(bxc):az

This result can also be found by noting that each of the six face centers of the unit cube is shared
by one other cube, while each corner is shared by seven other corners. Thus, there are 6/2 + 8/8

= 4 atoms per unit cube. The volume of the primitive unit cell must thus be a3/4.

Triangular lattice

So far we assumed a three-dimensional Bravais lattice. It is easy to generalize to the case of two

dimensions. In this case the Bravais lattice is made up of the integer set {n;,n2} of points
R =nja+nsb
where a and b are primitive lattice vectors. The area of the primitive unit cell is
A, =]ax Db

The lattice is shown in figure 2.4(a). We choose the primitive lattice vectors to be

a V3.

a=uax; b=—-x —
ax; 2x+a2y
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Figure 2.3: Face centered cubic lattice

giving A, = a?y/3 /2 for the area of the unit cell.

Not all crystalline lattices are Bravais lattices. If we remove 1/3 of the lattice sites of the
triangular lattice we get the honey-comb lattice of figure 2.4(b) We notice from figure 2.4(b) that
the honey-comb lattice is made up of two distinct types of sites which we have respectively labeled
(i) and (ii) (or by filled and empty circles). The situation is unlike a Bravais lattice, where all
sites are equivalent. However, if we consider the sites of type (i) separately, we note they form
a triangular lattice which is rotated by 30° with respect to the original triangular lattice. The
primitive lattice vectors of this triangular lattice can be taken to be
+ ?y); b = a3y

3.
a:a(ix

A translation by the vector d= ax takes one from a site of type (i) to a site of type(ii). We call
the vector d a basis vector. The honey-comb lattice is an example of a lattice with a basis: all the

lattice sites are either on a Bravais lattice site
R =nja+nsb
or on a Bravais lattice site displaced by a basis vector

R:n1a+n2b+d
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Figure 2.4: (a) Triangular lattice. (b) Honey-comb lattice
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Figure 2.5: Tetrahedral bond in diamond lattice

The concept of a lattice with a basis can be generalized in a straight forward manner to three
dimensions and the case where there are more than two non equivalent sites in the primitive unit

cell. A lattice with a n-point basis d; - - - d,, has its lattice points at one of the n types of sites

R=nja+nb+ngc+d;, i=12..n

Diamond structure

The lattice points of the diamond structure are localized either on a fcc lattice or on a fcc lattice

point displaced by a basis vector

d:%@+y+@

A characteristic feature of the diamond structure is the tetrahedral bond (figure 2.5). The orien-
tation of the four tetrahedral directions are different for the fcc lattice points and on the points
displaced by the basis vector. The two types of sites are therefore not equivalent and the diamond
lattice is not a Bravais lattice.

In a number of compounds the two distinct sites of the diamond lattice are occupied by atoms of
different species. The structure is then called the zinc blende (ZnS) structure . A number of semi-
conductors such as GaAs and InSb crystallize in this structure, while the elemental semiconductors

silicon and germanium crystallize in the diamond structure.
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N

| -
I'd (@) r'd (b)

Figure 2.6: (a)NaCl lattice. (b) CsCl structure

Compound structures

All compounds (materials made up of more than one element) will necessarily crystallize in a
lattice with basis. An important crystal structure for compounds is the sodium chloride (NaCl)
structure(figure 2.6(a)) which is fcc with the basis d = $x.

A third fairly common compound structure is that of cesium chloride in figure 2.6(b) . This
structure is simple cubic with a basis vector d = (% + y + 2). It differs from the bcc lattice only
in that the body center and corner sites are occupied by atoms of different species in the CsCl

structure.

2.1.2 Packing fraction and coordination number

There are a number of factors that dictate which crystal structure will be realized for a given
compound. As we indicated earlier, the tetrahedral covalent bond favors the diamond (or zinc
blende) structure. In the case where the forces that hold the crystal together are not directional, as
in the case of the covalent bond, packing considerations are often important. A convenient measure
of the packing efficiency of a given structure is the packing fraction f . We draw a sphere of radius
r around each atom (or ion). We first assume that we are dealing with a substance in which the
atoms are all of the same kind and which crystallizes in a Bravais lattice. We choose the radius r

so that the atoms touch, but do not penetrate each other. The packing fraction is then defined as

473
3ve

where v.is the volume of the primitive unit cell.

f=
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(©

Figure 2.7: Packing fraction of (a) the simple cubic lattice. (b) The fcc lattice. (c¢) Close packing

of spheres.

Another important characteristic of a crystal structure is the coordination number . For a
Bravais lattice the coordination number is the number of nearest neighbors, or number of atoms
that touch each other. Generally, a high coordination number and a high packing fraction go
together. In the case of a compound the coordination number may be different for the different

constituents.

Simple cubic lattice

From figure 2.7(a) we see that r= §. The volume of the unit cell is a®. The packing fraction is thus

4r T
sec = = — = 2
f 3x8 6 0.5236
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Figure 2.8: The hexagonal closed packed lattice.

Fcc lattice

Figure 2.7(b) shows the packing arrangement on one of the cube faces. We see from the figure that

4r= a+/2. Since there are four spheres per unit cube the packing fraction is

3
4xdn (V2 5
Fee = —X3 il (f> - —ng — 0.7405

4

The coordination number of the fcc lattice is 12.

Hexagonal closed packed lattice

The most efficient packing of spheres in a single two-dimensional layer is the triangular lattice (figure
2.7(c)), with coordination number 6. We can construct a closed packed three dimensional lattice
by adding successive triangular layers on top of the original layer. The best way to do this is to put
the next layer either above the sites marked « or the sites marked j in figure 2.7(c). The reader
may convince her or himself that if the stacking sequence of successive layers is - - - yafSvyafvyaS - - -
we recover the fcc lattice. Another possible sequence which gives the same packing fraction is
-+ yayaya - - - The resulting crystal structure (figure 2.8) is called hexagonal closed packed (hcp).
This lattice structure is not a Bravais lattice since the local environment of the atoms in v and
a layers are different. The set of v — points in the hcp structure does form a Bravais lattice, the

hexagonal lattice. The primitive lattice vectors of this lattice can be chosen as

1 3
a = ax; b:a(§§c+§y);c:ci



Solid structure 15

The hcp lattice is then hexagonal with basis
d= %04— %(a+b) = a(%>‘c+ %y) + %ci
The coordination number of the hcp is 12, just as for the fcc lattice.

The concept of packing fraction can be extended to compounds. Consider an ideal crystal AT B~
in which the AT and B~ separately form a Bravais lattice with volume v, of the primitive unit cell.
We associate an ionic radius ry and r_ to each species. Assuming that the closest approach of two
positive, to negative and ions of opposite kind are 2r;,2r_ and (r4 + r_) , respectively, we define
the packing fraction as

_Ar

f= 3—%(7“+3 +r-?)

2.1.3 The 14 Bravais lattices

There are 14 possible Bravais lattice for a three dimensional crystal (see figure 2.9). With the
angles «, 8 and + defined as in (figure 2.1) these lattices are tabulated in 2.1. The reader may well
wonder why are there just 14 three dimensional Bravais lattices. Why e.g. do we not include a
base centered cubic lattice? We do not consider this lattice to be a distinct lattice since it is a
special case of the simple tetragonal lattice, as is the base centered tetragonal lattice. We refer the
interested reader to [2] for a more detailed discussion of the classification of the lattices.

The structure and cell dimensions of some elements and compounds are listed in table 5.1 below.

A standard notation has evolved to describe crystallographic directions and distances. We write
for a general lattice vector

R= nia + TLQb + ngc = [nlngng]

(note the square bracket and the absence of commas). If some of the numbers are negative, it is

conventional to put the minus sign above the number rather than in front, e.g.
R=a—b+c=][11]]

Often several crystallographic directions are equivalent e.g. the [100] and [010] directions in a cubic
crystal. We indicate collectively all directions which are equivalent to [njngens] as (nynang) (angular
brackets).

In the case of the cubic crystals it is conventional to let the indices nq,ngy, ng refer to the sides
of the unit cube rather than the primitive lattice vectors. For example, the three lattice vectors

(2.3) of the bcc lattice are written as

[111]_ [111]_ [111]
222]" [222] [222
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Table 2.1: 3-D Bravais lattices.

Triclinic a#b#c a # B # v #90°
Trigonal a=b=c a=pf=v#90°
Hexagonal a=b#c| a=p6=90°~vy=120°
Simple monoclinic a#b#c a=L0=090°#~
Body centered monoclinic
Simple orthorombic a#Fb#c a=L0=v=090°

Base centered orthorombic
Body centered orthorombic

Face centered orthorombic

Simple tetragonal a=b#c a=L0=v=090°
Body centered tetragonal

Simple cubic a=b=c a=p=v=90°
Body centered cubic

Face centered cubic

2.1.4 Polycrystalline and noncrystalline solids

It is rare to find a large single crystal in which the periodic arrangement extends throughout the
solid. When such crystals are cut one may see flat faces or facets such as in gemstones. The facet
planes will normally correspond to high symmetry directions of the structure which are the ones
for which the normals to the planes correspond to low index directions such as the (100), (110))
or (111) direction. A single crystal will be anisotropic, i.e. mechanical, optical and transport
properties will be different in different directions depending on the orientation of the crystalline
axes. Single crystals are difficult to grow, the process must be done very slowly and under carefully
controlled circumstances.

Most solids are polycrystalline, i.e. contain many small crystallites separated by grain bound-
aries. Polycrystalline materials will be isotropic (the same in all directions) on length scales which
are large compared to the size of the individual grains.

Some solids lack any regular arrangement of the constituent atoms or ions on length scales
more than a few lattice spacings. When this happens the solid is said to be amorphous or glassy.

Generally, in order to obtain an amorphous solid from a melt, the cooling has to be rapid. In the
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N

o Trigonal , ,

Triclinic Hexagonal

Simple monoclinic Body centered Simple tetragonal ~ Body centered
monoclinic tetragonal

Simple Base centered Body centered Face centered
orthorombic orthorombic orthorombic orthorombic

Simple cubic Body centered Face centered
cubic cubic

Figure 2.9: The 14 Bravais lattices.
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case of metals or other materials with a simple crystal structure the cooling has to be extremely
rapid. Such a rapid quenching can typically only be achieved for thin strips and films. Certain
materials, which crystallize into very complicated structures, order only with difficulty and are
easy to produce in a glassy form. The freezing transition between a liquid and a crystalline solid
is a sharp phase transition. In the case of a liquid and a glass the transition is gradual and the
distinction is not that sharp. Typically, one defines the transition from a liquid to a glass to take
place when the viscosity (resistance to flow) exceeds a certain value. Of particular importance are
the silicate glasses used to make window glass and bottles. Solids made up of organic polymers can

be polycrystalline or amorphous.

2.1.5 Problems
Problem 2.1-1:

Compute the packing fraction f for the bcc lattice

Problem 2.1-2:

(a) Show that the packing fraction f for the diamond lattice is 7v/3/16.

(b) What is the packing fraction and coordination number of the honeycomb lattice?

Problem 2.1-3:

Consider the hexagonal closed packed lattice:
(a) Show that ¢ = a4/8/3 = 1.633a. Frequently a crystal structure is called hcp even if ¢ is not
exactly equal to the ideal value.

(b) Show that the packing fraction for the ideal hcp lattice is m/2/6 = 0.7405.

Problem 2.1-4:

The ionic compound AT B~ crystallizes in the NaCl structure (see figure 2.6). Plot the packing

fraction as a function of the ratio £ = ry /r_. Assume that £ < 1.

Problem 2.1-5:

Repeat the calculation of problem 2.1-4 for the CsCl structure.
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Problem 2.1-6:

Use the information in table 5.1 to calculate the densities (in kgm 3) of the following solids: (a)
Aluminum, (b) Iron, (c) Silicon and (d) Zinc. Atomic weights of some common elements are listed
in table 5.2.

Problem 2.1-7:

SrTiO;3 crystallizes in the perovskite structure. The strontium atoms are at the corners of cubes
with side a, the titanium atoms are at the body centers, while the oxygen atoms occupy the cube

faces.
(a). What is the Bravais lattice type?
(b). Verify that the primitive unit cell contains one Sr, one Ti and three O atoms.

(c). Write down a set of primitive lattice vectors and basis vectors for the perovskite structure.

Problem 2.1-8:

The primitive lattice vectors of a certain bravais lattice can be written
1 .1 A
R= §(n1 + 2ng)ax + Enlby + ngcz

What is the lattice type?

Problem 2.1-9:

In each of the following cases indicate whether the structure is a Bravais lattice. If it is, give three
primitive lattice vectors, if it is not describe it as a Bravais lattice with as small as possible basis.

In all cases the length of the side of the unit cube is a.

(a) Base centered cubic (simple cubic with additional points in the centers of the horizontal
faces of the cubic cell).

(b) Side centered cubic (simple cubic with additional points in the centers of the vertical faces
of the cubic cell).

(c) Edge centered cubic (simple cubic with additional points at the midpoints of the lines joining

nearest neighbors).
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N | /G
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(a) (b)

Figure 2.10: (a) Bragg’s law.(b) Elastic scattering.

2.2 Structure determination

2.2.1 Reciprocal lattice

The elementary theory of crystal structure determination by diffraction is based on Bragg’s law
(figure 2.10) We imagine a crystal as made up of lattice planes. An incoming plane wave is reflected
by these planes . We assume that the angle of incidence is the same as the angle of reflection
(specular reflection). We also assume that the wavelength of the reflected light is the same as the
wavelength of the reflected light (elastic scattering). If the wavelength of the incoming wave is
A, the angle of incidence is @, and the perpendicular distance between the planes is d, we have

constructive interference between waves reflected from a family of parallel planes if
2dsinf = n (2.5)

where n is an integer. Consider a Bravais lattice. We define a lattice plane as any plane which
contains at least three points that do not lie on the same line (non co-linear points). A family of
planes is a set of lattice planes which together include all points of the Bravais lattice. The equation

for a plane is in vector notation

where R is a vector to a point in the plane, i is a unit vector normal to the plane and c is the
perpendicular distance from the origin to the plane. Let us now return to the Bragg condition (2.5)
and let k; be the wave vector of the incident beam, k; the wave vector of the elastically scattered

beam and
G =k; —k;
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the scattering vector. We have

2T
A= —
k
and find that with 6 the angle of incidence
G = 2ksiné
and (2.5) becomes
R -G =2mn (2.6)

As n runs through the set of integers equation (2.6) defines a family of planes. The vector G
is called a reciprocal lattice vector. Let a, b and ¢ be a set of primitive lattice vectors of a Bravais

lattice, we can construct a set of primitive reciprocal lattice vectors from

A-a=2m; A-b=0; A-c=0
B-a=0; B:b=2m B:-c=0 (2.7)
C-a=0; C-b=0; C-c=27

with the solution

2tb X ¢ 2re X a 2ra x b
A — . B — — C = 2.8
a-(bxc)’ a-(bxc) a-(bxc) (28)
We can now construct a Bravais lattice of reciprocal lattice vectors
G=hA+EkB+IC (2.9)

where h, k,l are integers. If R is a general vector (2.1) of the direct lattice we see that (2.7) gives
G - R =2n(n1h + nok + ngl) = 27n

Suppose K is the shortest reciprocal lattice vector in a given direction, then K - R = 27n defines
a family of planes, and the coefficients h, k.l of this family are called Miller indices. The distance
between the planes is 27/K and it is customary to use the Miller indices to specify a reciprocal

lattice vector as
G = (hkl)

It can be seen from (2.8) that the volume of the reciprocal primitive unit cell is

™ 3 ™ 3
V.=|A (B xC)| = |a-((2b)>< S (2%) (2.10)

In the case of cubic crystals it is customary to let the Miller indices refer to unit cube not the
primitive unit cell. Figure (2.11) show some crystallographic planes and their Miller indices for a
cubic crystal. In a cubic crystal the (100),(010)and (001) planes are equivalent. It is conventional
to refer collectively to {hkl} as the (hkl) family of planes as well as all the symmetry related ones.
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Figure 2.11: Some crystallographic planes of a cubic crystal.

2.2.2 Reciprocal lattice of a fcc lattice

Applying (2.8) to (2.4) we find

2 2
A:_Zpﬁ+y+@;B:_Qi—y+@;C
a a a

2r .
=—(x+y—12) (2.11)
and we see from (2.4) that the reciprocal of the fcc is a body centered cubic lattice with side of
unit cube %’r, if a is the side of the unit cube of the original fcc lattice. Similarly, the reciprocal to

the bcce lattice is fcc.

