next up previous
Next: About this document ...

PHYSICS 312
Sessional Examination, April 2002, Solution


Problem 1:
Substituting

\begin{displaymath}y(x)=\sum_{n=0}^\infty a_nx^n\end{displaymath}

into the differential equation

\begin{displaymath}\frac{d^2y}{dx^2}-2x\frac{dy}{dx}-2y=0\end{displaymath}

gives

\begin{displaymath}\sum_{n=2}^\infty a_n(n-1)(n-2)x^{n-2}-\sum_{n=0}^\infty 2a_n(n+1)x^n\end{displaymath}

Substituting $m=n-2$ in the first term and $n=m$ in the second gives

\begin{displaymath}\sum_{m=0}^\infty x^m[(m+2)(m+1)a_{m+2}-2(m+1)a_m]=0\end{displaymath}


\begin{displaymath}a_{m+2}=\frac{2a_m}{m+2}\end{displaymath}

a: If

\begin{displaymath}y(0)=1,\;\;\frac{dy}{dx}\vert _{x=0}=0\end{displaymath}

the power series will only contain even terms. With

\begin{displaymath}k=2m\end{displaymath}

We find

\begin{displaymath}a_{2k+2}=\frac{a_{2k}}{k+1}\end{displaymath}


\begin{displaymath}y(x)=\sum_{k=0}^\infty \frac{x^{2k}}{k!}\end{displaymath}

b: We recognize this power series as that of

\begin{displaymath}y(x)=e^{x^2}\end{displaymath}

We have

\begin{displaymath}\frac{dy}{dx}=2xe^{x^2};\;\;2x\frac{dy}{dx}=4x^2e^{x^2}\end{displaymath}


\begin{displaymath}\frac{d^2y}{dx^2}=4x^2e^{x^2}+2e^{x^2}\end{displaymath}

We find by substitution that the differential equation is satisfied.
c:
>From a: we have

\begin{displaymath}b_{m+2}=\frac{2b_m}{m+2}\end{displaymath}

The boundary condition require $b_0=0$, $b_1=1$ hence

\begin{displaymath}b_3=\frac{2}{3};\;b_5=\frac{2}{5}\cdot{2}{3}\cdots\end{displaymath}


\begin{displaymath}y(x)=x+\frac{2x^3}{3}+\frac{2^2x^5}{3\cdot 5}+\frac{2^3x^7}{3\cdot 5\cdot 7}\cdots\end{displaymath}

Problem 2:
a: Substituting

\begin{displaymath}u=e^{\lambda x}\end{displaymath}

into the fourth order differential equation

\begin{displaymath}a^4\frac{d^4u}{d\; x^4}-\omega^2 u=0\end{displaymath}

gives the characteristic equation

\begin{displaymath}a^4\lambda^4-\omega^2=0\end{displaymath}

with roots

\begin{displaymath}\lambda_1=i\frac{\omega^{1/2}}{a};\;\;\lambda_2=-i\frac{\omeg...
...rac{\omega^{1/2}}{a};\;\;\lambda_4=-\frac{\omega^{1/2}}{a};\;\;\end{displaymath}

or

\begin{displaymath}u(x)=b_1\exp(i\frac{\omega^{1/2}}{a})+b_2\exp(-i\frac{\omega^...
..._3\exp(\frac{\omega^{1/2}}{a})+b_4\exp(-\frac{\omega^{1/2}}{a})\end{displaymath}

an alternative form which is a bit more convenient for the remainder of the problem is

\begin{displaymath}u(x)=\alpha\cos(\frac{\omega^{1/2}}{a})+\beta\sin(\frac{\omeg...
...sh(\frac{\omega^{1/2}}{a})+\delta\sinh(-\frac{\omega^{1/2}}{a})\end{displaymath}

b:With

\begin{displaymath}u(x,t)=f(x)g(t)\end{displaymath}

we find

\begin{displaymath}\frac{a^4f^{(4)}}{f}=\frac{g^{\prime\prime}}{g}=-\omega^2\end{displaymath}


\begin{displaymath}\frac{g^{\prime\prime}}{g}=-\omega^2\end{displaymath}


\begin{displaymath}g(t)=A\cos(\omega t)+B\sin(\omega t)\end{displaymath}

We identify $\omega$ as the frequency of vibration and obtain

\begin{displaymath}a^4\frac{d^4u}{d\; x^4}-\omega^2 u=0\end{displaymath}

giving the modes

\begin{displaymath}u(x)=[\alpha\cos(\frac{\omega^{1/2}x}{a})+\beta\sin(\frac{\om...
...\frac{\omega^{1/2}x}{a})+\delta\sinh(-\frac{\omega^{1/2}x}{a})]\end{displaymath}


\begin{displaymath}\times[A\cos(\omega t)+B\sin(\omega t)]\end{displaymath}

c: If the end at $x=0$ is clamped down we must have

\begin{displaymath}\alpha+\gamma=0;\;\;\beta+\delta=0\end{displaymath}

The conditions at the other end then yield

\begin{displaymath}0=(\cos(\frac{\omega^{1/2}L}{a})-\cosh(\frac{\omega^{1/2}L}{a...
...n(\frac{\omega^{1/2}L}{a})-\sinh(\frac{\omega^{1/2}L}{a}))\beta\end{displaymath}


\begin{displaymath}0=(-\sin(\frac{\omega^{1/2}L}{a})-\sinh(\frac{\omega^{1/2}L}{...
...s(\frac{\omega^{1/2}L}{a})-\cosh(\frac{\omega^{1/2}L}{a}))\beta\end{displaymath}

