next up previous
Next: About this document ...

PHYSICS 312
2001 Midterm review problem set
Problem 1:
Find the steady state solution of the problem

\begin{displaymath}\frac{\partial}{\partial x}\left((b+fx)\frac{\partial u}{\partial x}\right)=\frac{1}{k}
\frac{\partial u}{\partial t}\end{displaymath}


\begin{displaymath}0<x<a,\;0<t\end{displaymath}


\begin{displaymath}u(0,t)=T_1;\;u(a,t)=T_1,0<t\end{displaymath}

b,f,k are constants.


Problem 2:
Solve the boundary value problem

\begin{displaymath}\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0\end{displaymath}

inside a square of side $2\pi$:

\begin{displaymath}u(x,-\pi)=u(x,\pi)=\sin x;\;u(\pi,y)=u(\pi,y)=\sin y\end{displaymath}



Problem 3:
In which of the following cases can solutions be found by the method of separation of variables?

\begin{displaymath}\frac{\partial^2u}{\partial x^2}+x\frac{\partial^2u}{\partial t^2}=0\end{displaymath} (1)


\begin{displaymath}\frac{\partial^2u}{\partial x^2}+t^2\frac{\partial^2u}{\partial t^2}=0\end{displaymath} (2)


\begin{displaymath}\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial t^2}=e^{-x}\end{displaymath} (3)


\begin{displaymath}\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=e^{-x}+
e^{-y}\end{displaymath} (4)

In cases where the variables don't separate directly, transform the equations so that product solutions can be found. You don't need to solve the resulting ordinary differential equations.

Problem 4:
Show that the function

\begin{displaymath}\phi(x,y)=\sin(\pi x)\sin(2\pi y)-\sin(2\pi x)\sin(\pi y)\end{displaymath}

is an eigenfunction of the triangle T bounded by the lines y=0,y=x,x=1 associated with the differential equation

\begin{displaymath}\nabla^2\phi=-\lambda^2\phi\end{displaymath}

and the boundary condition

\begin{displaymath}\phi=0\end{displaymath}

on the boundary of T. What is the eigenvalue $\lambda^2$ asociated with $\phi$?


Return to title page.

 
next up previous
Next: About this document ...
Birger Bergersen
2001-02-28