2.2.3 Ewald construction

We can illustrate some of the more common experimental methods of determining crystal structures
by a simple geometric construction called the Ewald construction (figure 2.12) We choose one of
the reciprocal lattice points in figure 2.12 as the origin. We assume that there is an incoming beam
for which the magnitude and direction of the wave-vector k; is held fixed. If the beam undergoes
elastic scattering the magnitude of the scattered wave vector ky must be the same as the magnitude
of the incoming wave vector. The possible wave vectors of the diffracted beam must therefore lie
on the surface of a sphere which is called the Fwald sphere. This surface of this sphere will in
most cases only contain one reciprocal lattice vector - the one at the base of k;. Whenever another
reciprocal lattice vector touches the sphere the condition for Bragg reflection is satisfied. There are
two main methods to obtain z-ray diffraction from a single crystal. In the Laue method one uses a
beam which contains a continuous spectrum of wave vectors kmin < ki < kmaee but the orientation
of the crystal studied and the direction of the beam is held fixed. From figure 2.13 we see that the
reciprocal lattice points in the crescent shaped volume between the two spheres will cause scattering

and can be picked up on a film surrounding the crystal under study or by a detector. The Laue
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Figure 2.12: Ewald construction.

method is frequently used to orient a single crystal with respect to a fixed axis in an experimental
set up. Another important method, the rotating crystal method, uses a monochromatic beam. The
arrangement has the crystal mounted on a spindle located at the axis of a cylinder (see figure 2.14),
with an opening for the incoming beam and an x-ray film mounted on the inner surface. For some
orientations the Ewald condition will be satisfied and the diffracted beam will produce a black spot
on the film.

Diffraction from a powder sample works in a similar fashion as the rotating crystal method.
The randomly oriented crystallites in the powder diffracts like a single grain which has been rotated
very many different ways.

X-rays are not the only available probes for diffraction experiments. Electron and neutron
beams are commonly used. The wavelength of a particle beam is given by the de Broglie relation
A = h/p, where h is Planck’s constant and p the momentum. For diffraction to be a useful tool
in structure analysis, the wavelength should be of the same order of magnitude as typical lattice
spacings i.e. ~A. Using the formula for the energy E = p?/2m, where m is the mass of a particle,

one can show that the wavelength of a neutron in A can be written

0.28
VE

if the energy E is given in electron volts (eV'). For the wavelength to be 1 A the energy would have

A

to be 0.08 eV. Since the thermal energy kT at room temperature is 0.025 eV, the neutrons used

in diffraction experiments are referred to as thermal neutrons.
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Figure 2.13: Ewald construction for the Laue method.

In the case of electrons the wavelength in A can be written

\_ 1225
- VE

where again the energy is given in eV. At energies where X is of the order a few Angstrom
the penetration depth of electrons is typically only a few lattice spacings. Low energy electron

diffraction (LEED) is for this reason mostly used for studies of the surface properties of materials.

2.2.4 The Wigner-Seitz cell and the Brillouin zone

It is often practical to divide a crystal into unit cells in a different way than what we did in figure
2.1. Consider the cell defined by the following construction (for the two dimensional version of this
see figure 2.15). First draw lattice vectors connecting a lattice point at the origin with neighboring
lattice points. Then draw planes bisecting these vectors. The smallest volume which is enclosed by
such planes and includes the point at the origin is a Wigner Seitz cell. This cell is frequently used
as a primitive unit cell. In this way the crystal is divided into volumes which have the property
that all points inside each cell are closer to the lattice point at its origin than to any other lattice
point.

The Wigner Seitz construction can also be carried out for the reciprocal lattice. The resulting
unit cell is then called a Brillouin zone The Wigner Seitz cell can be generalized to non crystalline

structures. For a disordered set of points the resulting cell will be bounded by planes forming the
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Figure 2.14: Rotating crystal method.

Voronoy polyhedra. The shape of each Voronoy polyhedron will generally depend on which point it
surrounds. The plane normals connecting the neighboring points form a network which is referred to
as the Delaunay tessellation. The Delaunay tessellation has many uses outside solid state physics.
For example, in geography one is often required to produce topographical maps where contours
correspond to point of equal altitude, mean rainfall, temperature, atmospheric pressure etc. These
maps must be generated from a grid of observation stations. The Delaunay tessellation of this grid

forms a useful basis for computer generated interpolation schemes.

2.2.5 Problems
Problem 2.2-1:

An x-ray source emits an x-ray line of wavelength A = 1.54 A. The lattice constant and crystal
structures of iron and aluminum are found in table 5.1.

(a) Find the Bragg angle(s) for reflections from the (111) plane of AL

(b) Find the Bragg angle(s) for reflections from the (110) planes of Fe

Problem 2.2-2:

The construction (2.9) of the reciprocal lattice assumes that the direct vectors a, b, c of (2.8) are
primitive lattice vectors. If instead of using the primitive vectors one uses the lattice vectors of

the unit cube of e.g. the fcc or bec lattices, what happens is that (2.9) predicts some reciprocal
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@) (b)

Figure 2.15: Wigner Seitz cell , (a) for the triangular lattice, (b) for the bcc lattice. In the latter
case the square faces are perpendicular to the [100] , [010] and [001] directions, while the hexagonal

faces are perpendicular to the [111] and symmetry equivalent directions.

lattice points that should not be there. Consider a simple cubic (sc) lattice for which the side of
the primitive unit cube is a. Construct the reciprocal lattice of this structure.

(a) Which of the reciprocal lattice vectors of the sc lattice are missing in the reciprocal lattice
constructed from the fcc lattice with the same unit cube side a.

(b) Which of the reciprocal lattice vectors of the sc lattice are missing in the reciprocal lattice

constructed from the bcc lattice with a unit cube of side a.

Problem 2.2-3:

It is observed that crystals generally cleave most easily along the crystal planes which are furthest
apart. Clearly, these are also the planes which have the highest density of atoms per unit area.
From (2.6) we see that the perpendicular distance between nearby lattice planes is 27/G where
G is the shortest reciprocal reciprocal lattice vector in the direction normal to the planes. The
shortest reciprocal lattice vectors for the fcc lattice are normal to the (111) planes, while the (110)
planes are normal to the shortest reciprocal lattice vectors for the bcc lattice. Assume that the
side of the unit cube is a.

(a) What is the density of atoms (number per unit area) on a (111) plane of a fcc lattice?
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(b) What is the density of atoms on a (110) plane of a bec lattice?

Problem 2.2-4:

The primitive lattice vectors of a 2-dimensional triangular lattice are

3
a = ax; b:%iﬁLiy

2

where a is the nearest neighbor distance.
(a) Find the reciprocal lattice
(b) Draw the Wigner Seitz cell and locate the coordinates of its corners.

(c) Draw the Brillouin zone and locate the coordinates of its corners.

Problem 2.2-5:

Find the coordinates of the corners of the Wigner Seitz cell for the bee lattice (figure 2.15 (b)).

Problem 2.2-6:

An X-ray reflection from a certain crystal occurs at an angle of incidence of 45° when the crystal
is maintained at 0°C. When it is heated to 150°C the angle changes by 6.4 minutes of arc. What

is the linear thermal expansion coefficient of the material?
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Chapter 3

Static properties

3.1 Atomic structure

Depending on the type of material, we will consider matter as made up of either atoms, molecules,
or jons. An tom is made up of a nucleus surrounded by electrons. The nucleus is in turn made up of
protons and neutrons. The mass of an electron is m, = 0.109 x 10 3'kg, many times smaller than
the mass of a proton, m, = 1.6726 x 10~2"kg, or neutrons m, = 1.6749 x 1072"kg. The mass of
an atom thus rests almost exclusively in the nucleus and is often given in terms of the atomic mass
unit or a.m.u. (la.m.u. = 1.6605 x 10727kg). A chemical element is specified by the number of
protons in the nucleus. Atoms which differ only in the number of neutrons in their nuclei are called
1sotopes. Different isotopes of the same element have except for the mass difference essentially
identical properties.

Molecules are tightly bound groups of atoms, covalently bonded by the sharing of electrons.
Ions are atoms that have a net electric charge because they have either given up one or more
electrons or accepted extra electrons.

The electrons in an atom are characterized by 4 quantum numbers. Electrons with principal
quantum numbern = 1,23, 4... are referred to as K, L, M, N.. electrons, respectively. The electrons
with the lowest principal quantum are closest to the nucleus and most tightly bound. We refer
to these as core electrons. The electrons with the highest values of n are the wvalence electrons
and they are less tightly bound to the nuclei than the core electrons. The chemical properties
of a material depend almost exclusively on how the valence electrons are distributed among the
atoms, molecules and ions. Energies associated with chemical change are typically of the order

electron-volts per atom, which makes this a convenient unit of energy (leV = 1.6022 x 107197

The second quantum number [ specifies the orbital angular momentum of an electron. The

29
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possible values of [ are 0,1,...n — 1. According to quantum mechanics the angular momentum is
V(I + 1)h, where h is Planck’s constant h divided by 27. Electrons with [ = 0,1,2, 3.. are referred
to as s,p,d, f.. electrons respectively. The number of electrons in the different n,[ states specifies
the electronic configuration, e.g. the ground state of the element argon with chemical symbol Ar
is 15%22522p53s23p8 indicates that there are 2 electrons in the K —shell with n = 1, these are both
s-electrons, i.e. have [ = 0. There are 8 electrons in the L shell 2 of then s—electrons and 6
p—electrons with [ = 1. There are also 2 s—electrons and 6 p—electrons in the M —shell.

The third quantum number m is associated with the component of the orbital angular mo-
mentum along a suitably chosen axis. This quantum number can take on any of the 2/ + 1 values
m = —Il,—l+1,...1 —1,l. In an isolated atom electrons with different m quantum number have
the same energy. The energy levels will be split, however, in a magnetic field and may also be split
inside a crystal where different orientations need not be equivalent.

Finally, electrons carry an intrinsic angular momentum, called spin. The component of the
spin may take on one of two different values o = :l:%h with respect to any axis. Electrons satisfy
the Pauli exclusion principle, only one electron may occupy a given quantum state. The main
importance of the spin degree of freedom for us will come when we need to count states - the effect

is to double the number of available states.

3.2 Lattice sums, binding energy and bulk modulus

What holds the crystal together? In all materials the forces are of electrostatic origin, but the
detailed mechanism varies widely. On the basis of the dominant mechanism for bonding we classify

crystals as either
e molecular
e ionic
e covalent
e metallic
e hydrogen bonded

We will discuss these types of bonding in turn — unfortunately it is only in the two first cases that

we are able to go beyond very qualitative arguments.
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Figure 3.1: Lennard-Jones potential.

3.2.1 Molecular crystals

The constituents of a molecular crystal are atoms and molecules with an inert electronic config-
uration. This configuration remains intact when the material is cooled down from the gas phase
through the liquid state into a crystal. To a reasonable approximation, the interaction between
the atoms or molecules can be described by a pair potential v(r; —r;) . The simplest cases are the
crystals formed from the inert gases neon (Ne), argon (Ar), krypton (Kr) and xenon (Xe). In this
case the atoms have spherical symmetry and the potential is central v = v(|r; —r;|) This potential
can be thought of as made up of two parts. At short range when the atomic cores overlap there
is a strong repulsion, whose origin lies in the Pauli exclusion principle. Since two electrons cannot
occupy the same state, the core states will have to be strongly distorted when two atoms get too
close together, and there is a large energy cost associated with such distortions. At larger distances
there is no significant overlap between the electron states of neighboring atoms. The dominant
force is then due to the van der Waals attraction. The corresponding potential falls off as the sixth
power of the distance— and since force is minus the gradient of the potential, the corresponding
force will be ~ 1/R7. This r dependence can be understood from the following argument:

If an atom is exposed to an electric field £ the force on the negatively charged electrons and

the positively charged nucleus will be in opposite directions. This will induce a dipole moment
p; = ol (3.1)

where « is the polarizability. If the electric field is absent the average dipole moment will be zero,
but there will still be a fluctuating dipole moment due to quantum effects (zero point motion). The
electric field due to a dipole falls off as the inverse third power of the distance, and it will induce

a dipole moment in neighboring atoms which is proportional to the field according to (3.1). The
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Table 3.1: Lennard-Jones parameters for the inert gases

Element | o [A] | € [eV]
Ne 2.74 | 0.0031
Ar 3.40 | 0.0104
Kr 3.65 | 0.0140
Xe 3.98 | 0.0200

interaction energy will then be of the form

(-pj-&)=a<&>
where p; is the induced dipole moment on atom j due to the fluctuating field fj; from atom 7. The
angular brackets () indicate average value. The average value of the fluctuating electric field is
(€) = 0, while the mean square value will be non-zero. Since the fluctuating field falls off as the
inverse third power of the distance, the mean square field will be proportional to the inverse sixth

power of the distance to the fluctuating atom. The van der Waals interaction energy is thus ~ 1/r6

An approximate way of combining the repulsive and attractive interactions between the atoms

in a molecular crystal is the Lennard-Jones potential

o(r) = 25— 2 = 4d (D)2~ (7)) (3.2

r6 r r

where A and B are constants which depend on which atom or molecule is involved. It is conventional
to parameterize the potential in terms of an energy parameter € and length parameter o, in terms
of which A= 4ec'2, B= 4e0%. We plot the Lennard -Jones potential in figure 3.1.

The potential changes sign at r = o. By differentiating (3.2) we find that the potential has
minimum at » = 2Y/65. The value of the potential at the minimum is —e. In the case of the
inert gases one can estimate the potential parameters using data obtained from measurements of
corrections to the ideal gas law in the gas phase (virial coefficients). Some typical values are listed
in table 3.1.

If we assume that all the atoms are at their equilibrium positions in the perfect lattice, we can

estimate the cohesive energy U of the crystal as

N
U=">
2

> u(R) (3.3)
R
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where the sum in (3.3) is over the lattice. Substituting (3.2) we find

v () ()) -2 (G2 5 (F) - G5 (R)) o

where 7, is the nearest neighbor distance. We define the geometrical constants

A=Y (%")n (3.5)

R

The constants A,, can easily be evaluated numerically for different lattice types. The inert gases
crystallize in the fcc structure at low temperatures. For the fcc lattice one finds Ag = 14.44862,
Ao = 12.13188 Using (3.5) in (3.4) we find for the cohesive energy

U = 2Ne {Am (%)m — Ag (%)6} (3.6)

if we differentiate (3.6) with respect to ry, we find that the cohesive energy has a minimum for

24 1/6
Tnn = ( 12) o =1.090 (3.7)
As

for the fcc lattice. At this equilibrium separation we find U = —8.6Ne for the cohesive energy.

Another quantity which can easily be evaluated in this model is the bulk modulus

oP
B=-V— .
Vv (38)

where V' is the volume per particle and P is the pressure which at low temperatures reduces to

oUu

P:_W

It is convenient to introduce v = U/N and v, = V//N. We find

0%u

B=v.——
ve Ov.2

(3.9)

For the fcc lattice with a the side of the unit cube we have v, = a3/4, Ton = a/\/§, hence

ve =13, /v/2 and
0 V2 9

Ov, - 3ron Or

we find after some algebra
| de(4)?
0'3(14.12)%

In table 3.2 we compare the predictions of our simple theory with experiment

(3.10)
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Table 3.2: Some properties of inert gas crystals

Element | nn[A] | 7ha[A] | u[eV] | u[eV] | B[10° Pa] | B[10° Pa]
theory | exper. | theory | exper. theory exper.
Ne 2.99 3.13 | -0.027 | -0.02 1.81 1.1
Ar 3.71 3.75 | -0.089 | -0.08 3.18 2.7
Kr 3.98 3.99 | -0.120 | -0.11 3.46 3.5
Xe 4.34 433 | -0.172 | -0.17 3.81 3.6

We see that the agreement for r,, is quite good, the cohesive energy agrees well only for the
heavier elements and the discrepancy is somewhat larger for the bulk modulus. The systematic
dependence of the error on atomic mass suggest that the discrepancies have something to do with
the quantum zero point motion which decreases with mass. One whole, table 3.2 indicates that
the rare gas solids are well understood, at least qualitatively. There is one somewhat embarrassing
fact. The rare gas atoms crystallize in the fcc rather than in the hcp lattice. The latter has
Ao = 12.13229 and Ag = 14.45489. If one calculates the cohesive energy for the hcp lattice
one finds u = —8.61106 Ne which is slightly lower than the value v = —8.61077Ne one finds by
substituting (3.7) into (3.6). Since the difference is so minute, other factors such as the zero-point

energy and three-body corrections to the potential come into play.

3.2.2 Ionic crystals

As we shall see, the ionic crystals are another group of solids for which it is possible to construct
a simple theory of the cohesive energy that agrees reasonably well with experiment. To be specific
we consider a structure such as CsCl or NaCl, and assume that there are two singly charged ions
per primitive unit cell. There are N primitive unit cells in the crystal so that there are altogether

2N ions. The largest contribution to the cohesive energy will come from the Coulomb interaction

€1€2 1

(3.11)

4reg 7

between two ions of charge e; and es separated by a distance r.