This gives rise to a determinantal equation for the frequencies $\omega$

\begin{displaymath}(\cos(\frac{\omega^{1/2}L}{a})-\cosh(\frac{\omega^{1/2}L}{a}))(\cos(\frac{\omega^{1/2}L}{a})-\cosh(\frac{\omega^{1/2}L}{a}))\end{displaymath}


\begin{displaymath}-(-\sin(\frac{\omega^{1/2}L}{a})-\sinh(\frac{\omega^{1/2}L}{a...
...\sin(\frac{\omega^{1/2}L}{a})-\sinh(\frac{\omega^{1/2}L}{a}))=0\end{displaymath}

You were not asked to go beyond this point, but if we multiply out we find using

\begin{displaymath}\cos^2x+\sin^2x=1;\;\;\cosh^2x-\sinh^2x=1\end{displaymath}


\begin{displaymath}1=\cos(\frac{\omega^{1/2}L}{a})\cosh(\frac{\omega^{1/2}L}{a}))\end{displaymath}

This is a transcendental equation which can be solved numerically.
Problem 3:
a: Substituting

\begin{displaymath}u(x,t)=e^{-\lambda t}v(x)\end{displaymath}

into

\begin{displaymath}\frac{\partial ^2u}{\partial x^2}-\frac{\partial u}{\partial t}=\exp(-\lambda t)\end{displaymath}

gives the differential equation for $v(x)$

\begin{displaymath}\frac{d^2v}{dx^2}+\lambda v=1\end{displaymath}

b: The general solution to this equation can be written

\begin{displaymath}v(x)=\frac{1}{\lambda}+a\cos(x\sqrt{\lambda})+b\sin(x\sqrt{\lambda})\end{displaymath}

In order to satisfy the boundary condition at $x=0$ we must put

\begin{displaymath}a=-\frac{1}{\lambda}\end{displaymath}

The boundary condition at the other end then gives

\begin{displaymath}0=\frac{1}{\lambda}-\frac{1}{\lambda}\cos(L\sqrt{L\lambda})+b\sin(x\sqrt{L\lambda})\end{displaymath}


\begin{displaymath}b=-\frac{\frac{1}{\lambda}-\frac{1}{\lambda}\cos(L\sqrt{\lambda})}
{\sin(L\sqrt{\lambda})}\end{displaymath}

This will work for almost all values of $\lambda$. If by accident

\begin{displaymath}\sin(L\sqrt{\lambda})=0\end{displaymath}

some special attention has to be paid.
c:
We can solve the boundary value problem

\begin{displaymath}\frac{\partial ^2u}{\partial x^2}-\frac{\partial u}{\partial t}=\exp(-\lambda t)\end{displaymath}


\begin{displaymath}u(0,t)=u(L,t)=0,\;u(x,0)=f(x)\end{displaymath}

by writing

\begin{displaymath}u(x,t)=v(x)e^{-\lambda t}+w(x,t)\end{displaymath}

$w(x,t)$ will then have to satisfy

\begin{displaymath}\frac{\partial ^2w}{\partial x^2}-\frac{\partial w}{\partial t}=0\end{displaymath}

with boundary condition

\begin{displaymath}w(0,t)=w(L,t)=0;\;\;w(x,0)=f(x)-v(x)\end{displaymath}

where $v(x)$ was found above. This problem can be solved by separation of variables and expanding the initial condition in a Fourier sine series in the usual way.
Problem 4:
Substituting a:

\begin{displaymath}u(x,t)=h(x)\tau (t)\end{displaymath}

into

\begin{displaymath}\frac{\partial ^2 u}{\partial t^2}+2f\frac{\partial u}{\partial t}-c^2\frac{\partial ^2u}
{\partial x^2}=0\end{displaymath}

gives

\begin{displaymath}\frac{\tau^{\prime\prime}+2f\tau^\prime}{c^2\tau}=\frac{h^{\prime\prime}}{h}
=-\lambda^2=const\end{displaymath}

The solution to the differential equation for $h$ is with the boundary condition that $h$ is zero at $x=0$ and $x=L$

\begin{displaymath}h(x)=A\sin(\lambda x);\;\; \lambda=\frac{n\pi}{L};\;\;n=1,2.\cdots\end{displaymath}

