next up previous
Next: About this document ...

PHYSICS 312. Midterm Examination, March 2 2001
Answer all three questions. Allowed aids two sheets of formulas. Calculator.

Problem 1 :
Consider the functions

\begin{displaymath}f(x)=\sin(x)+\cos(x)\end{displaymath}

defined only in the restricted range $0<x<\pi$ and

\begin{displaymath}g(x)=\left\{\begin{array}{lcl}\sin(x)+\cos(x)& for&2n\pi<x<(2...
...-\infty,\cdots -2,-1,0,1,2,\cdots\infty\\
\end{array}\right\}\end{displaymath}

defined for all real x.
a: Which of the following statements are true
1.
g(x) is the periodic extension of f(x).
2.
g(x) is the odd periodic extension of f(x).
3.
g(x) is the even periodic extension of f(x).
4.
none of the above.
Justify your answer. We make a Fourier expansion of the function g(x)

\begin{displaymath}g(x)=\alpha_0+\sum_{n=1}^\infty(\alpha_n\cos(nx)+\beta_n\sin(nx)))\end{displaymath}


\begin{displaymath}\alpha_0=\frac{1}{2\pi}\int_0^{2\pi}dxg(x)\end{displaymath}


\begin{displaymath}\alpha_n=\frac{1}{\pi}\int_0^{2\pi}dxg(x)\cos(nx)\end{displaymath}


\begin{displaymath}\beta_n=\frac{1}{\pi}\int_0^{2\pi}dxg(x)\sin(nx)\end{displaymath}

b: Which of the following are true
1.
all the coefficients $\beta_n=0$.
2.
the coefficients $\alpha_n=0$ for n>1.
3.
none of the above.
c: Calculate the coefficient $\alpha_0$.

Problem 2:
Consider the following eigenvalue problem

\begin{displaymath}\frac{d^2\phi}{dx^2}+2\frac{d\phi}{dx}+\lambda\phi=0\end{displaymath}


\begin{displaymath}\phi(0)=0\end{displaymath}


\begin{displaymath}\phi(a)=0\end{displaymath}

a: Find the eigenvalues and eigenfuntions for $\lambda>1$.
b: Are there any eigenvalues for $\lambda<0$? for $\lambda <1$? Is $\lambda=1$ an eigenvalue?


Problem 3:
Consider the heat conduction problem

\begin{displaymath}\frac{\partial}{\partial x}(\kappa(x)\frac{\partial T(x,t)}{\partial x})=\frac{1}{k}\frac{\partial T}{\partial t}\end{displaymath}

The ends x=0 and x=L are kept at the temperatures T=0 and T=T0, respectively, and the thermal conductivy depends on the position

\begin{displaymath}\kappa(x)=\frac{\kappa_0}{1+\alpha x},\;\; \alpha >0,\;\;\kappa_0>0\end{displaymath}

Find the steady state temperature TS.
END OF EXAMINATION

Return to title page

 
next up previous
Next: About this document ...
Birger Bergersen
2001-03-12