Proceeding as in (3.4) we find for the Coulomb energy of the crystal

Ne? d d
Ucoul = " dneod (1 + RX#:O {m - E}) (3.12)
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Table 3.3: Madelung constant for some crystal structures

Structure o
NaCl 1.7476
CsCl 1.7627

ZnS 1.6381

The sum over R is over the Bravais lattice. The term inside the ()

d d
a:1+1§0{m—ﬁ} (3.13)
is called the Madelung constant. It is a purely geometric factor which depends only on the crystal
structure and not on the lattice constant. When evaluating (3.13) we run up against the problem
that the series is not convergent, and depending on the order in which the terms are summed one
can add up the series to different results. To see this let us attempt to evaluate the sum by splitting
it up into two contributions

Yimra &)= 2, wra 7t 2w )

R#0 R#0,R>Ro

d d Nd 2 0 R+d -R
~ Y pra M war [Tag [ anRE AR
R+#0,R<Ry R+d] R V' Jr>R, 0 —0 IR +d|R

For fixed angles ¢ and 6 the integrand will approach a value which is approximately independent
of R for large R. The value of the integral will thus depend on the shape of the crystal volume V.
The physical origin of this problem is that the long range of the Coulomb interaction small surface
charges can cause a significant change in the electrostatic potential, which in turn can effect the
sum in (3.13). At equilibrium the net charge and dipole moment of the crystal will be zero. The
series will be summed correctly if the terms are summed up in blocks that have no net charge,
dipole moment nor quadrupole moment. The sum over blocks will then be convergent, and the
value of this sum is the correct Madelung constant . The value of « for some crystal structures is
given in table 3.1

In addition to the Coulomb interaction we need to consider the core-core repulsion in estimating
the lattice constant, bulk modulus and cohesive energy. One way to proceed is to write the cohesive

energy on the form
Nae? NC
- (3.14)

B Areornn  (Tnn)™

U =Ucout + Ucore =
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where C is a constant. In the case of molecular crystals we chose m = 12 for convenience. Since
there is no free parameter associated with the Coulomb term we can now afford to use m as an
adjustable parameter. If we e.g. use experimental data to fit C and m to the observed nearest
neighbor distance 7y, and bulk modulus B ( 3.9) one can test the theory by comparing theoretical
values of the cohesive energy with experimental data. In the case of simple ionic crystals with
the NaCl structure, the theoretical and experimental values for the cohesive energy differ by at
most a few percent and it would appear that he simple theory we have outlined is qualitatively
correct. The form (3.14) for the core- core interaction is somewhat arbitrary. Another common

two parameter form for Ugppe is

Ucore = Aexp(—rnn/)\)

with A and A adjustable parameters. These parameters can be fitted in a similar spirit to what we
used for C and m of (3.14).

3.2.3 Other common forms of bonding

The covalent crystal can be thought of as giant molecules and the cohesive energy comes about
largely from the chemical energy of contributing bonds. This type of bond comes about by the
sharing of electrons between adjacent atoms, and it is quantum mechanical in origin. Reasonable
semi-quantitative results for the binding energy can be obtained using chemical rules of thumb, the

subject is beyond the scope of this course.

Similarly, there is no simple theory for cohesion in metals . The valence (or conduction) electrons
occupy delocalized orbits percolating through the crystal and can be thought of as constituting an
electron fluid which is confined within the crystal by the requirement of charge neutrality. There
are important contributions to the energy from the attractive interaction between electrons and the
positive ions and the repulsive electron-electron interaction. The Pauli exclusion principle raises the
energy by forcing the electrons to occupy electron states with a nonzero kinetic energy. Quantum
mechanical considerations play a dominant role and the electrons participate in a complicated
quantum dance in which they avoid each other and take advantage of the attraction to the ions.

This energy contribution is called the ezchange and correlation energy .

The hydrogen bond index Hydrogen bond is even more subtle, but is responsible for the com-
plicated structure of a number of important materials such as ice and many organic materials e.g.

the spatial configuration of proteins owes much to the hydrogen bond.
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3.2.4 Problems
Problem 3.2-1

Derive (3.10) from (3.7) and (3.9) and use the data in table (5.1) to verify the numbers in the 6’th
column of table (3.2).

Problem 3.2-2

The lattice parameters of KCI are given in table 5.1

(a) Calculate the Coulomb energy between a K™ and a Cl~ ion at the nearest neighbor distance

in units of eV.

(b) Assume that the parameters o and e of the van der Waals attraction between the ions
(the term proportional to 1/7 in the Lennard -Jones potential) are the same as for Ar (table 3.1).
Calculate the van der Waals energy between a K™ and a Cl~ ion at the nearest neighbor distance

of KCl. Compare with the result found under (a).

Problem 3.2-3

The cohesive energy of an ionic crystal can be approximated as

ae? C
U=N<{- —
{ 4dre,r + rm

where N is the number of unit cells, each assumed to contain one positive and one negative charge

+e. In the formula « is the Madelung constant (see table 3.3), r is the nearest neighbor distance,
and C and m are adjustable parameters. The cohesive energy of NaCl has be measured to be
U/N = —1.27 x 10718, (For details of the NaCl structure see table 5.1 and figure 2.6).

(a). Use the above data to determine the constants C' and m.
(b). Show that the bulk modulus can be determined from
oP U (m—1) ae?

B=_v% _vy —
ov ov?2 18  4me,rt

where V' is the volume of a crystal containing N unit cells.

(c). Calculate the bulk modulus of NaCL
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3.3 Stress and strain

In this section we will consider solids which differs from perfect crystals in that the atoms are
displaced from their equilibrium positions by a small amount!. We consider the stresses and
strains associated with static external forces, and postpone to section 4.1 a discussion of elastic
waves. One purpose in discussing the theory of elasticity is to lay the foundation for understanding
the strength of materials.

Consider a solid which is deformed by external forces. The position of a given atom in the
crystal will only differ from that of a perfect crystal by a small amount if the forces causing the
deformation are weak. We write

r=R+u

Here r is the actual position of an atom which was at R before the crystal was deformed. The
vector u(R) represents the displacement of an atom which used to be at R. If the displacement
vector u is constant the only thing which has happened is that the crystal has moved a distance
u, and there is no elastic energy associated with this. In elastic theory one is interested in how the

displacements change in space. We define the deformation tensor (or matrix)

duy  Ouy  du,

€zz C€ry Cxz o oz oz
_ ou Ouy du

€yz €Eyy Eyz - 8_’; 3_31 3—; (315)
ou, Ou du,
€2 €y €z 9: 9 05

Equation (3.15) can be written more compactly as

Oug
€ap = a—xa

where z, = z,y or z and ug = ug, uy or u,. Let X, ¥, Z be unit vectors in three Cartesian directions

(3.16)

inside a solid. After the deformation the new axes are given by the vectors x', y’ and z' (figure
3.2(a)). The three new axes need no longer be perpendicular to each other, but we do require the

deformation to be small. After the deformation we have for the new x-axis

Ju ou Ju
! — 1 [N —y A Z A
x (+8£L')X+ 8:UY+ oz
and in general
x/ L+ € €qy € x
"= €yz  l4ey € y (3.17)
z’ €2 €y l+e, Z

It is conventional to define the strain tensor e, in terms of the symmetric part of the deformation

! An elementary, but more detailed discussion than is presented here can be found in Barber and Loudon [3]. For

a more advanced treatment of elasticity theory see Landau and Lifschitz [7].



Static properties 39

A 4
1 Z

n
p4

(b)

Figure 3.2: (a) Distortion of a Cartesian coordinate system. (b) Rotation about the z-axis

tensor
€xz €Ezxy CExz €xx €Exy T €y €zz t+ €22
ey €yy €y | = | €xy + €ya Eyy €yz + €2y (3.18)
€zx €Ezy €2z €xz T €2z €Eyz T €zy €2z

The reason for this is that the anti-symmetric part of the deformation tensor is associated with a
rotation of the whole crystal and just as in the case of uniform translation there is no elastic energy
associated with a pure rotation. To see why, consider as an example a rotation of a vector R in the
z —y plane by a small angle d¢ as shown in figure 3.2(b). Before the rotation the polar coordinates

of the vector were r,¢.

R =x+y = rcos¢x + rsin ¢y
u =dR = —rsin ¢dpx + r cos pdopy = —ydox + xdoy

The associated deformation matrix is

€zx €zy €zz 0 do 0
€ye €yy €z | = | —dp 0 0
€z €zy €zz 0 0 O

We see that the small rotation is associated with a deformation tensor whose only nonzero
components are €y; = —d@, €y = d¢. The result of the small rotation is thus an anti-symmetric
deformation tensor.

The notation in (3.18) is the one commonly used. It is somewhat awkward in that it might
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Figure 3.3: Two distortions with the same shear strain.

have been more logical to define the strain tensor as
1 [0uq Oug
o8 =9\ 0ug 04

as is done in [7].
the opposite directions by a rotation by a small angle A. Using sin A ~ A, cos A ~ 1 we have

Consider next the shear deformation of figure 3.3 in which the z- and y-axes are deformed in
xX' =cosAX+sinAy~ x+Ay

y' = cos Ay +sin Ax ~ § + Ax

We find €,y = €y = A, €zy = €y, = 2, i.e. the deformation is symmetric.
If instead the deformation had been on the form depicted in figure 3.3(b), in which the z-axis

is held fixed but the y-axis is rotated clockwise by 2A we find

! ~
X =X

y' = cos(2A)y + sin(2A)x ~ y + 2Ax%

We now have €, = 0, €y, = 2A, but the strain tensor is unchanged e,y = ey, = 2A. The two
configurations have the same strain, since, for small deformations, they only differ by a rotation by

the angle A.
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Figure 3.4: (a) Dilation strain e,, = §. (b) For equilibrium the shear stress o,y = 0ys

Figure 3.4(a) depicts a situation in which there is a change of volume as a consequence of the
stretching of a crystal in the z-direction. Suppose a volume V is deformed into a volume V'. We

define the dilation as

(3.19)

The volume of the parallelepiped formed by three vectors a, b and ¢ can be written (see figure

2.1(b))

Az Gy a,

a-(ch): bx by bz

Ce Cy Cs
and we find
1+ €z €xy €xz
, JE— JE—
Vi=1l+6= €yz 14+eyy €y
€z €y 1+e,,

or

0 ~ €gy + €yy + €, + terms of order €

Only the diagonal components of the strain tensor gives rise to a volume change for small distortions.

A positive volume change is a dilation while a negative change is a compression.

Since the strain tensor is symmetric only six of its nine component are independent and it is
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Figure 3.5: Tensile stress

conventional to number the components:

€1 = €zzx = €z

€2 = Cyy T Ey

€3 = €zz = €z (320)
€4 =€y, =€y T €y

€5 =€zz =€zt €

€6 = €zy = €gy T €gy

In general one needs to apply a force in order to produce strain. Force per unit area is called
stress. We let 0,3 represent the force in the o direction acting on a surface whose normal is in
the § direction. If the force is parallel to the surface (perpendicular to the normal) we have shear
stress (figure 3.4(b)), while if the force is parallel to the normal (perpendicular to the surface) we
are dealing with tension or compression, (figure 3.5). The diagonal components of the stress tensor

represents tensile forces when positive, compaction forces when negative.

For a material in equilibrium the forces acting on a volume element must be balanced and there
can be no net torques. In the case of shear stresses this will give rise to a double couple situation
as depicted in figure 3.4(b). The consequence is that for equilibrated stresses the stress tensor will

be symmetric, i.e. 043 = 034. Of the 9 components of the strain tensor only 6 are thus distinct. In
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analogy with (4-8) we write for these components

01 = Ogzzx

02 = Oyy

78 T (3.21)
04 = O0yy =0z

05 =0gzz =0z

06 =0Ozy = Oy

In the theory of elasticity one assumes that stresses and strains are proportional to each other
according to Hooke’s law. Complications arise from the fact that a given component of stress may
affect more than one strain component and vice versa. For example, if a beam is elongated due to

tensile stress the cross sectional area will also change. The most general form of Hooke’s law is
6
g; = Z C’ijej (3.22)
j=1

The coeflicients C;; are called elastic constants .

3.3.1 Elastic constants for a cubic crystal

There are 36 possible elastic constants, but they will not be independent because of symmetry
requirements. The number of independent elastic constants will depend on the crystal structure
and we refer to [7] for details on this point. We will here limit our attention to crystals of cubic

symmetry and argue that there are then 3 independent elastic constants.

To be specific the [100],[010] and [001] directions are equivalent in a cubic crystal. We must
thus have Cj; = Ca = Cs3, C12 = Co; = Ci13 = C31 = O3 = (33 and Cyq = Cs5 = Cge. All
the other off-diagonal elastic constants will be zero. To see that C3s = 0, assume that a crystal is
strained so that eg = ey 7 0. A nonzero C3¢ would mean that there is a resulting tensile stress in
the z-direction. If we relabel the axes so that X — y, ¥ — —X we see that in the new coordinate
system the e4 strain will change sign (figure 3.6). If C3g # 0, the o, stress would also change
sign, say, from tension to compression. However, this is clearly impossible since the crystal hasn’t
changed. Similar arguments can be used to show that the remaining off-diagonal elastic constants

are zero. To summarize: for a cubic crystal Hooke’s law takes the form
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Figure 3.6: Relabeling the axes

[ oy W [ C1y Ci2 Criz 0 0 0 W [ e ]
o2 Ci2 Cii Ci2 O 0 0 €2
o3 | _ Ci2 Ci2 Cuu O 0 0 es (3.23)
o4 0 0 0 Cu O 0 e4
o5 0 0 0 0 Cu O 5
| 06 J | 0 0 0 0 0 Cu J | es

Cubic crystal under uniaxial compression strain

As an example consider a crystal with cubic symmetry which is put in a vise so that there is a
uniform compression in the [110] direction (figure 3.7). The dilation of the crystal is from the figure
given by -0. Let us find the components of the strain and stress tensor. We find €;, = €y = —%,

€xy = €y = %, so that the strain tensor becomes

)
-$ 5 0
e=| ¢ -2 0
0 0 0

giving e; = —%, ey = —g, es =0,e4 =0, es =0, eg = . Substitution into (3.23) gives
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Figure 3.7: Compression perpendicular to the (110) plane

= —3(C11 + C2)

45

01 = 0Ouz

oy =0y =—5(Cia+Cu)

03 =0z = —0C1 (3.24)
oy =0y, =0

o5 =05, =0

0p =0z =0Cu

Note that while there is no strain component in the z-direction there will be a compressional stress.

3.3.2 Elastic constants of an isotropic material

If we have the stress components in one coordinate system we can find the stresses acting on any
lattice plane by the rules of vector addition, taking into account the fact that stress is force per
unit area . E.g. when the Cartesian components of the stress is given by (3.24), the stress normal
to the (110) plane is,
1 1
Oop = —=—F=
V242

where the first factor of % comes from taking the component of a force in the z—direction (or y—

1)
(O'g;g; — Ogy + Oyy — ny) = —5(011 + Cia + 2044) (3.25)

direction). The second factor comes that the (110) plane of a unit cube has area /2. There will
be no shear stress on this plane in our example.
Consider next a pure compression ¢ in the [100] direction, e; = —4, ea = e3 = e4 = e5 = eg = 0.

We find for a cubic material
o1 = —0C11, 09 = —0C132, 03 = —6C12, 04 = 05 = 05 = 0. (3.26)

A polycrystalline or amorphous material will be isotropic. For an isotropic system we must

require that if the dilation is the same, the normal stress is the same, irrespectively of the plane



46 3.2 Stress and strain

chosen for the application of the strain. By comparing (3.25) with (3.26) we then find for an
isotropic system
C11 = Ci2 +2Cy (3.27)

It is conventional to describe an isotropic system in terms of the the two Lamé constants
A= 012, n = 044 (3.28)

From (3.27) an isotropic system must have Ci;; = A + 2u. We conclude that Hooke’s law for an

isotropic system takes the form

'011 [ A4+2 A A ooo}'eﬂ
09 A A+ 2u A 0 0 O €2
A A A+2% 0 0 0
7= s ° (3.29)
o4 0 0 0 g 0 0 eq
05 0 0 0 0 o 0 €5
o] L o 0 0 00 u]le]

Uniaxial stress of an isotropic solid.

An isotropic solid is subject to uniaxial tension T in the z— direction. We wish to find the strain
components.

Ifoy =T, 09 =03 =04 =05 = gg =0 we find the following equations for the strains

T = (A+2p)er + ez + des
0 =Xer + (A+2pu)es + Aes (3.30)
0 =Xer + Xea + (A +2p)es

in addition to e4 = e5 = eg = 0. The solution to (3.30) is

o T(A+ p)
P BN+ 2p)
—TX
—e3=— " 3.31
2= 203X + 2p) (3:31)
The Poisson ratio of an isotropic material is defined as
€2 A
_E__ 2 3.32
e1 2()\ + p,) ( )

The Young’s modulus is defined as the ratio of an uniazial stress T' and the tensile strain component
along T'. If the stress is acting in the x—direction we have Y = T'/e;. We find that

2
v _ BBA+2p)

3.33
N a (3.33)

for an isotropic material.
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3.3.3 Problems
Example problem:

Find the Young’s modulus of a cubic crystal with elastic constants Cy1, Ci2 and Cyy
(a) if uniaxial tension is applied in the [100] direction?
(b) if uniaxial tension is applied in the [110] direction?
(c) if uniaxial tension is applied in the [111] direction?

Check that your formulas reduce to (3.33) if the elastic constants satisfy (3.27)(3.28).