The differential equation for $\tau$

\begin{displaymath}\tau^{\prime\prime}+2f\tau^\prime+c^2\lambda^2\tau\end{displaymath}

has solutions

\begin{displaymath}\tau=e^{-ft}(A \sin(\sqrt{c^2\lambda^2-f^2})
+B \cos(\sqrt{c^2\lambda^2-f^2})\end{displaymath}

giving

\begin{displaymath}u(x,t)=\sum_{n=1}^\infty\alpha_n\sin(\frac{n\pi x}{L})e^{-ft}
(A_n\cos(t\sqrt{\frac{c^2n^2\pi^2}{L^2}-f^2})\end{displaymath}


\begin{displaymath}+
B_n \sin(t\sqrt{\frac{c^2n^2\pi^2}{L^2}-f^2}))\end{displaymath}

We expand the initial condition $u(x,0)=g(x)$ in a sine series and find

\begin{displaymath}A_n=\frac{2}{L}\int_0^Ldx\;g(x)(\sin\frac{n\pi x}{L})\end{displaymath}

The condition

\begin{displaymath}\frac{du}{dt}u(x,t)\vert _{t=0}=0\end{displaymath}

Gives

\begin{displaymath}B_n=\frac{f A_n}{\sqrt{\frac{c^2n^2\pi^2}{L^2}-f^2}}\end{displaymath}

where $g(x)$ is a known function.
b:Since the damping term $e^{-ft}$ is independent of the mode number $n$ all the modes die out at the same rate
c: The maximum value of the damping constant for oscillations to occur at the n'th frequencies is

\begin{displaymath}f=\frac{cn\pi}{L}=\end{displaymath}

As the damping is increased the lower frequency modes become over-damped before the high frequency modes.
Problem 5
The general solution to the 2-dimensional Laplace equation in polar coordinates

\begin{displaymath}\nabla^2u(r,\theta)=\frac{\partial ^2u}{\partial r^2}+\frac{1...
...rtial r}+\frac{1}{r^2}\frac{\partial ^2 u}{\partial \theta^2}=0\end{displaymath}

is

\begin{displaymath}u=\alpha_0+\beta_0 \ln r +\sum_{n=1}^\infty(a_n\cos(n\theta)+b_n\sin(n\theta))
(\frac{\alpha_n}{r^n}+\beta_n r^n)\end{displaymath}

a: The solution to

\begin{displaymath}\nabla^2u(r,\theta)=0\end{displaymath}

in the region $a<r<2a$ with

\begin{displaymath}u(a,\theta)=1,\;u(2a,\theta)=2\end{displaymath}

will be on the form

\begin{displaymath}\alpha+\beta \ln \frac{r}{a}\end{displaymath}

We have

\begin{displaymath}\alpha_0=1\end{displaymath}


\begin{displaymath}\alpha+\beta\ln 2=2\end{displaymath}

we find

\begin{displaymath}u(r,\theta)=1+\frac{\ln\frac{r}{a}}{\ln 2}\end{displaymath}

b:

\begin{displaymath}u(a,\theta)=\cos\theta,\;u(2a,\theta)=\cos\theta\end{displaymath}

The solution is now on the form

\begin{displaymath}(\frac{\alpha a}{r}+\frac{\beta r}{a})\cos\theta\end{displaymath}

we find

\begin{displaymath}\alpha+\beta=1\end{displaymath}


\begin{displaymath}\frac{\alpha}{2}+2\beta=1\end{displaymath}

giving

\begin{displaymath}\beta=\frac{1}{3},\;\alpha=\frac{2}{3}\end{displaymath}


\begin{displaymath}u(r,\theta)=(\frac{2a}{3r}+\frac{r}{3a})cos\theta\end{displaymath}

c:The solution will depend on $r$ only. We rewrite the differential equation as

\begin{displaymath}\frac{1}{r}\frac{d}{d r}(r\frac{d u}{d r})=1\end{displaymath}

giving

\begin{displaymath}r\frac{d u}{d r}=\frac{r^2}{2}+b\end{displaymath}

Integrating once more gives

\begin{displaymath}u(r)=\frac{r^2}{4}+b\ln\frac{r}{a}+c\end{displaymath}

With the boundary conditions $u(a,\theta)=1,\;u(2a,\theta)=2$ we find

\begin{displaymath}\frac{a^2}{4}+c=1\end{displaymath}


\begin{displaymath}a^2+b\ln 2+c=2\end{displaymath}

with solution

\begin{displaymath}b=-\frac{3a^2-4}{4\ln(2)},c=-\frac{a^2}{4}+1\end{displaymath}

and we find

\begin{displaymath}u(r)=\frac{r^2}{4}+\frac{-3a^2+4}{4\ln(2)}\ln\frac{r}{a}-\frac{a^2}{4}+1\end{displaymath}




next up previous
Next: About this document ...
Birger Bergersen 2003-04-09