next up previous
Next: About this document ...

Physics 315, Solution to problem set 7 2004

Q3 1993 final exam
(a). When the stresses act normal to the $x-z$ and $y-z$ planes Hooke's law reads

\begin{displaymath}\left[\begin{array}{c}
-P\\
-P\\
0\\
0\\
0\\
0\\
\end{a...
...c}
e_1\\
e_2\\
e_3\\
e_4\\
e_5\\
e_6\\
\end{array}\right]\end{displaymath}

The solution to these equations is

\begin{displaymath}e_1=e_2=-\frac{(\lambda+2\mu)P}{2\mu(3\lambda+2\mu)};\;\;e_3=
\frac{\lambda P}{\mu(3\lambda+2\mu)};\;\;e_4=e_5=e_6=0\end{displaymath}

(b). Let the side of the cube be $a$. The sum of the components of the force $-Pa^2$ acting on the the $x-z$ or $y-z$ planes is $-2Pa^2/\sqrt{2}$.The area of a (110) surface is $\sqrt{2}a^2$. The normal stress on the (110) surface is thus $-P$. This result should be expected since the material is isotropic.
Q1 1994 final
a:
The nearest neighbor distance for the $bcc$ structure is $r_{nn}=a\sqrt{3}/2$, where $a$ is the side of the unit cube. We can calculate $a$ from the density $\rho=m/v_c$ using $v_c=a^3/2$ and that the mass $m$ of a sodium atom is $m=M/N_A$, where $M$ is the mass of one mol and $N_A$ is Avogadro's number. Putting the terms together we find

\begin{displaymath}r_{nn}=\frac{\sqrt{3}}{2}\left(\frac{2M}{N_A\rho}\right)
^{1/...
...99\times 10^{-3}}{6.0225\times 10^{23}\times 970}\right)
^{1/3}\end{displaymath}

or

\begin{displaymath}r_{nn}=3.71\times 10^{-10} m\end{displaymath}

b: The reciprocal of the $bcc$ lattice is $fcc$. We choose the following direct lattice vectors

\begin{displaymath}{\bf a}=\frac{a}{2}(-\hat{\bf x}+\hat{\bf y}+\hat{\bf z});\;
...
...});\;
{\bf c}=\frac{a}{2}(+\hat{\bf x}+\hat{\bf y}-\hat{\bf z})\end{displaymath}

We can choose the primitive reciprocal lattice vectors

\begin{displaymath}{\bf A}=\frac{2\pi}{a}(\hat{\bf y}+\hat{\bf z});\;
{\bf B}=\f...
...{\bf z});\;
{\bf C}=\frac{2\pi}{a}(\hat{\bf x}+\hat{\bf y});\;\end{displaymath}

c:
The scattering angles are given by

\begin{displaymath}\sin\theta=\frac{n\lambda}{2d}=\frac{n\lambda\vert G\vert}
{4\pi}\end{displaymath}

where $\vert G\vert$ is the length of a reciprocal lattice vector. We have $a=2 r_{nn}/\sqrt{3}=4.285$Å. Since $\sin\theta <1$ and $n\geq=1$ we need to consider the lattice vectors for which

\begin{displaymath}\vert G\vert<\frac{2\pi}{a}\frac{2a}{\lambda}=
\frac{2\pi}{a}5.56565\end{displaymath}

The lengths of the reciprocal lattice vectors can be written on the form

\begin{displaymath}\vert G\vert=\frac{2\pi\sqrt{d}}{a}\end{displaymath}

where $d=h^2+k^2+l^2$ and $h,k,l$ are either all even or two of them are odd and one even. The values of $d$ which are smaller than $5.56565^2
=30.97$ are

\begin{displaymath}d=2,4,6,8,10,12,16,18,20,24,26\end{displaymath}

each of these $d-$values gives rise to scattering at the angle $\theta=\sin^{-1}\sqrt{d}/5.56565$.
Q 2 1994 final
a:
The relaxation time is given by

\begin{displaymath}\tau=\frac{\sigma m_e}{n e^2}=\frac{\sigma m_e v_c}{e^2}
=2.93\times 10^{-14} s\end{displaymath}

using the provided numbers, remembering to convert to MKS units!
b:

\begin{displaymath}v_{drift}=\frac{e E \tau}{m_e}=\frac{eJ\tau}{\sigma m_e}
=0.246\times 10^{-4} ms^{-1}\end{displaymath}

c:
If the cross section of the wire is $A$ and its length $L$ the current is $I=jA$ and the heat dissipated is given by

\begin{displaymath}RI^2=\frac{LAj^2}{\sigma}\end{displaymath}

The heat capacity is $3Nk_B=3LAk_B/v_c$ giving for the rate of temperature rise

\begin{displaymath}\dot{T}=\frac{v_cj^2}{3\sigma k_B}=0.45\times 10^{-4} Ks^{-1}\end{displaymath}

Q2 1996 final
a: The equations of motion for the atoms in the $n$'th cell can be written

\begin{displaymath}m\ddot{u}_1(n)=K_1[u_2(n)-u_1(n)]+K_2[u_2(n-1)-u_1(n)]\end{displaymath}


\begin{displaymath}m\ddot{u}_2(n)=K_1[u_1(n)-u_2(n)]+K_2[u_1(n+1)-u_2(n)]\end{displaymath}

b: Substitution of the trial solution yields

\begin{displaymath}-m\omega^2e_1=K_1(e_2-e_1)+K_2e_2\exp(-ika)-e_1\end{displaymath}


\begin{displaymath}-m\omega^2e_2=K_1(e_1-e_2)+K_2e_1\exp(ika)-e_2\end{displaymath}

For the equations to have a solution the determinant

\begin{displaymath}\left\vert\begin{array}{cc}
-K_1-K_2+m\omega^2&K_1+K_2\exp(-i...
...K_1+K_2\exp(ika)&-K_1-K_2+m\omega^2\\
\end{array}\right\vert=0\end{displaymath}

The eigenvalues are

\begin{displaymath}m\omega^2=\sqrt{K_1+K_2\pm\sqrt{K_1^2+K_2^2+2K_1K_2\cos(ka)}}\end{displaymath}

c: In the special case $ka=\pi$ the frequencies are

\begin{displaymath}\omega_1=\sqrt{\frac{2K_1}{m}}\end{displaymath}


\begin{displaymath}\omega_2=\sqrt{\frac{2K_2}{m}}\end{displaymath}

d: In the first mode the springs with spring constant $K_1$ vibrate while the springs with $K_2$ remain unstretched. In the second case it is the other way around.


next up previous
Next: About this document ...
Birger Bergersen 2004-04-26