Solution

(a)
We have
T = Chie1 + Ciaes + Cioes

0 = 01261 + 01162 + 01263
0 = Ci2e1 + Ciaea + Crie3
0 = Cuseq = Cyge5 = Cuyeq

giving for Young’s modulus
T . 0121 + C11C12 — 20122

Y =—
e1 Ci2 +Cn

(b)
We have

T

3= Ciier + Crzez + Craes

T

3= Cize1 + Criez + Croes

0 = 01261 + 01262 + 01163

0 = Cyseq = Cyges

—_=C
B 44€6

To see this note that the net force on a (110) surface of a unit cube is Tv/2 = stress x area. This
force is distributed equally on the (100) and(010) surfaces, i.e. the net force on the (100) surface is
F = T/+/2 with components o; and o¢ equal F//2 = T//2. The solutions to the coupled equations

are

C2, + C12C11 — 2C%)

61262:2(
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T
20

Let us imagine that the origin of the unit cube is held fixed. The x—component of the distortion

at [110] is

€6

1
€xz T €zy = €1 + 566
similarly, the y—component is
1 1
€yy + €yz = €2+ 566 = €1 + 566

The distortion (e1+3eg)v/2 is in the [110] direction and the strain in this direction is (distortion /distance) =

e1 + 3es. The Young’s modulus (stress/strain) is thus

1

Ciu1

y —
+ 1
2(Cfl+01201172032) 4Cy4q

which simplifies to
4044(0121 + C12C11 — 20122)

T 2011Cu + CF + C12C11 — 2CF,

()
If the uniaxial stress in the [111] direction is 7', the force on a (111) surface is Tv/3. On the unit
cube this force is distributed equally on (100),(010) and (001) surfaces of unit area. The net force
on any one of these surfaces is thus Tv/3/3 = T'/+/3. This force has three equal components T'/3

in the z, y and z directions. We thus have

T
3= Ciier + Crzez + Croes
T
3= Cize1 + Criez + Croes
T
3= Cize1 + Cr2ez + Cries
T
3= Cuseq = Cyges = Cyyeg
The solution is
T
e = e = e = -
e 3(C11 + 2C12)
T
e = e = e =
41765 = e = 35

Again let the origin be held fixed. The x—component of the distortion at the diagonally opposite
[111] corner is

1
€re + €y +€T2 = €1 + §(e5+eﬁ) =e1tey
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Similarly the y— and z—components of the distortion will be
€yz + €Eyy T €y, = €1 + €4

€xp+ €yt €y =€1+ €4
The net distortion will be /3 x distortion component in either direction. The net strain will be
the net distortion/\/3 i.e. e; +es. We find

1
Yy =

1 1
3C11+2C12 + 3Cu4

which simplifies to
v — 3C4a(C11 + 2C42)
Cas + C11 + 2C12

Example problem

A polycrystalline material has Young’s modulus Y = 2.5 x 10! N m~2 and Poisson ratio 0.46.
(a) What are the elastic constants A and u?
(b) What is the bulk modulus?
(c) A person weighing 75kg stands on a lem® sample shaped like a cube, what is the change
in volume? what is the change in height?
(d) A sample of the material is dumped into the ocean and lands at the depth of 1000m. What

is the fractional change in volume?

Solution

()

A
046 = —
2(A 4 p)

A+2
y - HBA+2p)

=25 x 101°Nm 2
A4 p

giving

1= 0.856 x 101°Nm =2, X\ =9.846 x 10'° Nm 2

(b)

2
B=X\+ Sk =104 x 100N m =2
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75 % 9.8
10-4Y
(d) At 1000m depth the pressure is approximately 100 atm = 10" Nm~2. The fractional volume

Ah =0.01 x = 3um

change is then ¢ = —% =10"%

Problem 3.3-1:

An isotropic material with elastic constants A and g is put under uniform hydrostatic pressure

(01 = 09 = 03 = —P, 04 = 05 = 0¢ = 0). Show that the bulk modulus is
oP 2
B = — _— = —_ . 4
V8V A+ S H (3.34)

Problem 3.3-2:

A cubic crystal with elastic constants Ci1, C12 and Cyq is put under uniform hydrostatic pressure
(01 = 09 = 03 = —P, 04 = 05 = 06 = 0). Assume that the stresses act normal to the (100), (010)
and (001) planes. Find the bulk modulus.

3.4 Defects

So far, we have been concerned with perfect crystals in which the unit cell is repeated without
error in all directions throughout space. Any real crystal will contain imperfections. Many bulk
properties, such as the elastic behavior, discussed in the previous section, and the thermal properties
to be discussed later are relatively insensitive to a small amount of imperfections. Other properties,

such as the strength of materials, and electric conduction, are strongly affected by defects.

3.4.1 Point defects

Figure 3.8 illustrates four different types of point defects. Vacancies are simply missing atoms or
ions. If the removed atom or ion is allowed to migrate to the surface we have a Schottky defect.
On the other hand, if the missing atom is stuck in an interstitial position we have a Frenkel defect.
Another common form of defect, is an impurity. A substitutional impurity simply consists of a
foreign atom replacing a host atom on one of the lattice sites. This is the common form of impurity
if the guest and host atoms are of comparable size. If the impurity atom is much smaller than
the host it can sometimes find room in the empty space between the atoms, we then say that the

impurity is interstitial. The point defects of figure 3.8 are always present in small amounts in a
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Figure 3.8: Point defects: (a) Schottky defect, (b) Frenkel defect, (c) Substitutional impurity, (d)

Interstitial impurity
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crystal at equilibrium. We will here concentrate on vacancies. Let E, be the vacancy formation
energy, which for a Schottky defect is the energy of removing an atom or ion and placing it on
the surface of a crystal. The equilibrium concentration ny of Schottky vacancies will then be
approximately given by a Boltzmann factor
NV —,BE'
n = — =€ v
VTN

where Ny is the number of vacancies, N the total number of sites in the crystal and g = kBLT'

Typical vacancy formation energies for metals and ionic crystals are in the range 0.5-1.5 eV. At
room temperatures and below the equilibrium vacancy concentration will be very low (at room tem-
perature 3 ~ 40 eV ~! and e740 ~ 4. x 10718). At elevated temperatures the vacancy concentration
will be much higher, e.g. at 1000K the Boltzmann factor is ~ 107°.

In an tonic crystal the positive ion is often smaller than the negative counter ion. The vacancy
formation energy for the positive ion may then be significantly smaller than the corresponding
energy for the negative ion. If this leads to a charge imbalance a huge negative electrostatic
potential will develop in the interior of the crystal and prevent the escape of any more positive

ions. We can thus write

Eli=¢+ep; E_=¢€_—ep

where E, (E_) is the true vacancy formation energy of a positive (negative) ion and e, and e_
are the corresponding quantities at constant electrostatic potential, e is the ion net charge and ¢ is
the electrostatic potential difference between surface and bulk. This potential will be established
by a layer of surface dipoles called the Debye layer and as a consequence we have for the positive

(negative) ion vacancy concentration ny (n_)
— o lepte)
ny~n_=e 2 (3.35)

non_ = e Blerte-) (3.36)

Equation (3.37) is a special case of the law of mass action . One way of introducing a larger
equilibrium vacancy concentration is by doping. Consider e.g. a KTCI~ crystal that contains a
concentration ng, of calcium impurities. The calcium ions are divalent and as a consequence we
must replace (3.35) by

Ny —N_ =Ngg (3.37)

while (3.36) remains valid. If nc, is much larger than the equilibrium vacancy concentration in the
absence of doping (3.36) and (3.37) will give ny ~ nc,. One consequence of this is that although

a calcium ion is heavier than a potassium ion the density of a crystal will be reduced by doping.
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Figure 3.9: Potential energy barrier for atom next to vacancy

In practice, a crystal at room temperature and lower will often have a vacancy concentration
which is much higher than predicted by equilibrium theory. To understand how this comes about
we must consider vacancy diffusion. A vacancy will move to a neighbor site in a crystal if an atom
from that site jumps into the empty site. In order to do so it will, however, have to overcome an
energy barrier Eg figure (3.9). We write for the jump rate p (probability per unit time that a
neighbor will jump into the empty site)

p=ve PEB (3.38)

Here v is the attempt frequency, the rate at which the atom or ion attempts to overcome the
barrier. This rate is of the order of a typical lattice vibration frequency (see section 4.1). The
Boltzmann factor exp(-8Ep) represent the probability that an attempt to jump over the barrier
will be successful. We let n(z) be the number of vacancies per unit volume, and assume that
the concentration depends on a coordinate x in a direction normal to a family of lattice planes.
The concentration of vacancies per unit area in these planes will be a n(z) where a is the spacing
between planes. The particle current density, i.e the number of vacancies per unit area moving in

the positive = direction minus the number moving in the negative z-direction will then be

d
j= —azﬁl/e_ﬂEB (3.39)
Conventionally one writes
dn
i = —D— A
j o (3.40)

where D is the diffuston constant. We thus have

D = va%e PPB (3.41)
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A typical value for the factor va? for a metal or ionic crystal is 10 ®m?2/s. The energy barrier
E'p will normally be a few tenths of an electron volt. At room temperature the Boltzmann factor
exp(—BEg) may then be of the order 101, yielding a diffusion constant of the order 1022 m?/s.

You will have learned in other courses that the typical time ¢ it takes to travel a distance x will be
x ~ VDt

If  is 1mm = 10~3m, we find t ~ 10'6s, which is a significant fraction of the age of the universe.
On the other hand if we increase the temperature from room temperature to 1000K the diffusion
time will be reduced to times of the order days. Typically a crystal will be grown from a melt of
the order 1000K, at these temperatures the vacancy concentration will be quite high. The extent
to which the vacancy concentration will have time to reach its equilibrium value, as a crystal is

cooled down, will then depend critically on the cooling rate.

3.4.2 Dislocations

The type of defect that influences the mechanical properties of a material the most is dislocations.
Imagine that we remove a half-plane of atoms in a family of lattice planes as shown in figure 3.10.
The edge of this half-plane is perpendicular to the plane of the figure. The associated line defect
is called an edge dislocation . In the immediate neighborhood of the edge there is considerable
distortion of the crystal, while further away the crystal appears almost regular. The presence of
the dislocation will still be felt far away. To see this, imagine the following “walk” on a lattice
plane perpendicular to the edge: go 8 lattice spacings W, then 8 lattice spacings S, then 8 spacings
E and finally 8 spacings N. If this walk takes place in an undistorted part of the crystal it would
take us back to the starting point, but if we go around an edge dislocation we would be one lattice
spacing short. The vector b by which the walk is short of returning is called Burger’s vector .

A screw dislocation can be obtained by making a cut along a half-plane and shifting the parts on
either side by one lattice spacing (figure 3.11). After this distortion the lattice planes perpendicular
to the edge of the cut forms a helicoidal surface (somewhat analogous to the parking floors in a
parkade). Both in the case of edge and of screw dislocations, we refer to the region near the edge
of the cut, where the crystal is most distorted, as the core. If we make the same walk as we did
before, around the edge, we would be short one lattice spacing parallel to the edge of the cut. The
Burger’s vector of a screw dislocation is parallel to the dislocation core for a screw dislocation, and
perpendicular to it for an edge dislocation. In both cases the associated strain away from the axis
will be approximately 1 lattice spacing divided by the distance to the axis, i.e the strain field will
be inversely proportional to the distance to the dislocation core. Since the strain falls off so slowly

with distance the energy associated with dislocations will be large compared to vacancies. Thermal
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Figure 3.10: Edge dislocation

energies are therefore too small to create dislocations. Once formed they can migrate, but not be
got rid of, without a major rearrangement of the atoms in the crystal. The pattern of dislocations
depends on the history of the crystal. It is almost impossible to grow a dislocation free crystal, and

further dislocations are formed in a crystal subject to bending and other forms of severe stain.

3.4.3 Problems

Example Problem

A NatCl~ crystal contains small amount of the radioactive isotope Na?2. The sodium ions in
NatCl™ occupy a fcc lattice. Assume that the Na2?? ions can jump to one of the 12 nearest
neighbor positive ion site, only if it contains a vacancy, otherwise it is stuck. Assume that the
effective value for va? in the formula (3.40) for the diffusion constant is 10 ®m?/s x the positive
ion vacancy concentration. Also assume that the jump activation energy Ep is 0.5eV. Estimate
the diffusion constant for Na?? at 600K if

(a). The vacancy concentration is e 5€ with e = 1eV.
(b). The crystal contains 1% Ca™*t.

(c). How long would it typically take for a Na?? ion to diffuse 1mm in the two cases.



56 3.8 Defects

/N’:%
)
OO
OO
XK
OO
MK
ORI
AN
N"O‘“" 4
OO
OO0
RN
I
g
B
i
"

AT

[/ /][]
[/ /][]
[/ /] )]

NAVAAVAATA

AVAAVANANAY

AN

AN
AN

/S
(/L))
[/ /] ]/

[/ /][]

AV

AN

[/ /[ /[
AN

AV

AN NN

Figure 3.11: Screw dislocation.

Solution

Writing n for the vacancy concentration we find for the diffusion constant
D = va*ne BB

We have kg = 0.86205 x 10 %eV K1

(a) We have
1+0.5

600 x 0.86205 x 104

D::106exp( )::25x10wnﬁsl

(There is some room for interpretation of the effective jump rate prefactor va?: is it per neighbor, or
per jump ”in the right direction”? Since equation (3.41) was derived for one-dimensional diffusion
and is applied to the three dimensional case. The difference is qualitatively insignificant considering
the large exponents in the Boltzmann factors and the uncertainty in the activation energies)

(b). With 1%Ca*.

0.5
600 x 0.86205 x 104

D::104exp( )::&3x10—mnﬂs—1

(c). If z is the distance the time will typically be

tN:E
ND—

2 4 x 10%2s =~ 10%years in case a
1.6 x 10%s =~ 18days in case b
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Problem 3.4-1:

Consider a crystal which contains two edge dislocations with cores parallel to the z-axis. One
cut-out half-plane extends from the origin in the positive z-direction. The second dislocation core
intersects the  —y plane at L(—& 4 g), where the distance L corresponds to many lattice spacings.
Find the Burger’s vector for a counter clockwise (seen from the positive z-axis) path around (i) the
first dislocation, (ii) the second dislocation, (iii) both dislocations if the second half-plane that has
been cut out extends

(a). in the negative z-direction

(b). in the positive y-direction.

3.5 Strength of materials

If a material is put under sufficient stress it will undergo permanent damage and the material will
not return to its original shape if the stress is removed. The theoretical shear strength of a perfect
crystal can be estimated by the following simple argument. Consider two nearby lattice planes in a
sheared crystal as seen in cross-section in figure 3.12. We assume that in the undistorted crystal the
lattice planes are directly above each other, and let x be the shear displacement of an atom in one
lattice plane relative to the next plane a distance d below. The lattice spacing in the x-direction is

a. The strain is e;y = eg = z/d. For small displacements the shear stress will be

Gz
O'xy = G€$y = 7 (342)

where in our case the shear modulus is G = Cgg. If we increase the strain, the shear stress cannot
continue to increase linearly with the strain without limit. When the relative slip between the two
planes reaches a full lattice spacing we recover the periodic crystal and the stress is zero. The stress
will also be zero, corresponding to unstable equilibrium, when the successive planes are slipped by
one half lattice spacing as shown in figure (3.12). We conclude that the stress must be a periodic
function of the strain with period a. The simplest way to model this is to assume a sinusoidal
variation of the stress with the strain. We require that we recover (3.42) for small strains and

obtain
Ga 2rx

Equation (3.43) predicts that there is a mazimum shear stress o, beyond which the crystal will
yield. In our simple model this stress is given by

_ Ga

7= 2rd

(3.44)



58 3.4 Strength of materials

“«a—>

AN RN AN AN

X | / | X | X |

\ ’ \ /T \ ’ \ ’

- - - - ~ -
<>

o O 0O O

Shear stess o

<«—2o

Displacement x

Figure 3.12: The shear stress is a periodic function of the strain.

Table 3.4: Yield stress and shear modulus for aluminum

Material GNm=™2 | o. Nm=2 | G/o.
Single crystal Al 2.8x101% | 4.0x10° | 60 000
Pure polycrystalline Al 2.5 x 10 | 2.6 x 107 | 900
Commercial drawn Al wire | 2.5 x 1010 | 3.8 x 107 250
Duralumin 2.5 x 100 | 3.6 x 108 70

Since a and d will be about the same size, (3.44) predicts that the shear modulus should at most
be one order of magnitude larger the the yield stress. This prediction is very far from the truth. In
table 3.4 we list some typical values of G and o, for aluminum samples of varying quality. Similar
values would obtain for other materials. We note that not only is the disagreement between theory
and experiment quite bad. More embarrassing, considering that the theory was developed for a
perfect crystal, is the fact that the disagreement gets worse the better the quality of the crystal. It
is now generally accepted that shear slip is mediated by dislocations. Consider the edge dislocation
of figure 3.10. If the edge is slipped, one lattice spacing at the time, to the right, this is equivalent
to a shear deformation of the top part of the crystal, relative to the bottom part by one lattice
spacing. Since it is only the edge which is moving, and not the whole lattice plane, the required

stress is much less than it would be in a perfect crystal without dislocations.

An analogous situation occurs if one tries to pull a heavy carpet across the floor in an empty
room. Brute force pulling requires more strength than most of us possess. A much easier method is
to produce a wrinkle at one end of the carpet and push the wrinkle across. We can now understand
why o, increases in a crystal with an increasing number of imperfections. Dislocations can not

easily cross grain boundaries of a polycrystalline material. The strain produced by drawing an
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aluminum wire will produce a tangle of dislocations that pin other dislocations. The process of
increasing the strength of a material through dislocation producing deformations is called work
hardening. The impurities of an alloy such as duralumin also act as pinning centers. Returning to
our carpet analogy, the wrinkle method of pulling a carpet does not work too well if the room is
full of furniture.

