next up previous
Next: About this document ...

PHYSICS 312. Midterm. February 10 2003.Solution.
Problem 1:
a:

\begin{displaymath}u(x,t)=f(x+ct)+g(x+ct)\end{displaymath}

We have

\begin{displaymath}f+g=e^{-x^2}\end{displaymath}


\begin{displaymath}cf^\prime-cg^\prime=-2xce^{-x^2}\end{displaymath}

Integrating the last equation we find

\begin{displaymath}f(x)-g(x)=e^{-x^2}+a\end{displaymath}

where $a$ is a constant. Solving for $f$ and $g$ gives

\begin{displaymath}f(x+ct)=\exp(-(x+ct)^2)+\frac{a}{2}\end{displaymath}


\begin{displaymath}g(x-ct)=-\frac{a}{2}\end{displaymath}

Adding the terms gives

\begin{displaymath}u(x,t)=\exp(-(x+ct)^2)\end{displaymath}

b: This is a bell shaped pulse moving left, without changing its shape from its initial form.
Problem 2:
a:We have

\begin{displaymath}\phi=a\sin(\lambda x)+b\cos(\lambda x)\end{displaymath}

The boundary condition for $x=0$ gives $a=0$. The boundary condition at $x=a$ gives

\begin{displaymath}\lambda=\frac{(2n+1)\pi}{2a};\;\;n=0,2,3,\dots\end{displaymath}

b: The three lowest eigenfunctions can be written

\begin{displaymath}f_1=b\cos(\frac{\pi}{2a});\;\;f_2=b\cos(\frac{3\pi}{2a});\;\;f_3=b\cos(\frac{5\pi}{2a});\;\;\end{displaymath}

drawn below. The constant $b$ is arbitrary and we choose it to be unity.

\begin{figure}
\epsfysize =200pt
\epsffile{m2003.eps}
\end{figure}

Problem 3:
a: We have

\begin{displaymath}(\kappa_0+\alpha T)\frac{dT}{dx}=const\end{displaymath}

Choosing the constant to be $c$ and integrating once more gives

\begin{displaymath}\kappa T+\frac{\alpha}{2}T^2=cx+d\end{displaymath}

where $d$ is another constant.
b: The solution to the equation above is

\begin{displaymath}T=-\frac{\kappa_0}{\alpha}\pm \sqrt{\frac{\kappa_0^2}{\alpha^2}-\frac{2(cx+d)}{\alpha}}\end{displaymath}

The boundary condition at $x=0$ forces us to choose the positive root and put $d=0$. The boundary condition at $x=L$ gives

\begin{displaymath}(T_0+\frac{\kappa_0}{\alpha})^2=\frac{\kappa_0^2}{\alpha^2}-\frac{2(cx+d)}{\alpha}\end{displaymath}

or

\begin{displaymath}c=\frac{T_0^2\alpha+2\kappa_0T_0}{2L}\end{displaymath}

c: We must use the positive root.


next up previous
Next: About this document ...
Birger Bergersen 2003-02-24