A ductile material can be subjected to plastic deformation, if the strain exceeds an elastic limit.
Figure 3.13 describes the outcome of a typical tensile test of a ductile material. In the test a
cylindrical sample is subject to uniaxial tension o, and the strain component € = ey; is measured.
We start with an unstressed sample (a). When the stress is increased to (b) the behavior is elastic,
the stress is proportional to the strain as predicted by Hooke’s law, and the sample will return to its
original shape if the stress is released. The point (b) is called the yield point. Beyond this point the
relationship between stress and strain is nonlinear. If the stress is released at (¢) the sample will
not return to its original shape but there will be a plastic deformation. We now must distinguish
between two ways of registering the stress. The true stress is defined as

tensile force
actual area

and the engineering stress is given by

_ tensile force

ortginal area
The dashed line in figure 3.13 represents the true stress, while the full line corresponds to the
engineering stress. The marked difference between the two curves arises because the reduction in
cross sectional area tends not to be uniform, but concentrated in a “neck”. If the stress is reapplied
at (d) the new yield point (e) will typically be somewhat higher than the old one, due to work

hardening. Finally there is a maximum stress which the sample can endure before it breaks.

Some materials are brittle and break suddenly rather than undergo plastic deformation. Im-
portant examples are glass and rocks. In brittle materials small voids called cracks develop when
a sample is stressed. In order to explain the importance of cracks we need to comment on how
nonuniform stress is distributed. Consider a medium which is subject to a spatially varying stress
consisting possibly both of a shear component and tensile stress. The requirement that forces
and torques are balanced, leads to a symmetric stress tensor which satisfies the partial differential

equation

> 995 _, (3.45)

where i = z,y or z. One can solve (3.45) for a spherical cavity. The boundary condition is uniaxial

tensile stress o4 far away, and zero normal component of the stress on the cavity surface. At the top
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Figure 3.13: Stress vs. strain for a ductile material.

and bottom there will be a compressive stress equal to o.. At the equator the stress is tensile and
enhanced to 304. If the void is an oblate ellipsoid of revolution with the tensile stress oo, applied
parallel to the minor axis b, the stress enhancement at the equator is even more pronounced and
given by

Oeqg = Ooo(l+ %)
where c is the major axis.

In the case of a long thin crack the stress enhancement can thus be enormous and we see that
once a crack opens up, the stress enhancement at the tip makes it tend to grow, drastically weak-
ening the strength of a sample. As shown in figure (3.14) there are three main crack propagation
modes. We note that the deformation associated with a mode II crack is the same as for an edge
dislocation, while a mode III crack is analogous to a screw dislocation. A complication is that the
material near the tip of a crack may be subject to chemical corrosion. As anyone who has had to
cut a glass pane to fit a frame would know, it is easier to crack glass when it is wet. Corrosion
processes can be very slow and this can give rise to the phenomenon of static fatigue. A window
pane subject to a steady stress may suddenly, for no apparent reason, decide to shatter. Similarly
a ductile material may become brittle if the dislocation density gets to high due to excessive work
hardening. This phenomenon is called dynamic fatigue. . For further reading on strength of ma-
terials see the book by Callister [1]. For a discussion of ductile materials see also the article by

Sprackling [10], a readable discussion of the properties of brittle materials can be found in Scholz

[9].
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Figure 3.14: The three crack propagation modes.

We conclude this section by defining a few more different properties associated with the strength

of materials:

e Hardness is a measure of the resistance of a material to plastic deformations such as dents
and scratches. A somewhat arbitrary but often used index of hardness is the Mohs scale.
This scale is based on the idea that a harder material can scratch a softer material. The
hardest known material is diamond which is given an index of 10 on the Mohs scale. Next
are corundum and sapphire with 9, topaz with 8, quartz 7, orthoclase (a feldspar mineral)
6, apatite (calcium fluorophoshate) 5, fluorite 4, calcite 3, gypsum 2 and talc 1. There are
a number of more quantitative hardness measures such as the Brinell hardness number. In
a Brinell test a spherical indenter of tungsten carbide or hardened steel with a diameter of
typically 1lem is applied for a specified length of time and with a specified force. The diameter
of the indentation is then measured and converted to a hardness number using a chart. The

Rockwell hardness test is a similar method.

¢ Resilience is the ability of a material to return to its original shape after being bent, com-
pressed or stretched. The resilience modulus U, is the energy per unit volume which is stored

and can be retrieved before the yield point (point b in figure 3.13). This energy is given by
€y 1
U, = / ode = ~oydey
0 2

where o and € are engineering stress and strain. A related property which is more difficult to
quantify is Toughness. It is defined as the ability to absorb energy up to fracture or other

failure.
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3.5.1 Problems
Problem 3.5-1: Weibull statistics

There are a number of situations, e.g. in problems involving fracture or failure where what matters
is not the average property of the system, but rather the behavior of the weakest link. An empirical
approach to such problems was taken by the Swedish engineer Waloddi Weibull.

Consider a fiber of length n in some unit. Assume a segment i of unit length has a yield
threshold stress o; which may depend on microscopic flaws and will vary from segment to segment.

We assume the probability that a segment breaks with a stress o is given by
P(o)=1—e*)

The probability that the link will not break is then e~%() where ¢(c) is some monotonically
increasing function of o. If any one of the links fails the whole chain fails. Therefore, the probability

that the fiber survives is e="?(?) and the probability that it will break under stress o is
Pohain = 1 — e 00 (3.46)

Weibull suggested the form
¢(0) = alo — 09)?; foro >op (3.47)

where o is some minimum failure stress (which may be zero). The exponent p must be expected
to be a property of the fiber material (Weibull found p ~ 3 for steel, and p =~ 1.46 for cotton.).
The proportionality constant a in (3.47) will from (3.46) not be a material property, but will also

depend on the unit of length chosen and oy will depend on the manufacturing process.

(a). Iflength is measured in feet rather than meters, and stresses in [b per square inches
rather than N'm~2 by what factor will the constant a change for steel? for cotton?

(b). A 10m long fishing line will withstand a certain force 99 times out of a hundred.
What is the probability that a 100m long fishing line of the same material can support
the same force?

(c). Plot the probability that (i) a steel and (i) a cotton fibber will support the

stress o in units where a = 09 = 1. The length of the fiber is 1 in these units.



Chapter 4
Electrons and phonons

We will in this chapter treat the properties of solids related to the motion of the atoms or ions and
of the electrons. The vibrations of atoms and ions in the lattice will be discussed mainly for their
importance in understanding the thermal properties of solids. In the case of the electrons we will

also be concerned with the electric and optical conductivity.

4.1 Lattice vibrations

In our discussion of the structure of solids we have assumed that the atoms (or ions) sit still at their
equilibrium positions. We now wish to turn to lattice vibrations. Our formal development will be
based on classical mechanics and the basic assumption of a harmonic lattice. At low temperatures
the theory must be modified to take into accounts quantum mechanical effects and we introduce the
concept of phonons. We then show that most thermal properties of solids can be explained by an
idealized model due to Debye. Two important effects which cannot be explained in the harmonic
approximation are thermal expansion and the lattice contribution to thermal conduction. We come

back to these effects towards the end of this section.

4.1.1 The harmonic approximation

In order to establish a manageable formalism we will make two important simplifying assumptions
which allow us to picture the vibrating lattice as a system of masses and springs. Firstly, since the
electrons in a solid are very light compared with the atoms, the electrons will respond very fast to
a disturbance of the ion positions. It is thus natural to make the approximation that the electrons
will adjust instantaneously to the ion position when the ions move. This implies that the potential

energy of the ions can be expressed as a function of the ion coordinates alone.

63
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Let R; be the equilibrium position of the ¢’th ion, u; the displacement of this ion from the rest

position. The actual position of the ion is then

r;=R;+u;

We write u;q (0 = z,y, z) for the components of the displacement. The components of the force

on the ¢’th ion is

oV (ry,re,..ri,.rnN)

fia = - 87'1'0;
or in the more compact vector notation
ov
fi=—— 4.1
= 5 (@1)

For small amplitude vibrations we can make a Taylor series expansion of the potential energy

function



Electrons and phonons 65

oV (ry,rs,..r
V(I‘l,I'Q,..I‘N) :V(Rl,R2a--RN)+Zuia ( 1(9 2 N) +
i Tia ria=Rio foralli
1 0?V (rq,r2,..r
*3 > tialjp (; 1 32- ») T (4.2)
ijaf TiaOTjp ria=R;q for all i

When all the ions are at their equilibrium positions, the net force (4.1) on them is zero. The second
term on the right hand side of (4.2) must therefore vanish. The second assumption necessary to
establish the harmonic approzimation consists of stopping at the last term on the right hand side of
(4.2). This allows us to think of the lattice can be thought of as made up a set of masses connected

by springs. Each spring is represented by a spring constant

9’V (ry,ro,---TN)

P
87‘m 87‘]' B

ijaB = for all ¢ (4.3)
Tia =Riq
The equation of motion for the a’component of the displacement of the i’th atom is then according
to Newton’s second law.
miiia = fm = — Z @ijaﬁujﬁ (4.4)
B
Because the motion is three dimensional, the notation is a bit cumbersome, and it is instructive to

consider some simple special cases before we return to the general case (4.4).

4.1.2 Harmonic chain

Consider a long chain consisting of N masses m connected by springs with spring constant K (figure
4.1). Let a be the equilibrium spacing between the masses, so that = na is the equilibrium position

of the n’th mass. The actual position of the n’th mass is
rn = na + u(n)

and the potential energy of the spring connecting the n’th and the (n + 1)’st mass is 5-[u(n +1) —
u(n)]?. We assume periodic boundary conditions, i.e. we let the N’th mass be connected with the

first mass. Formally, we do this by requiring that u(N + 1) = u(1) and in general
u(N +n) =u(n) (4.5)

The force on the n’th mass is K[u(n + 1) + u(n — 1) — 2u(n)] and Newton’s second law gives rise

to a coupled set of differential equations

mii(n) = Ku(n + 1) + u(n — 1) — 2u(n)] (4.6)
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Figure 4.1: The harmonic chain

We can find solutions to (4.6) on the form
u(n) = Aeinka=«t) (4.7)
where k is the wave vector . Substitution of (4.7) into (4.6) yields

_mw2A€i(nka7wt) — AK {ei[(n+1)ka7wt} + ei[(nfl)kafwt] _ 2ei[nka7wt}}

or
2K
2
=—[1- k
w - [1 — cos(ka)]
We use the trigonometric identity
2 sin2(%“) = [1 — cos(ka)] (4.8)

By convention the frequency w is positive and we find

K
w=24/—
m

ka

sin —
2

(4.9)

The periodic boundary condition (4.5) determines which values of k are allowed. Substitution of
(4.7) into (4.5) gives
otkNa _

ork = ?V—"é with [ an integer. From (4.7) we see that I’ = [+ N and [ give rise to identical solutions,

and we can without loss of generality restrict [ to the values

N N N
11,2, 1 4.10
272 ) = 2 ( )

From (4.10) we note that there are N distinct values of [. This result is compatible with the fact

[ =

that the system has IV degrees of freedom. The restriction on the wave vector is

Tek<t (4.11)
a a
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Figure 4.2: The harmonic chain

We note that G = %T" is a reciprocal lattice wvector of the one dimensional lattice consisting to the
chain atoms being located in their equilibrium positions. The restriction (4.11) is then equivalent
to saying that k is within the Brillouin zone. The relationship (4.9) between frequency and wave
vector is plotted in figure (4.2) The physical displacement is, of course, real. Since the differential
equation (4.6) is linear and real, both the real and imaginary part of a complex solution are also
solutions. With these considerations the general solution to (4.6) is then with A, B, C; and S;

arbitrary constants of integration

27in . 2min
u(n) = [Cz cos( 5 — wit) + Sysin(—— — wit) | + A+ Vit (4.12)
The case [ = 0 in (4.12 requires special attention. If [ = 0 the wave vector k¥ = 0. This means that

all displacements u are the same. The differential equation (4.6) now becomes
mii(n) =0

with solution u = A4Vt where A and V are constants. Usually the situation where the chain moves
uniformly (as a whole) is not of much interest in lattice vibrational problems, but it is important
when considering the recoil in the decay of a radioactive nucleus in the lattice (as in the Mossbauer
effect), or in particle detectors analyzing or particles from cosmic rays or high energy accelerators.

It is instructive to solve the harmonic chain problem with various boundary conditions. First,
consider the situation where we ”pluck” the chain by displacing the atom at the origin by a fixed

amount §.
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The initial conditions are then

£
—~
=
~
I
=
I
&
£
—~~
S
~
I

0)=0 for n#0 (4.13)

u(n,t =0) =0 foralln (4.14)

It is convenient to use the complex form for the normal mode expansion

N/2—1
u(n) = Z AyetCri/N=wt) 4 4 4 yy
I=—N/2,l#0
giving
N/2-1
u(n,t =0) = Z AefCmlN) 4 4 (4.15)
I=—N/2,I#0
N/2-1
O=d(nt=0)= > —iwAeCm/N vy (4.16)
I=—N/2,I#0

The fundamental formula for inverting discrete Fourier series is

N—_1 1—e2mi=1y
Z p2mi(l=U)n/N _ - mamyw = 0 for 17 v (4.17)
— N; for 1=1

Equating (4.13) and (4.15) and multiplying by e/™*/N and summing over n gives

A:m:%

i.e. all modes are excited with equal amplitude. The actual motion is the real part of the solution
giving
5 N/2-1
u(n) = N Z cos(2mnl/N — wt) + 1 (4.18)
I=—N/2,l#0
Next consider the case where the atom at the origin is given a "kick” so that it has velocity v
(in units of lattice spacings per unit time) starting at the origin with all the other atoms at rest.

The initial condition is now
w(0,t =0) =v; u(n,t=0)=0 forn#0 (4.19)

u(n,t =0) =0 foralln (4.20)

We find equating (4.16) and (4.19) using the Fourier transform formula (4.17)

v
V=%
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and
_ %)
 wN

The actual motion of the masses is obtained by taking the real part or

Ay

v N2l
u(n) = ~ |- Z —sin(2mnl/N — wt) +t (4.21)

I=—N/2,1£0

Returning to the general case: we refer to the individual terms in the | | of 4.12 as normal modes
and to (4.11) as a normal mode expansion.

From (4.9) we note that there is a maximum frequency

K
Wmae = 2 E

If an atom is subject to a periodic force with frequency w < wpqe, this will set up traveling waves

with wave vectors satisfying (4.9). The phase velocity of this wave is

2 |K

. ka
sm(7)

jod
k k\ m

ow K
Vg = o = ay/ o cos(ka)

Note that the group velocity — 0 as w — Wmqaz- A local disturbance with frequency > wpq, cannot

Up

while the group velocity is

propagate through the lattice, but stays trapped. In the long wave length limit £ — 0, A = 27 /k —

oo the phase and group velocities approach a common limit

We refer to long wave length lattice vibrations as sound waves with s the speed of sound.

4.1.3 Diatomic chain

We next consider a slightly more complicated case in which there are two atoms per unit cell with
mass m and M, respectively. The equilibrium size of the unit cell is a and nearest neighbors are
connected by springs with spring constant K (see figure 4.3). The equations of motion for the two

masses are
miip = K[ua(n) + uz(n — 1) — 2uy(n)]

Miy = Klui(n + 1) + ui(n) — 2ua(n)] (4.22)
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Figure 4.3: The diatomic harmonic chain

The amplitude of vibration for the two masses will now be different and we look for solutions of

(4.22) on the form

up = 61ez(kna7wt)

up = egetkna—wt) (4.23)
Substitution of (4.23) into (4.22) gives
(mw? — 2K)e; + K(1 4+ e #%ey =0
K(1+e*)e; + (Mw? —2K)es = 0 (4.24)
For (4.24) to have a solution we must have

2 _ 2K K 1 + —ika
e . (1+e7) =mMw* — 2K (m + M)w® + 2K?[1 — cos(ka)] = 0
K(1+e*e)  Mw? - 2K

Using (4.8) we find the solutions

K 4Mm ka
2 f 2
w'=—(1=x4/1 - ——5sin“(—

u( \/ (M—i—m)2S1 (2)

mM
m-+M

for the case of the monatomic chain (4.10),(4.11). For each allowed wave vector there are now two

is the reduced mass. The allowed values of the wave vector k are the same as

where p =

frequencies.
The top branch of figure 4.4 is called optical and the bottom branch acoustic. The highest
allowed frequency wmez = ,/% occurs for k= 0. At the zone boundary k= 7 the frequencies are

given by
K M —
W = = (1| 7—)
7 M+m
and the two roots are w = % and w = % Suppose M > m. We see that there is an

intermediate band of frequencies

2K cw< 2K
_— w _—
M m
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Figure 4.4: The frequency vs. wave-vector for the diatomic chain.

for which no lattice wave can propagate. Finally let us consider the acoustical branch near k = 0.
We find

Ka?
W~ _
2(M +m)
and the sound velocity is given by
Ka?
§=4|—0———
2(M +m)

Once the frequencies are found one can find the ratio €;/e2 and thus get a qualitative idea of the

nature of the vibrations. Simple calculations show that for the acoustic branch near k = 0 €1 ~ €3

i.e. the light and heavy atom vibrate together. As one moves up the acoustic branch the amplitude

€1 of the lighter atom is reduced and at the Brillouin zone boundary only the heavier atom moves.
T

Along the optical branch near k¥ = 7 only the lighter atom moves while near & = 0 neighboring

atoms move in opposite directions in such a way that the center of mass is stationary.

4.1.4 Lattice vibrations in three dimensions

We now return to the general problem (4.3) (4.4). If the crystal potential is known, e.g. if the atoms
interact pairwise via a Lennard—Jones potential (3.2) , the force constants (4.3) can be computed by
straightforward if tedious algebra. Suppose we are dealing with a crystal in which the equilibrium
positions of the atoms form a Bravais lattice. In analogy with (4.7) we assume a solution to (4.4)

on the form

u;j = éelleRimwt) (4.25)
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From the translational symmetry of the crystal it is clear that the force constant (4.3) is a function
of the distance s = R; — R;.

cI:'ijozﬁ = cI)a,B (S)

Substitution of (4.25) into (4.4) gives

—mw?e, = Z‘I)ag ’ks

The Fourier transform of the force constant matrix ® is the dynamical matriz

k) = Z @ag(s)eik's

The determination of the normal mode frequencies involves solving the determinantal equation

Dyz(k) — mw? Dgy(k) D,.(k)
Dy, (k) Dy, (k) — mw? Dy, (k) =0 (4.26)
D,,(k) D,y (k) D..(k) — mw?

The dynamical matrix will be real since if s is a Bravais lattice vector so is —s. From (4.3) we see
that the dynamical matrix will be symmetric. It is a theorem of linear algebra that a real symmetric
matrix has positive eigenvalues and that the eigenvectors € will be orthogonal to each other. The
cubic equation which results when one multiplies out the determinant in (4.26) will thus have three
positive roots for w?. If we take the square root of w? we thus get real frequencies. One can show
that for small values of k one of the eigenvectors € will be parallel to k, i.e. the vibrations will
be longitudinal. The two other modes will have € perpendicular to k and the vibrations will be
transverse. In the general case the amplitude vector will not be exactly parallel or perpendicular
to k, but the three vectors € corresponding to a given k will be orthogonal to each other.

The restrictions on the allowed values of k are analogous to what we had in the case of the
linear chain. It is clear from (4.25) that adding a reciprocal lattice vector to k will not lead to any
change in the displacement vector u. We thus restrict k to the Brillouin zone . The allowed values
of k inside the Brillouin zone depends on the boundary conditions. Suppose a crystal is made up
of L unit cells in the directions of each of the three primitive lattice vectors a, b and c, and we
apply periodic boundary conditions . A little reflection should convince the reader that the allowed
k-values can be written

_m n2 n3
k=—7A+ 2B+ C (4.27)

where ni, ns and ngz are integers and A, B and C are the reciprocal lattice vectors. Just as we

found in connection with our discussion of (4.10) the total number of allowed k-vectors inside the
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Brillouin zone will be L x L x L = N, where N is the total number of unit cells. There will thus be
3N normal modes, which is expected from the fact that each atom can vibrate in three different
directions.

If we are dealing with a lattice which is not a Bravais lattice, but a Bravais lattice with a basis,
the situation becomes more complex and we will skip the details. In analogy with what we did
for the diatomic chain we will have an expression on the form (4.25) for each atom in the basis.
For a lattice with a p-point basis the diagonalization of the resulting dynamical matrix will give
rise to a 3p X 3p determinant which must be put equal to zero. In analogy with what we found
for the diatomic chain 3 of the normal modes will be acoustic (i.e. the frequency approaches zero
in the long wave length limit) and the remainder optical (with a non-zero frequency in the long

wavelength limit).

4.1.5 Density of states

In what follows we will need to calculate thermal averages which involves summing over contri-
butions from all the individual modes. For this purpose we need to find a way to convert sums
over allowed k-values into a volume integral over d®k. The volume of the primitive unit cell of the

reciprocal lattice is from (2.10)
(2m)°

c
where v, is the volume of the primitive unit cell of the direct lattice. We have for the total volume

IA- (B x C)| = (4.28)

V = L3,

Consider the modes for which the integers ny,ns and ng in (7-22) are between
ny and ny + dny
ng and ng + dng
n3 and ng + dns

The total number of such modes is

dnidnodng = d3n
From (4.27) and (4.28) we see that these modes occupy a ‘volume’ in k-space
2)3
A CL
v
If the volume V is macroscopically large the k-values for successive normal modes are very close
together and we can replace a sum of allowed k-states by an integral according to

2= (2‘7:)3 [ (429)

k

Equation (4.29) will prove quite useful later on.
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4.1.6 Phonons

We treat the normal modes of the lattice as a set of independent harmonic oscillators. According

to quantum mechanics the energies of the individual oscillators are quantized with energy levels
1
E,=(n+ E)hw (4.30)

where n can take on integer values 0,1,2... , h is Planck’s constant divided by 27 and w is the
normal mode frequency. The energy of the lowest state, the ground state energy, is %hw and an
excitation with energy hw above the ground state energy is called a phonon. The probability p(n)

that an oscillator will be in the n’th state will be proportional to the Boltzmann factor

efﬁEn — e*ﬁ(”‘}’%)hw

where 3 = kBLT. The probabilities have to add up to 1 so that

1
p(n) — Ee—ﬂ(nﬁ-%)hw
where
00 —1phw
— —Bn+ihw _ € °
Z=3 e P = o
n=0
The average energy stored in each mode is then
> 1 & 1 _ 1 10Z
< E>= Z Enp(n) = - Z(n + 5 )hwe Blnt3)hw _ 795
n=0 n=0
Straightforward algebra gives
P hw
<E>=—+ 5

Each mode will contribute a term

I<E>_ O0<E>08 _ 1 [(hw)’eft
oT 9B 0T kpT? (efhw —1)2

to the specific heat. At high temperatures § — 0, and

hw
Pho 14+ Bhw=1+——
e + Bhw +kBT

and the contribution to the specific from each mode approaches kg. If the crystal has N atoms
there are 3N normal modes. We thus find that the heat capacity in the high temperature limit will
be close to 3Nkp. This result is known as the law of Dulong and Petit.
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In general, the lattice heat capacity will be the sum of the contributions from the individual
modes. We find

h k 2 _Bhw(k, a) 2 Bhw(k,a)
Co — Z w(k, a)]e Z/ ,a)l’e
kBT2 (efhw(k,a) _ 1)2 27r 3 kBT2 exp hw(k, a)] — 1)2

(4.31)

Here, w(k, ) is the frequency of one of the three modes with wave vector k. The integral in (4.31)
is over the Brillouin zone.

4.1.7 Debye model

We next describe a simplified model which allows us to evaluate (4.31), to a good approximation.

In the Debye model one makes the following assumptions:
(1). The frequency of a normal mode with wave vector k is approximated as
w(k, o) = sk (4.32)

where s is an average sound velocity.
(2). The Brillouin zone is approximated by a sphere. The radius gp of the sphere
is given by the requirement that the number of allowed wave vectors inside the sphere

should be equal to the number of atoms N

47 4V
590 gy = 1V
or
N
ap = (67°)'/° (4.33)

The maximum phonon frequency in the Debye model is called the Debye frequency

wp = Sqp (4.34)
We also define the Debye temperature as
h
op = —D (4.35)
ks

We substitute (4.32) into (4.31)

Cv =

/ k2 h2 2k2eBhsk

(271' 3 k:BT2 eBhs’“ —1)2
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Table 4.1: Debye temperatures of some elements and compounds

Element | Op[K] | Compound | 6p[K]
Li 335 | NaCl 280
Na 156 | KCl 230
K 91 | CaFs 470
Cu 343 | LiF 680
Ag 226 | Quartz 255
Au 162
Al 428
Ge 378
Si 647
Diamond 1860

(The factor of 3 comes from the sum over «.). We introduce the dimension less variable z = Shsk
and find

Bh
3V kg2T3 /qu rtedx
VT or2 B33 (e* — 1)2
which simplifies, using (4.33) (4.34) and (4.35), to
0p/T
T rie®dr
Cy = 9Nkp(—)* / — 4.36
v B(GD) 1) (4.36)

Equation (4.36) can be evaluated analytically in some limits. At low temperatures 6p/T — co.

The integral in (4.36) can the be evaluated analytically to

o0
/ rie®dx 47t
0

(e —1)2 15
and we get
, 1274 T\?
71112}] CV = 5 NkB (%) (4.37)

i. e. the low temperature specific heat will be proportional to 7. For high temperatures we note
that for small values of z the integrand in (4.36) is ~ z2. The integral is then ~ £(6p/T) and we
recover the Dulong and Petit heat capacity. Finally, we not that if we plot the specific heat per mol

vs. the temperature in units of the Debye temperature, (4.36) predicts a universal curve (see figure
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Figure 4.5: Heat capacity in the Debye model.

4.5). This prediction is remarkably accurate. To get the good agreement the Debye temperature
should be considered as a fitting parameter, i.e. the value of p was chosen which gave the best

overall fit. Some fitted Debye temperatures are tabulated below.

4.1.8 Problems
Example

Consider a linear chain of atoms. Each atom interacts with its nearest neighbor on either side via
a Lennard-Jones potential (3.2). Assume parameter values appropriate to krypton (tables 3.1and
5.2).

(a). Find the equilibrium spacing between the atoms.

(b). Find the sound velocity.

(c). What is the maximum frequency?

Solution

Each atom interacts with its nearest neighbor on either side via a Lennard-Jones potential with
o =3.65A, € = 0.014eV. The interatomic potential is

o(r) = 4e(7)? = (7)']

(a). The equilibrium spacing can be obtained from

ov 4e o o
IV 0= 29T y12 _g%y6
P —0=-"na%)2 6%y
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with solution

r=a=2"%c = 4.0970 x 10~

(b). The mass of a Krypton atom is m = 83.80 x 1.66042 x 10727 = 1.39 x 10~2°kg The force

constant of the chain is

or? 72 r
K
s=ay/ — = 1070ms !
m
¢). The maximum frequency is
(c) quency

[K
Wmaw = 2 — = 5.2 x 10%rad s~1

The harmonic chain model can be solved also when the interaction between the masses extends

2
4
K= <a ”) = 12 % 13(2)12 - 6 x 7(%)6] = 0.92Nm !

The sound velocity is then

Problem 4.1-1:

beyond the nearest neighbors. Consider the case when the n’th mass is connected to masses n + 1
and n — 1 with the spring constant K; and to masses n+ 2 and n — 2 with the spring constant Ks.

The equation of motion for the n'th mass is now
mii = Ky (upt1 + un—1 — 2up) + Ko(tupi2 + up—2 — 2uy) (4.38)
Assume periodic boundary conditions and solutions of the form
up = Aettkan—ot) (4.39)

where a is equilibrium lattice spacing.
(a) Find a formula for w as a function of k.
(b) Plot wy/m/K; vs. ka for the special case K1 = Ko.

Problem 4.1-2:

Plot the state of a monatomic chain of 100 atoms with periodic boundary conditions that has been
"kicked” or ”plucked” by evaluating (4.18) and (4.21) for a sequence of times. Give a physical
interpretation of the evolving pattern, by making use of the fact that the sound velocity increases

with increasing wavelength.
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4.2 Sommerfeld model for electrons

In order to find the electronic states in a crystal one must solve the Schrodinger equation for the
electrons in the presence of a potential with the periodicity of the lattice. The resulting electronic
band structure calculation represents a problem which is beyond this course. Instead we will address
an idealized problem in which the electrons experience a constant potential. This is the so called
Sommerfeld model, and it turns out to be sufficient to explain a number of qualitative properties

of metals.

4.2.1 Electron gas

The volume of the box is V' = L3. First consider the simplest case of periodic boundary conditions.

The wave function of the particle satisfies

1
r) = —e"" = —exp(ilk;z + kyy + kyz
where
2mn 2mn 2mn
k, = 2k, = Y k, = z
L’ L’ L

and ng,ny,n, can take on the values 0,+1,42... i.e. are integers. The z-component of the mo-
mentum is p, = hk; = hn,/L and we have similar expressions for the other components. Consider

now a volume in phase space W = L3AprpyApz where the components are in the intervals
p1 < pz < p1+ Apg

p2 < Pe < P2+ Apy (4.40)

p3 <p: <p3+ Ap:
We find that the number of states in W is given by

L3AprpyApz w

Nw
The counting rule (4.41) must be applied with some discretion. Suppose we change the boundary
conditions and consider a box with hard walls. The boundary condition is ¢ = 0 at surface. The

eigenstates are now

Y= \/gsin(kxx) sin(kyy)sin(k,z)
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with
TNy ™,
e Ty N
L7 L
Note the absence of the factor of 2 in (4.42). The number of states in the interval (4.40) is then
23AprpyAsz3 114
h3 T

The reason for this apparent paradox is that the ‘standing wave’ states associated with the hard

Ky, = ™ (4.42)

wall boundary condition must be considered to be mixtures of states propagating back and forth.
The states k; and -k, are not distinct. So while

# of states
Volume of phase space

= 8 times larger

only 1/8 th of the momentum states are distinct.

4.2.2 Free electron gas at zero temperature

At zero temperature the system will be in its lowest energy state, the ground state. Electrons are
Fermions and the Pauli exclusion principle for Fermions states that no two particles can occupy
the same state. The single particle states can be characterized by a wave vector k and spin ¢. The
number of allowed k-values inside a “volume” d3k in k-space is from (4.41), noting the relation

p = hk between momentum and wave-vector

Vd3k
(2m)?
When summing over allowed k-states we can replace a sum by an integral in the large V, or

continuum limit

2 (2Z>3 [ (4.43)

We will neglect the interaction between the electrons. The energy of a state with wave vector k

h2k2
2m

is By = i.e. it increases monotonically with increasing k. The lowest energy state then has
all momentum states occupied up to a maximum wave vector kg, the Fermi wave vector . The
number of states with wave vector less than kg is then (including a factor 2 for spin)

2 x Arkp®  Vkp®

N = —
v 3(2m)3 372

We refer to the k-space volume with k < kg as the Fermi sphere and its surface as the Fermi surface
. The momentum of a particle with wave vector kg is called the Ferm: momentum pr = hkp. The
energy of a particle with wave vector kp is the Fermi energy

_ v’

=5 (4.44)

€F
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The free electron gas is often used as a starting point to describe the electronic properties of metals.
Let us make some order of magnitude estimates from this application.

Length: The Wigner-Seitz radius rs is defined as the ratio

radius of sphere containing one electron

Bohr radius

so that
vV dragdrgd

N 3
Here ag = 0.529 x 10~ % is the Bohr radius. If Z is the valence of a metal then the number of
conduction electrons is N = Z Ngytoms. From tables of the density, atomic weight and Avogadro’s
number one can then work out the value of r;. For the metallic elements one typically has 2 < ry < 6.
Aluminum is a high density metal with r; = 2.07, cesium is a low density metal with r; = 5.62.

Wave vectors: We have

kp® N 3
S S 4.45
3r2 V. 4dmagirgd (4.45)
giving
9r\1/3 1 1.92
kr = | 2= i 4.46
aokF ( 4 ) Ts s ( )

The Fermi wave vector kr is of the order of the inverse Bohr radius.
Velocity: The Fermi velocity is given by

hkrp 4.2
=—=—X
m rs

108ms!

VF

This velocity is of the order 1% of the velocity of light, or 1000 times a typical sound velocity. We
conclude that electrons in metals are supersonic, but non-relativistic.
Energy: It is instructive to compare the Fermi energy with the Rydberg, the ground state energy

of the hydrogen atom. We have
2

e
1Ry = —— = 13.6eV
y 4meg2ag ¢

From (4.46)

€F (4.47)

h2kp? K2 /9m\2/3 1

2m  2mag? s

Substituting numbers gives

50.1eV
€F = 5

Ts
For aluminum, ep = 11.7eV, for cesium er = 1.59eV. The model which we have described above
is commonly called the Sommerfeld model. We have neglected the electron-electron interaction.
Real electrons are charged particles. The energy associated with the Coulomb repulsion between

two electrons a distance r apart is
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62

4megr

A typical nearest neighbor distance between electrons is ~ agrs and we see that the Coulomb energy
and the kinetic energy is comparable. Nevertheless, the Sommerfeld model explains many of the
qualitative properties of the physics of metals. Since the kinetic energy is ~ 1/r,2 and the model
will work best when rs is small- and for many purposes aluminum is the most free electron like
metal.

Temperature: Thermal energies available to electrons are of the order kpT'. It is instructive to
compare this quantity to the Fermi energy. For this purpose one can define the Fermi temperature
as

TFZEF/]{:B

The Fermi temperature is 13.6x 10* K for Al and 1.84x10* for cesium. These are high temperatures

compared to room temperature.

4.2.3 Low temperature electronic specific heat

At nonzero temperatures not all the electrons will occupy states inside the Fermi sphere. Some
electrons will be excited from states inside the Fermi sphere to an electronic state outside the sphere
leaving a hole behind, see figure 4.7(b). Let f(€) be the probability that a state is occupied and
1 — f(e) the probability that it is not. We also introduce the chemical potential p. If € < p the
normal state of the affairs is that the state is occupied, while for € > p it is normally empty. We

require that the ratio satisfies
f(e) —B(e—p)
=e (4.48)
1— f(e)
i.e. the ratio is given by a Boltzmann factor. From (4.48) the probability that a state with energy

€ is occupied is given by the Fermi-Dirac distribution (figure 4.6)

1
f(e) = Bl + 1 (4.49)
The mean number of particles is then given by
14
N) =2 3 4.
(V) =255 [ dkf(e) (4.50)

The condition (4.50) determines the chemical potential x. For T' = 0 we have p = e, while for
T # 0 p will be a slowly varying function of 7. When discussing thermodynamic properties of the

Fermi gas it is convenient to change the integration variable from wave vector to energy. We have

21,2 2
_ R g = drk?dk, de = UL

€ )
2m m
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Figure 4.6: (a) The Fermi-Dirac distribution at non-zero temperature. (b) Fermi-Dirac distribution

at T'=0

= fdeD(e)f(e)

where the density of states is given by (see figure 4.7)
vV o/2m\3/?
PO =5 (35) V°
The density of states is a convenient quantity when taking thermal averages. The internal energy

of the ideal Fermi gas is e.g.
U :/ D(e)ef(e)de (4.51)

Let us use this result to find a formula for the specific heat

oUu
Cv = (a—T)VN

The only quantity in (4.51) which depends on temperature is f(€). The trouble is that the other
independent variable is 4 not N. When differentiating f with respect to 7" we must therefore con-
sider u to be an implicit function of T, N, V. We can obtain the leading term in a low temperature
expansion for the specific heat by noting that for T' = 0, 4 = ep. The temperature dependence of
U at constant N comes about because of thermal ezxcitations in which particles are excited into
previously unoccupied states outside the Fermi surface leaving holes behind (figure 4.7 (b)).

We use er as our reference energy: Then € — ep = is the excitation energy of a particle outside
Fermi surface. Similarly the excitation energy of a hole, i.e. a particle missing from a single particle

state of energy € is ey — €. The change in internal energy due to thermal excitations is then

AU = /dee—ep +/d€ (er —€)(1 — f(€))D(e)
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particle
X

D(€)

D(E) (8

\ 4

@ (b)

Figure 4.7: (a)Density of states of free electrons. (b) Particles and holes.

We differentiate inside the integrand to get

Cy = [ O:O de(e ep)g—;:D(e) (4.52)

We now approximate u ~ ep and neglect the temperature dependence of y

ﬁ _e—¢p eBle—er)
0T  kpT? (eble—er) 1 1)2

Because of the factor 9f /0T the integrand in (4.52) will be sharply peaked near € = ep. If we

assume that near € = ep, D(€) ~ D(er) and put z = B(e — ep) we get

00
r2e”
CV ~ kBZTD(eF) / dl‘m (453)

The integral in (4.53) can be evaluated to yield %2 and we get the formula for the electronic specific

heat
B Trlkg?
- 3

Note that we have not made use of the formula e = "’22—:; for the electron energy. In a metal electrons

Cv

D(er) (4.54)

occupy energy bands where ex may be a complicated function of k. Equation (4.54) still remains
valid in this situation.
If we substitute the free electron value for the energy we get
2
™ NkB T
Cy = —
v 2 Tr

(4.55)
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An important aspect of (4.54) and (4.55) is the linear temperature dependence. It can be shown
that for low temperatures the contribution to the specific heat from lattice vibrations will be
proportional to T°. Therefore, the specific heat of metals at low temperatures (T< 10K) will be
dominated by the electronic contribution. This contribution is still small. The factor T'/TF in
(4.55) indicates that only a small fraction of the conduction electrons will be thermally excited

even at room temperature. At ordinary temperatures the lattice specific heat dominates.

4.2.4 Problems
Problem 4.2-1:

In sodium metal each ions contributes one conduction electron. Using the data in table 5.1 calculate
for sodium

(a). The Fermi energy

(b). The Fermi velocity

(c). The Fermi temperature.

Problem 4.2-2:

3He atoms can be considered as Fermi particles. At low temperatures 3 He forms a liquid with a
volume of 4.62 x 1072°m3 per helium atom. The mass of a 3He atom is 5 x 10727kg. Estimate the

Fermi temperature of 3He.

Problem 4.2-3:

Show that the kinetic energy of a three dimensional gas of N free electrons is %N €F.

Problem 4.2-4:

Estimate the electronic and lattice specific heats for Al at temperatures 1K, 10K, 100K in units of
J mol ' K~1. Use the Sommerfeld model for the electrons and the Debye model for the phonons.

Aluminum is trivalent.

4.3 Drude model

In this section we will discuss transport properties associated with the conduction electrons, mainly
the conductivity of a metal subject to a DC electric field or an alternating electromagnetic field.

The latter extension of the theory will also will allow us to discuss the optical properties of a metal.
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We will employ a simple classical model, the Drude model. For simplicity we will assume that the
metal is isotropic and neglect all band structure effects. Our discussion will of necessity be rather
brief and we refer the reader to Ashcroft and Mermin [2], Callaway [4], Wooten [12] and Ziman [11]
for a more extensive discussion.

Let us first consider the DC conductivity of a metal containing n conduction electrons per unit
volume. Each electron will have a velocity v which will be some fraction of the Fermi velocity, but
in the absence of an electric field the electrons are equally likely to move in any direction, so the
average velocity (v) = 0. However , if we apply an electric field & the electrons will be accelerated
in the field, and there will be an average nonzero drift velocity vg,;r;. We let the charge of the
electrons be e = —|e| and the mass be m,. From time to time the electrons will undergo collisions
with impurities and phonons and we assume that after each collision the electron will be equally
likely to travel in any direction, so that immediately after each collision the average velocity is zero.
Let v(0) be the velocity immediately after a collision. Some time ¢ after that collision, but before
the next collision the electron velocity will be
e_gt

Me

v(t) = v(0) + (4.56)

The average time between collisions, 7, is commonly called the relazation time. We see from (4.56)

that the drift velocity in our simple model will be

Varife = (v(7)) = (4.57)

Mme

The electric current density (current per unit area) is then

j=nevarip = ne’r g (4.58)
e
According to Ohm’s law the electric field needed to produce a given current is given by
£=pj
where p is the resistivity. Conversely we put
j= ool
with o¢ the DC conductivity. We thus find in the Drude model
o0 = ne’r (4.59)

Me
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It is instructive to construct a differential equation for the average velocity (v(t)). If the average
time between collisions is 7, the probability of a collision taking place in the time interval dt will
be dt/r. The mean speed will then increase by
eEdt
d(v(t)) = (4.60)

Me

with probability (1 — dt/7) or drop to zero with probability dt/7. Neglecting terms of order dt* we

find o
d{v(t)) _e€ (v(t))

dt Me T
In the steady state (v(t)) — vgrifs and

eET
Varift = ——
e

and we get the same result as before.

We can also consider the response to a AC electric field
£ = Re[€(w)e ™

Assuming a steady state response
(v(t)) = v(w)e ™! (4.61)

we find

—twv(w)

Putting j(t) = Re[j(w)e ] we write

and we find after some algebra
o0

o(w) = (4.62)

1 —iwT
We see that (4.62) exhibits two distinct régimes: a low frequency régime where wr << 1 in which
the current is approximately in phase with the field, and a high frequency régime wr >> 1 in which
the current will be approximately 90° out of phase .

Another way of looking at the system is in terms of a complex dielectric constant.

where €, is the relative dielectric constant and ¢g is the permittivity of vacuum. We have

— —

D:egg—l—'ﬁ
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where D is the electric displacement and P the electric polarization per unit volume, P = neu and

u is the displacement of an electron, caused by the applied field

du _
dt

\%

In analogy with (4.61) we put u = u(w)e~*! and find —iwu(w) = v(w) and after a little algebra
we find

e =14 2@ (4.63)
(1]
We define the Plasma frequency as
2
Q= | (4.64)
€Epm
The formula (4.63) for the relative dielectric constant can be rewritten as
Q
& =1-— L (4.65)

eow(w +1/7)

You will learn from other courses that an electromagnetic wave with frequency w propagates in a
medium with dielectric constant e, with wave vector q = qg/€, where gy = w/c is the wave vector
in vacuum. If the dielectric constant is complex the wave will be damped and it is customary to

write
Ve =n+ik

where n and k are optical constants. The normal incidence reflectivity from vacuum can be shown

to be given in terms of the optical constants as

n—1)2 + k2
R:m (4.66)

In figure 4.8 we plot the optical constants and the reflectivity in the Drude model. For frequencies
which are small compared to the plasma frequency the imaginary part of the index of refraction
will be large and electromagnetic waves can only penetrate a short distance in a metal (skin effect).

The intensity of the wave will decay according to

2wk
I o £% exp(—Lz)
c
where z is the penetration depth.
For frequencies higher than the plasma frequencies k£ will typically be very small and the metal
will be transparent to electromagnetic radiation. Similarly, the reflectivity of a metal will be high

for frequencies below the plasma frequency, and low for higher frequencies.
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Figure 4.8: (a) Optical constants n and k and (b) normal incidence reflectivity in the Drude model.
Frequencies are shown in units of the plasma frequency 2,; and the curves are drawn for the case
QplT =20

4.4 Problems

Problem 4.3-1

(a). The relaxation time 7 for an aluminum sample is 0.8 x 10~1*s. Calculate the DC resistivity.
(b). Calculate the plasma frequency for Aluminum (note that Al is trivalent, values of required
physical constants can be found near the end of Part I of the lecture notes).

(c¢). To what electromagnetic wavelength in vacuum will the plasma frequency correspond in

Aluminum.

Problem 4.3-2

Consider a metal for which wy7r >> 1. The dielectric constant for frequencies larger than the
plasma frequencies will then be approximately real, but less than one. The phase wvelocity for
electromagnetic waves is w/q, with the wave vector ¢ = 2m/X. The phase velocity for w > Q,; will
then be faster than the speed of light. This will not violate special relativity since signals propagate
with the group velocity given by vgroup = dw/dgq.

(a). Show that the group velocity of light is less that the speed of light for w > € in the
Drude model.

(b). One consequence of the fact that for w > € the index of refraction n < 1 in the Drude
model is that there will be total reflection of X-rays impinging with an angle of incidence larger

than a critical angle given by sin(f.) = n. Calculate the critical angle of incidence for light with
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frequency 2(2,,.

Problem 4.3-3

Calculate the penetration depth at which the intensity of an electromagnetic wave in Aluminum
relaxation time 7 = 0.8 x 10~ s will be reduced by a factor of 2 at the frequency of

(a). w=2710"Hz.

(b).w = 2710 H 2.



Chapter 5

Review

5.1 Midterm review problems

Problem 5.1-1:

(a). Which crystal planes of the copper metal structure have the highest density of
atoms?

(b). What is the density of atoms per em? in these planes?

(c). Find the Bragg angle(s) for reflection of x-rays of wave-length 1.50 A against
these planes?

(d). Calculate the density of copper in g/em3 from the data in 5.1. The atomic
weight of Copper is 63.54g/mol

Problem 5.1-2:

(a). Describe the diamond lattice. Is it a Bravais lattice? If not, describe it as a
Bravais lattice with the smallest possible number of basis vectors.
(b). Find the angle between any two of the lines (bonds) joining a site of the

diamond lattice to its four nearest neighbors.

Problem 5.1-3:

The primitive lattice vectors of a lattice are

a:g(—wyﬁ); b=

where X, ¥, z are three unit vectors along Cartesian axes.

91
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(a). What is the Bravais lattice?
(b). Find three primitive reciprocal lattice vectors.
(c). Which lattice plane has the highest density of atoms? Calculate the density of

atoms per unit area for this plane.

Problem 5.1-4:

(a). Which of the following crystal structures are Bravais lattices: the hexagonal
closed packed, the body centered cubic, the face centered cubic, the diamond structure?

(b). Find a set of primitive reciprocal lattice vectors for the structures listed above.

Problem 5.1-5:

Zinc crystallizes in the hexagonal closed packed structure, with a ¢/a ratio slightly
different from the ideal value /8/3). The atomic weight of Zn is 65.37. Calculate the

mass density of Zn.

Problem 5.1-6:

(a). Explain the effect of dislocations on the mechanical strength of materials.

(b). Discuss the strengths of very well prepared crystals, perfect crystals, and
relatively poorly prepared crystals. Which are strongest or weakest and why?

(¢) In an ionic crystal such as NaCl the vacancy formation energy will be different for
positive and negative ion vacancies. Nevertheless, if the crystal is pure the concentration
of positively and negatively charged vacancies will be roughly the same. Describe the
mechanism through which this comes about.

(d) Define Burger’s vector.

5.2 0Old Midterms

Midterm examination February 1992
“Closed book exam”

1:

Silicon crystallizes in the diamond structure (fcc with a basis vector 1[111])anda= 5.43 A the side

of the unit cube. The atomic number of S7 is 28.09.
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(a). Calculate the density of Si in kg/m?>.
(b). What type of structure is the reciprocal lattice of Si?

(c). Write down a set of primitive reciprocal lattice vectors for Si.

2:

The element Xe crystallizes in the fcc structure at low temperatures. Assume an interatomic
Lennard-Jones potential with o = 3.98 A and e = 0.020eV. Calculate the nearest neighbor distance

in A of Xe and the cohesive energy in eV/atom at low temperatures.

3:

Describe briefly the Fwald construction and its use in the rotating crystal method of crystal struc-
ture determination.

Some formulas:

Avogadro’s number is 6.022 x 10?%, an atomic mass unit is 1.67x10 27kg. 1A= 1071%m. The

Lennard Jones potential is

.
A, = S (Fomyn
2R

Ag = 14.45, A5 = 12.13 for the fcc lattice.

Midterm examination February 1993

Allowed aids: 2 page handwritten “Cheat sheet”, calculator. Answer all questions.

1:

A certain lattice has a primitive unit cell with the dimensions a = 3A, b=4A, c=5A, a = § = 90°,
v = 60°.

(a). Write down a set of primitive lattice vectors a, b and ¢ on Cartesian form.

(b). Construct a set of primitive reciprocal lattice vectors.

2:

Iron is a body centered cubic metal. The edge of the unit cube is a = 2.87A.
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(a). Which lattice planes of the iron structure have the highest density of atoms?
(b). What is the density of atoms/m? in these planes? (1 A= 10"1m).
(c). Find the Bragg angle(s) for reflection against these planes if x-rays of wave-

length 1.54 A are employed. (The formula for Bragg scattering is 2dsin = n)\).

(a). Sketch the Wigner Seitz cell of the triangular lattice.

(b). Define edge and screw dislocations.

(c). What is the difference between the bulk modulus B and Young’s modulus Y'?
Which one will be largest of the two? (Describe the difference in words, no formulas

are required).

Midterm examination February 1994

Allowed aid: Calculator, 2 page “cheat sheet”
Answer all 3 questions.

1:

In each of the following cases indicate if the structure is a Bravais lattice. If it is, give three
primitive lattice vectors, if it is not describe it as a Bravais lattice with as small as possible basis.
In all cases the side of the unit cube is a.

(a). Base centered cubic (simple cubic with additional points in the centers of the horizontal
faces of the cubic cell).

(b). Side centered cubic (simple cubic with additional points in the centers of the vertical faces
of the cubic cell).

(c). Edge centered cubic (simple cubic with additional points at the midpoints of the lines
joining nearest neighbors).

2:

(a). Write down a set of Bravais primitive lattice vectors a, b and ¢ and basis vector d for the
hexagonal close packed lattice.

(b). Show that the ideal ¢/a ratio is \/8/3.

(¢). Zinc has atomic weight 65.37 and crystallizes in a hexagonal closed packed structure with
a=b=266A, c=495A, ie. the c¢/a ratio is slightly different from the ideal. Calculate the mass
density of Zinc in g/cm?®.

3:
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An isotropic elastic material is shaped like a cube. The faces of the cube are subject to a
uniform pressure P, and no other stresses.

(a). Express the components of the strain in terms of P and the Lamé coefficients A and p
defined by C11 = A+ 2u, C12 = A, Cyy = p.

(b). Find the dilation (fractional volume change).

(c). Define the Young’s modulus and the bulk modulus. Why are they different?

Values of physical constants
Atomic mass unit amu = 1.66042 x 10727 kg
Avogadro’s number N4 = 6.0225 x 10%3mol !

Midterm examination February 1995

Allowed aid: Calculator, 2 page “cheat sheet”
Answer all 3 questions.
1: Zinc crystallizes in the hexagonal closed packed structure, with a = 2.66 A, ¢ = 4.95 A
(The c/a ratio is slightly different from the ideal value 1/8/3). The atomic weight of Zn is 65.37,
la.m.u. = 1.6604 x 10~ 2"kg.

(a). Calculate the mass density of Zn.

(b). Write down a set of reciprocal lattice vectors.

(c). Calculate the distance between the (011) planes.

2: The element Kr crystallizes in the fcc structure at low temperatures. Assume an interatomic
Lennard-Jones potential
v(r) = 4e[(-) = (-)°]

g g
r r

We have Ag = 14.45, A1 = 12.13 for the fcc lattice with

A=Y ()"

R

The nearest neighbor distance is 7, = 3.99 A for Kr and the cohesive energy is -0.120 eV/atom

at low temperatures.

(a). Derive formulas which express the cohesive energy and the nearest neighbor distance in

terms of o and e.

(b). Calculate the Lennard-Jones parameters o and e.
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3: An isotropic elastic material is subject to a uniform tension 7" in the z—direction and no other
stresses.

(a). Express the components of the strain in terms of 7' and the Lamé coefficients A and p
defined by C11 = A+ 2u, Cio = A, Cyq = p.

(b). Find the dilation (fractional volume change).

Solution to 1995 midterm

1:
(a):

The volume per unit cell is

2 V3

Ve = €a”—
2

Since there are two Zinc atoms per primitive unit cell the mass density is

2mz, 4 x 65.37 x 1.6604 x 10727 3
P= V/34.95 x 2.66% x 1030 gm

(b):

If we choose the direct lattice vectors to be

<>

a=ax; b=a(z+ ); c=cz

Do |

V3 .
2

we find the following set of primitive reciprocal lattice vectors

A:27rb><c:2_7r(§(_i);B:27Tc><a:47ry;C:27ra><b:2_7r
Ve a V3 Ve a3 Ve c

(c):
The distance between the (011) planes is

2 a

d: =
B+ C 4 a
| | Vit ez

2:
(a):

The internal energy per particle is

U o 12 o 6
Yool (L) 4 (
N 6{ 2 (Wm) 6 (”m) }

has a minimum when
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giving

() =i
Tnn B 242

B <2A12>1/6
T'nn — A6 (o2

If we substitute this result into the expression for the internal energy we find

or

U _ 4§
N 245,
(b):
We have M 16
o= Tnn (ﬁ) = 3.664
and
= 2(2212 = 0.0139¢V
3:
(a):
We have o o )
0 A+ 2p A A 0 0 O e1
0 A X4+2¢ X 00 O es
T\ A A A+2p 0 0 O es3
o 0 0 0 1 0 0|]|es
0 0 0 0 p O es
o] | o 0 0 0 0 u/|es|

We find eq = e5 = eg = 0. This gives

0 =(A+2u)er + Aea + Aes
0 =MXer + (A+2u)ex + Aes
T = )\61 + )\62 + ()\ + 2/1)63

The solution is

0 — T(A+ p)
1(3X + 2p)
—TX\
“a=e= 203X\ + 2p)
(b):
The dilation is given by T

5: =
e1 +ex + e3 2/L+3)\
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Midterm exam February 1996

Allowed aids: Calculator, 2 page ”cheat sheet”.

Answer all questions

1: The CsCl structure is simple cubic with a basis vector d = (X + ¥ +z). It is a common lattice
structure for ionic materials and differs from the bcce lattice only in that the body center and corner
sites are occupied by atoms of different species.

(a) If the two types of ions in the CsCl are of the same size what is the packing fraction f?

(b) What is the packing fraction if the radius of one type of ions is twice that of the other type?
2: Iron is a bec metal with a = 2.87 A.

(a) Find a set of primitive reciprocal lattice vectors for iron.

(b) Find the scattering angles (angles between incident and scattered wave vectors) for x-rays of
wave vector\ = 1.54 A impinging upon a powder sample of iron. (Bragg’s law of scattering is
2d sin @ = n\, where 6 is the angle of incidence and d is the distance between lattice planes).

3: In an isotropic material it is conventional to describe the elastic constants in terms of the Lamé
constants A = C1s and u = Cy4. The elastic constant Ciy is then given by A + 2u. In a certain
material A = 1. x 10'® Nm~2, u = 0.5 x 10'° Nm~2. A wire made of this material of cross section
1 mm? is pulled (subject to uniaxial tension) so that its length increases by 1%.

(a) What is the force required to pull the wire?

(b) What is the change in the cross sectional area of the wire?

5.3 0Old finals

April 1993 Final

Time 3 hours. Allowed aids: One double sided ‘cheat sheet’, calculator. Answer 5 out of the 7
questions. All questions have equal value. If you answer more than 5 questions you will be given
credit for the 5 best answers.

1:

An A' B~ ionic solid crystallizes in the NaCl structure (i.e. the lattice is fcc with a basis
vector d = 2%, where a is the side of the unit cube).

(a). Assuming that the positive and negative ions have equal size what is the packing fraction
of the material?

(b). If the positive ion has a radius which is % that of the negative ion what would the packing

fraction be?
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2:

(a). What is the Ewald construction?

(b). Describe the Laue method of X-ray diffraction.

(c). Describe the rotating crystal method of crystal structure determination.

3:

An isotropic elastic material is shaped like a cube. The faces which are parallel to the x — z
and y — z planes are subject to a uniform pressure P, while the faces parallel to the z — y plane are
not subject to any external force. The elastic constants of the material are C11 = A+ 2u, Cio = A
and Cyq = p.

(a). Find the components of the strain.

(b). What are the stresses acting on a (110) surface?

4:

Aluminum is face centered cubic with the side of the unit cube a = 4.05 x 107! m. The Debye
temperature is 428K.

(a). Find the Debye wave vector g¢p.

(b). What is the sound velocity?

5:

Beryllium has the h.c.p. structure with lattice constants a = 2.27 x 10 1%m, ¢ = 3.59 x 10~ 19m.
Each ion contributes 2 conduction electrons. Assuming Beryllium to be a free electron metal

(a). Calculate the Fermi energy of Beryllium.

(b). Calculate the Fermi velocity.

6:

(a). What is chirality?

(b). Describe the features of chiral nematic liquid crystals which makes them useful as ther-
mometer materials.

7:

(a). Describe the micellar and lamellar phases of soaps.

(b). Describe how a polymer dispersed liquid crystal display works.

April 1994 final

Time 2 1/2 hours. Allowed aids: One double sided hand written ‘cheat sheet’, calculator. Answer
4 out of the 5 questions. All questions have equal value. If you answer more than 4 questions you

will be given credit for the 4 best answers.
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1:

Given the table of physical properties of sodium and the values of the physical constants listed
at the end of the paper find

a: the nearest neighbor distance of two sodium ions.

b: a set of primitive reciprocal lattice vectors.

c: the scattering angles (angle between incident and scattered wave vector) ¢ for x-rays of
wavelength A = 1.54 Aimpinging upon a powder sample of sodium. (Bragg’s law of scattering is

2d sin @ = n, where 6 is the angle of incidence, and d is the distance between planes.)

2:

Assume that the conductivity o of sodium is given by o = ne?r/m, where n is the number of
valence electrons per unit volume, e the electron charge, and m the electron mass. Use the table
of physical properties of sodium and the values of the physical constants listed at the end of the
paper to find

a: the relaxation time 7

b: the electron drift velocity if a current of 105 Amp m~2 passes through a sodium sample.

c: Assume that the sodium specific heat is given by the Dulong-Petit value Cyy = 3Nkp. How
fast will the temperature rise if a current of 10° Amp m =2 passes through a sodium sample and no

heat is transported away?

3:
Use the table of physical properties of sodium and the values of the physical constants listed at
the end of the paper to estimate
a: the sound velocity
: the Fermi velocity

b
c: the Fermi energy of sodium in electron volts.
4
a

: What is a plastic deformation?
b: Why is the maximum shear stress o, of a material usually much less than the theoretical
value predicted for a perfect crystal?
c: Define Burger’s vector and draw pictures showing the Burger’s vector for an edge and a

screw dislocation.

5:

a: What is the micellar phase of a soap solution?
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b: What is a chiral nematic liquid crystal?

c: Why are chiral nematics useful as thermometer materials?

Some properties of Sodium Metal

Valence +1 Structure body centered cubic | Debye temperature 156 K
Density 0.97 g cm™3 | Conductivity 0.21x10% Q~lem~! | Weight of 1 mol 2299 g

April 1995 final

Time 2 1/2 Hours. Allowed aids: One double sided hand written ‘cheat sheet’, calculator. Answer
4 of the 5 questions. If you answer all the questions you will be given credit for the 4 best answers.

All questions have equal value. You will find values of some physical constants on the last page.

1:
Potassium is a bce metal with one valence electron per potassium ion. The side of the unit cube
is a = 5.23 A. The Debye temperature is 91K and the atomic weight of potassium is 39.10gmol 1.
What is

a: The plasma frequency Q7

b: The velocity of sound?

c: The heat capacity at room temperature of 1kg of potassium (in JK 1)?

d: The Fermi energy (in electron volts)?

2:
Consider a linear chain of N atoms. Each atom interacts with its nearest neighbor on either side

with a potential

V(z)=Vo+ g(x —a)?

where x is the distance between two nearest neighbor atoms and Vj, K and a are constants.

a: Find the velocity of sound.

b: Find the phase and group velocity of a lattice wave with wave vector k = 7.

c: Sketch the displacements u along the chain for the lattice wave in (b) at an instant in time

when the amplitude of an atom at the origin is at its maximum value.
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3:

5.7 April 1994 final

In a good conductor the relaxation time 7 will be sufficiently long that wr >> 1, when the frequency

w is larger than the plasma frequency €),;. The relative dielectric function €, can then be taken as

real, as can the index of refraction n = ,/e,. An electromagnetic wave propagates in such a metal

with wave vector q = nqp, where ¢o = w/c and c is the velocity of light in vacuum. Consider a

metal for which

@ g8

o

&=1--"2

Find the phase velocity v, = w/q for the wave when w > Q.

: Find the group velocity vy = dw/dgq for the wave when w > Q.

Show that vyv, = c2.

: Give a numerical answer to (a) and (b) when w = 2Q,,.

a:
b:

C:

What type of crystal exhibits optical phonons?
Outline the main features of the Debye model of lattice vibrations.

Show that in the Debye model a solid will satisfy the Dulong-Petit law for the heat capacity

for temperatures much higher than the Debye temperature.

a:

b:

Describe the principles behind the twist nematic liquid crystal cell in a liquid crystal display.

What is chirality? Give an example of an object which is chiral and one which is not.

c¢: What is a chiral nematic?

Solution to April 95 final

1:

a:

The plasma frequency is given by

ne2

2
=
I

€pMe
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The electron density n is, since potassium has valence one,

1 2
n=—=—= —
ve ad

Putting the terms together we find

Qp = 6.67 x 10%rads™t

b:
The sound velocity is given by

. eDkB

hgp
we have
ap = (67%n)"/% =9.39 x 10°m~!
and find
s = 1270ms™"

c:

The heat capacity of a sample of mass M is

 3NakpM

My

Cv
where my, is the molecular weight. We find

Cy =638 kg L K !

d: The Fermi energy is
h2k2
€F =

2me
we have
kr = (6m2n)"/% = 7.45 x 10°m

Substituting numbers using 1eV = 1.602 x 1071 J we find

ep = 2.11eV

2:

a:

The equation of motion for the displacement u,, of the n’th atom on the chain is

mit = K(tupt1 + tn—1 — 2uy)

103
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The normal mode solutions can be written with [ an integer

u A ez(27rln7wt)
n — n
where with k = @
4K k
w? = — sin®(wln) = — sin? v
m m 2

for small k&:

giving for the sound velocity

b:
The phase velocity is in general
w 2a |K . ka

e e )
for k = 7. we find
K 2K
Uph = 8?01 E Sln(g) = 97(1 ﬁ

The group velocity is in general

I S
vg—ak—a mcos2
K T
vg:a ECOSg

We plot the displacements along the chain when k = - below

or for k = % we find

C:

—> — (@) - -~ -
3:
We have for the wave vector
_ @ Q)
1= c w?

Solving for w gives

5.7 April 1994 final
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a:

The phase velocity is

/ 0?2
vp =1+ 2L
P + c2q2

c2q c
Vg =

Jer + 9 \/1+Q—5’

2q2

b:
The group velocity is

c:
The way the formulas are written it is obvious that vyv, = c2.

d:

When w = 2Q,;, we have 2¢? = 392,. The phase velocity is then 2c/v/3 = 3.46 x 108ms~!, while
the group velocity is ¢v/3/2 = 2.60 x 108ms™1.

a:
Optical phonons are found in crystals which exhibit lattices with a basis, i.e. in which there are
more than one molecule or atom per primitive unit cell.

b:

The key features of the Debye models are

e The frequency of a normal mode with wave vector k < ¢p is given as w = sk in terms of an

average sound velocity s.

e The Brillouin zone is approximated by a sphere with radius qp = (@)3/ 2. This value of

qp assures that the number of allowed wave vectors is equal to the total number of atoms.

e The normal modes are quantized and the mean energy in each mode is

hw hw

(B) =5+ Bho1

c:
In the limit that the temperature becomes large compared to the maximum frequency wp the
average energy in each mode is

hw hw

1

(B) =
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The heat capacity in each mode is then just kg and the total heat capacity becomes
Cyv =3Nkp

which is the Dulong-Petit law.

Question5 contains essay type questions and we refer to course handouts for details.

April 1996 final

Time 2% Hours. Allowed aids: One double sided hand written ‘cheat sheet’, calculator. Answer 4
of the b questions. If you answer all the questions you will be given credit for the 4 best answers.

All questions have equal value. You will find values of some physical constants on the last page.

1:

(a) Describe the main types of point defects in crystals.

(b) Consider an ionic crystal of the type A™B~. Assume that the energy associated with moving a
positive or negative ion from the bulk of the crystal to its surface is respectively e, and e_. Derive
formulas for the equilibrium vacancy concentration (% vacant sites) of positive and negative ions
for (i)pure crystals and where ¢ % of the positive ions have been replaced by divalent C*7 ions.
(c) Often the actual concentrations of vacancies in a crystal is much larger than the equilibrium
concentration. Discuss how this can happen.

(d) Discuss why a small amount of edge dislocations reduces the shear strength of a crystal, while

adding more dislocations and/or impurities can increase the strength of a crystal.

2:
Consider a chain of atoms, all of mass m. The equilibrium distance between nearest neighbor atoms

are alternatively a; and as so that the length of the unit cell is
a=a;+ as

and there are two atoms per unit cell. The spring constant of the bond of length a; is Kj, while
the spring constant of the bond of length as is K.

(a)Write down the equations of motion for the displacements u; and us for the two atoms in a unit
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cell.

(b)Find solutions to the equation of motion on the form

up = elez(knafwt)

Uy = €2€z(kna7wt)

and find an equation for the frequency w as a function of the wave-vector k.
(c)Consider the special case k = m/a and find the possible values of the frequency w.

(d)Describe the vibrational modes when k = 7/a.

3:

(a) Outline the main features of Debye model of lattice vibrations.

(b) Gold is face centered cubic with the side of unit cube 4.08 x 1071%m. The atomic weight of
gold is 197 a.m.u. and the Debye temperature is §p = 162K. Find the Debye wave-vector gp.

(c) Estimate the sound velocity in gold.

(d) What is the room temperature heat capacity of a 1kg gold bar?

4:

(a). Outline the main features of the Sommerfeld (free electron) model of the conduction electrons
in a metal.

(b). Present an argument why the electronic specific heat of a metal Cy is proportional to the
temperature 7" and inversely proportional to the Fermi temperature 7.

(c). K (potassium) is a monovalent, body centered cubic metal with a = 5.23 x 1071%n. Find the
Fermi wave vector kg.

(d). Find the plasma frequency ;.

5:

(a) Show that the kinetic energy of N free electrons at temperature 7' = 0 is %N er where ep is
the Fermi energy.

(b) The relaxation time 7 for an aluminum sample is 0.8 x 10~*s. Calculate the DC conductivity
of Al. (Aluminum is face centered cubic with a = 4.05 x 107'1%m, and trivalent).

(c) Calculate the real and imaginary part of the relative dielectric constant of Aluminum at the

frequency w = 2m x 10™rad s 1.
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Table 5.1: Crystal structure of some common substances. Unless specified the temperature is 300K

Substance | Structure | a,A | cA Substance | Structure | a,A | cA

Ag fee 4.09 Ge diamond | 5.66
Al fcc 4.05 InSb ZnS 6.46
AgBr NaCl 5.77 K bce 5.23
Ar[at 4K] fee 5.31 KCl NaCl 6.29
Au fee 4.08 Kr[at 4K] fee 5.64
Be hcp 2.27 | 3.59 Na bce 4.23
C(diamond) | diamond | 3.57 NaCl NaCl 5.63
Cds ZnS 5.82 Nelat 4K] fce 4.46
Co hcp 2.51 | 4.07 Pb fec 4.95
Cr bce 2.88 Si diamond | 5.43
CsCl CsCl 4.11 Xelat 4K] fce 6.13

Cu fcc 3.61 Zn hep 2.66 | 4.95
CuCl ZnS 5.41 ZnS ZnS 5.41

Fe bce 2.87

5.4 Values of physical constants

1 A=10"n = 10nm

Atomic mass unit amu = 1.66042 x 10727 kg
Avogadro’s number Ny = 6.0225 x 1023mol 1
Bohr radius ag = 0.52918 A

Boltzmann constant kg = 1.381 x 10723J/K
Electron charge e = —1.602 x 10 °C

Electron mass me = 9.109 x 1073 kg
Permittivity of vacuum €y = 8.8542 x 10712F/m
Planck’s constant i = 1.054 x 10 3*kg m?/s
Speed of light ¢ = 2.998 x 108ms~1
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Table 5.2: Atomic weights of selected elements

Element name Symbol Atomic weight
Aluminum Al 26.982
Argon Ar 39.948
Copper Cu 63.55
Iron Fe 55.847
Krypton Kr 83.80
Silicon Si 28.086
Zinc Zn 65.38

109
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